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The cross sections for Compton scattering from positronium are calculated in the range from 1

to 100 keV of incident photon energy. The calculations are based on the A2 term of the photon–

electron/positron interaction. Unlike in hydrogen, the scattering occurs from two centers and the

interference effect plays an important role for energies below 8 keV. Because of the interference the

criterion for validity of the impulse approximation for positronium is more restrictive compared to
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I. INTRODUCTION

Recently interference effects of Young–type have been reported in photoionization of the

H2 molecule[1], and in dissociative electron transfer collision between H+
2 and helium [2]. In

photoionization of H2 the interference effects are due to photoelectron scattering from two

nuclear centers, while in the case of H+
2 collision with He these effects are due to two–center

electron capture.

Here we report on the interference effects in Compton scattering from the positronium

atom (Ps), where the final state of the process consists of a scattered photon and a free

electron–positron pair. Although positronium is a hydrogen–like system, the inelastic photon

scattering from positronium occurs, unlike in the scattering from hydrogen(taking the proton

mass as infinite), from two centers, and the scattering is described by two amplitudes. The

interference effects are due to the interference of these amplitudes, and the effects become

negligible at sufficiently high incident energies.

In the standard calculations of Compton scattering from atoms, electrons are usually

described as independent, in an effective IPA potential dominated by the electron-nucleus

interaction (independent particle approximation). This IPA approach is generally quite

good, except at low energies. It leads to there being no interference between the different

amplitudes corresponding to the individual atomic electrons, even when a proper antisym-

metrization is carried out. The electron correlations, neglected in IPA, will cause interference

terms, even with proper antisymmetrization, and they are included in full many body calcu-

lations, with small effects on total cross sections. However in the positronium case there is

no dominant effective potential, and only the electron-positron interaction, not separable in

the two particles, matters. Thus unlike in scattering from helium, where are no interference

terms at the dominant IPA level, in scattering from positronium we have a coherent sum of

the two amplitudes, with interference, in the first order of calculation.

We focus our consideration on the peak region of the Compton spectrum, where the

A2 term of the photon–electron/positron interaction is expected to be sufficient for cross

section calculations for scattering in the peak region of the spectrum from hydrogen or low

Z atoms for incident photon energies above 1 keV[3, 4].

Using the A2 term, we derive a general expression for the doubly differential cross section

(DDCS) for Compton scattering from a two–particle bound system (not necessarily equal
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mass particles), which breaks up after scattering takes place, and when only the scattered

photon is observed. The evaluation of the matrix elements and the summation over the

final particle states are performed using the internal variables and the internal states in the

CM frame of the two particle system. When this is applied to the positronium ground state

we obtain an analytic expression for the DDCS, with an explicit separation of direct and

interference terms in the scattering. For energies above 10 keV the positronium total cross

section approaches twice the hydrogenic atom cross section. However, for energies below

10 keV there is an interference in the cross section between the direct scattering amplitudes,

and the positronium cross section deviates significantly from twice the hydrogenic result at

these lower energies.

Compton scattering is a useful experimental method for determining momentum density

in atomic, molecular and condensed matter systems, [5], in situations for which the measured

DDCS may be interpreted in terms of the impulse approximation (IA ). The generally

accepted criterion for the validity of IA is that the photon momentum transfer, k, must be

much larger than the average momentum pav of the bound electron, pav/k ≪ 1. However,

in the case of the hydrogen atom, as well as heavier atoms, IA is known to be adequate

for the DDCS as long as pav/k . 1, [4, 6]. Because positronium is a hydrogen–like system,

but the scattering takes place from two centers, and interference effects are present, it is

interesting to investigate the adequacy of IA in this case. Assuming A2 approximation, we

have derived the DDCS in IA for the positronium ground state, in analytic form. We find

that the interference effects present in the scattering at lower energies are not adequately

given in the IA calculation unless pav/k ≪ 1, so that the extended validity of IA which is

observed in hydrogen is not observed for positronium.

Advances in technology are making possible to manipulate pulses of positronium atoms[7],

suggesting that it may become possible to study scattering from positronium, as is being

discussed here.

Our paper is organized as follows. In Section II we give general expressions for the DDCS

for Compton scattering from a bound state of two particles of opposite charges and different

masses. In Section III we specialize to the DDCS in A2 approximation for the scattering

from the positronium ground state (equal mass case), evaluating the general expressions,

and in Section IV we present the results of its calculation. The IA approach is developed

in Section V and our conclusions are summarized in Section VI.
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We employ the units ~ = c = 1.

II. CROSS SECTION IN A2
APPROXIMATION

For the calculation of the DDCS for Compton scattering from two particles of opposite

charges e± and respective masses m±, which form an initial bound state |i >, we employ

a non–relativistic perturbation theory with the A2 term of the charged particle–photon

interaction. The corresponding DDCS is

d2σ

dω2 dΩ2

=
1

2
α2ω2

ω1

∑
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∑

f

∣

∣
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∣

∣

(~ǫ1 · ~ǫ2)
〈
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∣

1

m+

ei
~k·~r+ +

1
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~k·~r
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〉

∣
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∣

∣
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2

δ(ω1 + EB − ω2 −E+ −E−), (1)

where the energy, momentum and polarization of the incoming and scattered photon are

ω1,2, ~k1,2, ~ǫ1,2 respectively and dΩ2 is the scattered photon solid angle, while
∑

pol denotes a

summation over photon polarizations. The coordinates and momenta of the charged particles

are ~r±, ~p± respectively, while their respective energies in the final continuum energy state

|f > are E±. The symbol
∑

f denotes a summation over all particle final states. We denote

by α the fine structure constant and by EB the binding energy of the initial e± state. In

Eq. (1) we have also introduced the momentum transfer ~k,

~k = ~k1 − ~k2. (2)

In order to simplify evaluation of the matrix elements in Eq. (1) and the summation over

the final two-particle states, we introduce instead of coordinates ~r± and momenta ~p±, the

coordinate ~R and the momentum ~P of the CM of the e± system, and correspondingly the

internal coordinate ~r and momentum ~p, by the standard transformation.

The two particle states in Eq. (1) are now specified by the motion of their CM and their

internal wave functions, such that

|i > = |I > |φ >,

|f > = |F > |~p >,
(3)

where |I >, |F > are the CM plane waves corresponding to the initial and final CM state

with respective momenta ~PI , ~PF . The internal wave functions |φ > and |~p > represent the
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initial bound state and the final state with momentum ~p, respectively. The summation over

two particle final states
∑

f now becomes an integration over d~P d~p.

When the new variables, together with the representation of the states given by Eq. (3),

are introduced in Eq. (1), we derive after some calculation and integration over the CM

degrees of freedom, the expression for the DDCS in the form

d2σ

dω2 dΩ2

=
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,

(4)

where we have assumed without loss of generality that ~PI ≡ 0. In Eq. (4) we have introduced

the reduced mass

µ =
m+m−

M
, (5)

where M = m+ +m− is the total mass of the system.

From energy–momentum conservation we have in Eq. (4) for the CM-energy

ECM =
~k2

2M
. (6)

When using Eq. (4) for hydrogen, the cross section reduces to the known expression, where

only the photon–electron interaction contributes, due to the large proton mass, and the

CM-energy ECM is negligible. In the case of positronium both the photon–electron and the

photon–positron interaction terms contribute.

III. HIGH ENERGY SCATTERING FROM POSITRONIUM

For Compton scattering from positronium (the ground state energy E0 is 6.8 eV) we

expect that for incident photon energies above 1 keV calculation of cross sections using

only the A2 term of the electron/positron – photon interaction,as in the preceding section,

is sufficient for the peak region. We performed calculations also including the p · A term,

which showed that even at low incident energy such as 1 keV the contribution of this term is

completely negligible in the peak region. However, a correct calculations for the low energy

region of the spectrum must include the p · A term, because within A2 approximation the

cross section is vanishing for ω2 → 0, while in fact low energy Compton spectra exhibit an
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infrared divergence in the limit ω2 → 0, [3, 8]. Our analysis for low ω1 and for the low

energy region of spectra will be presented separately.

For the equal mass case, denoting by m the electron (positron) mass, we obtain from

Eq. (4) the DDCS as
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(7)

where |φ0〉 is the wave function of the positronium ground state with energy E0, and |~p〉 is
the Coulombic wave function of the electron/positon continuum state of internal momentum

~p. The electron classical radius is denoted by re.

The cross section given by Eq. (7) is determined by the superposition of two amplitudes

a±, which correspond to scattering from the electron or positron separately. When the

polarization of the photons and the final electron/positron states are not observed, we obtain

from Eq. (7), after integration over the δ-function, the cross section

d2σ

dω2 dΩ2

=

(

d2σ

dω2 dΩ2

)

+

+

(

d2σ

dω2 dΩ2

)

−

+ I , (8a)

where
(

d2σ

dω2 dΩ2

)

±

=
1

2π

ω2

ω1

σT
m

η6

1− e−2πζ

∫

|a±|2 dΩ (8b)

are the cross sections for direct scattering from the positron or electron separately, while

I =
1

2π

ω2

ω1

σT
m

η6

1− e−2πζ

∫

2ℜ
(

a+a
∗
−

)

dΩ (8c)

is the interference term in the scattering (ℜ indicates the real part of a complex number).

In Eqs. (8b) and (8c) dΩ is an infinitesimal solid angle in the direction of the momentum

~p, and σT is the Thomson cross section. The symbols η and ζ are defined as

η = 1
2
αm, ζ =

η

p
, (9)

where the magnitude of the momentum ~p is determined from conservation of energy as

p = m

√

ω1 − ω2 − |E0| − ~k2/4m. (10)

The squared amplitudes |a±|2 and ℜ(a+a∗−) of Eqs. (8b) and (8c) are

|a±|2 = 64κ2
κ2 ∓ 2κp cos β + (p2 + η2) cos2 β

[κ2 + p2 ∓ 2κp cos β + η2]4 · [(p2 + η2 + κ2)2 − 4p2κ2]
e−2ζψ (11a)
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and

ℜ(a+a∗−) = 64κ2
[κ2 − (1 + ζ2) p2 cos2 β] cosχ+ 2ζκp cosβ sinχ

[(κ2 + p2 + η2)2 − 4(κp cos β)2]2 [(p2 + η2 + κ2)2 − 4p2κ2]
e−2ζψ . (11b)

In Eqs. (11) we have introduced the quantities

~κ =
1

2
~k and κ = |~κ| ,

ψ = arctan
2ηp

κ2 − p2 + η2
,

χ = ζ ln
κ2 + p2 + η2 − 2~κ · ~p
κ2 + p2 + η2 + 2~κ · ~p,

~κ · ~p = κp cos β.

(12)

At this point we introduce the commonly used variables u and y for Compton scattering

cross sections,

y =
η

κ
and u =

pz
η
, (13)

where η is given by Eq. (9), and pz is defined as

pz =
m

k
(ω1 − ω2)−

k

2
, (14)

where k =
∣

∣

∣

~k
∣

∣

∣
.

The quantities |a±|2 and ℜ(a+a∗−) given by Eqs. (11) are now written as

|a±|2 = e−2ζψ y
6

η8
1∓ 2γt+ (1 + 2uy)t2

(1 + u2)(1 + uy ∓ γt)4
, (15a)

and

ℜ(a−a∗+) = e−2ζψ y
6

η8
[1− (1 + 2uy)t2] cosχ+ 2yt sinχ

(1 + u2) [(1 + uy)2 − γ2t2]2
. (15b)

In the above equations

χ = ζ ln
1 + uy − γt

1 + uy + γt
,

ψ = arccos
y − u√
1 + u2

,

γ =
√

1 + 2uy − y2,

ζ =
y

γ
,

(16)

and t = cos β is introduced.

The angular integration in Eq. (8b), for the contribution of the direct terms to the cross

section, can be performed analytically, and the result expressed in the u and y variables is
(

d2σ

dω2 dΩ2

)

±

=
32

3α2

σT
m
y2
ω2

ω1

1 + uy/2

(1 + u2)3
e−2ζψ

1− e−2πζ
. (17)
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For comparison we give the corresponding expression for the DDCS for the hydrogen

atom in u and y variables:

(

d2σ

dω2 dΩ2

)

H

=
16

3α2

σT
m
y2
ω2

ω1

1 + xy/2

(1 + x2)3
e−2ζHψH

1− e−2πζH
. (18a)

where

ψH = arccos
y − x√
1 + x2

,

ζH =
y

γH
,

γH =
√

1 + 2xy − y2.

(18b)

In these equations x = u/2, while y and u are defined by Eq. (13).

The interference contribution I to the cross section given by Eq. (8c), after insertion

of the expression for ℜ(a+a∗−) given by Eq. (15b), and after performing the azimuth angle

integration, in u and y variables is

I =
2σT
m

ω2

ω1

y6

η2
1

1− e−2πζ

e−2ζψ

1 + u2
I0, (19a)

where

I0 =

1
∫

−1

[1− (1 + 2uy)t2] cosχ+ 2yt sinχ

[(1 + uy)2 − γ2t2]2
dt. (19b)

I 0 is singular at y = 0. The integration in Eq. (19b) has not been performed in terms

of elementary function. However, for the Compton peak region, i.e. when u ∼ 0, the

integration is straightforward for u = 0, and the result is

I0(u = 0) = cosψ0 +
2− y2

2y
sinψ0, (20)

where

ψ0 =
y

γ0
ln

1− γ0
1 + γ0

, γ0 =
√

1− y2.

From Eq. (20) we get the small y expansion for the peak region

I0(u = 0) = 1 + 2 ln y/2 +O(y2), (21)

which displays the logarithmic nature of the singularity in I 0 at y = 0. Because of the

factor y6 which enters in the factor which multiplies I0 to give the interference term I , given

by Eq. (19a), the interference term is unimportant for y = 0. For u = 0 and small y we
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calculate the ratio RID of interference to direct term contributions in the DDCS, Eqs. (8b)

and (8c), as

RID =

∫ 1

−1
2ℜ(a−a∗+) dt

∫ 1

−1

(

|a+|2 + |a−|2
)

dt
=

3

8
y4
[

1 + 2 ln
y

2
+O(y2)

]

. (22)

This demonstrates that the contribution of direct terms dominates for small y, i.e. for large

k.

IV. RESULTS OF CALCULATIONS IN A2
APPROXIMATION

We have performed calculations of the DDCS in A2 approximation, both making a numer-

ical evaluation of the angular integrals indicated in Eqs. (8b) and (8c), and also in parallel

simply using Eq. (17), together with a numerical evaluation of the integral I 0 given by

Eq. (19b). The results obtained from these two integrations showed complete agreement,as

they should, since no approximation was made getting Eq. (17). Singly differential cross sec-

tions and total cross sections are obtained by additional numerical integration. (We express

the cross sections in units of the classical electron radius re.)

In Fig. 1 we show the values of the total cross section in the range 1 → 100 keV of incident

photon energy. We present our results for scattering from positronium, and the results for

scattering from hydrogen [calculated from Eq. (18a)], as well as results obtained from the

Klein–Nishina formula (scattering from a free electron or positron at rest). We also plot the

contribution |I | of the magnitude of the interference term. One can observe that for higher

energies, i.e. above 10 keV, the cross section for positronium matches twice the hydrogenic

value and twice the Klein–Nishina value.

In Fig. 2 we show in detail the total cross sections of Fig. 1 for the lower energy range,

from ω1 = 1 keV to ω1 = 10 keV. The interference contribution is always negative, as

we see in the peak region for small y, from the ln y term of Eq (22), and it becomes less

important above 8 keV, when the positronium cross section approaches twice the hydrogenic

cross section.

In Fig. 3 we plot the ratios of positronium to hydrogen total cross sections. We present

the values of the ratio both with and without interference contribution, as R and RD re-

spectively. From this figure one sees that the positronium cross section at the lower energies

is smaller than twice that of hydrogen, and that the ratio of cross sections approaches two
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FIG. 1. (Color online)Total cross section

for Compton scattering on positronium Ps

(squares) and on hydrogen H (x) in A2

approximation. Also shown is the magni-

tude |I | of the interference term contribu-

tion (triangles) for scattering on positron-

ium, as well as the Klein–Nishina cross sec-

tions σKN (dashes) and 2σKN (dots).
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FIG. 2. (Color online) Total cross sec-

tions in A2 approximation for Comp-

ton scattering on positronium and hy-

drogen in the low energy range. The

symbols are the same as in Fig. 1.

with increasing energy. Large deviations of the ratio R from a factor of two in the lower

energy region are a consequence of negative interference. However, the ratio RD, defined

by the direct terms, is about two in the entire energy range. For very low energies RD

becomes greater than two due to larger energy phase space (for fixed incident photon en-

ergy) in positronium scattering compared to the scattering from hydrogen. This effect is

not important for higher incident energies.

In Fig. 4 we show the DDCS for scattering of 5 and 10 keV photons from positronium and

from hydrogen, as a function of scattered photon energy ω2, for a scattering angle of 123◦.

The peak of the positronium curve for 10 keV is four times higher than that of the hydrogen

peak, which follows when the expressions for the positronium direct terms, Eq. (17), and

for hydrogen, Eq. (18a), are evaluated at the peak position (i.e. u = x = 0), and the

interference contribution in scattering from positronium is negligible. The hydrogenic curve

is broader than that of positronium because of the larger hydrogen average momentum. The

area underneath the positronium curve (i.e. the singly differential cross section) is about

twice the hydrogenic one. Interference, not visible at 10 keV, is becoming barely visible at

10



1 10 100

0.5

1.0

1.5

2.0

 RD

 R

 
1
(keV)

 

 

FIG. 3. (Color online)Ratios of positronium to hydrogen total cross sections R = σPs/σH , RD =

σDPs/σH , the ratio when the interference term in positronium scattering is omitted (direct terms

only).
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FIG. 4. (Color online) DDCS for Compton scattering of photons with energy ω1 = 10 keV (left

panel) and ω1 = 5 keV (right panel) from positronium Ps (squares) and from hydrogen H (×)

for the scattering angle θ = 123◦. Also shown is the absolute value of the interference term |I |,

(triangles).

5 keV.

In Fig. 5 we show the DDCS for scattering of 2 keV photons from positronium and from

hydrogen at the scattering angle of 123◦. At this lower energy the interference contribution to

the scattering from positronium is important, as is seen from the figure, and the positronium

peak is only about 3 times that of hydrogen. The singly differential cross section (SDCS)

for positronium is about 1.6 times that of hydrogen for this kinematics.

In Fig. 6 we show the SDCS dσ/ dΩ2 for scattering of 5 keV photons (upper panel) and

for scattering of 2 keV photons (lower panel) from positronium and from hydrogen, as a
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FIG. 5. (Color online) Same as Fig. 4 for incident photon energy ω1 = 2 keV.

function of the scattering angle Θ2. We also plot the contribution |I | of the magnitude of

the interference term, as well as the contribution D of the direct terms in the scattering from

positronium. At 2 keV the interference contribution persists in the entire angular range.

However, by 5 keV the interference contribution is very small for the backscattering angles,

as the momentum transfer has sufficiently increased and y is small.

These results demonstrate that the interference term in the cross sections for scattering

from positronium in the lower energy region of 1 → 8 keV gives an important negative con-

tribution to the cross section from the positive direct terms, which represent the scattering

from electron and positron separately. The contribution of interference is negligible above

10 keV incident photon energy.

V. IMPULSE APPROXIMATION

The impulse approximation (IA ), describing scattering as from a momentum distribution

of free electrons corresponding to the Fourier decomposition of the bound state, is a very

useful method allowing a simple determination of electron momentum density from the

experimental results of Compton scattering [5]. The IA is applicable in the Compton peak
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FIG. 6. (Color online) SDCS for scattering of 5 keV photons (upper panel) and for scattering

of 2 keV photons (lower panel) from positronium Ps (squares) and from hydrogen H (x), as a

function of the scattering angle Θ2. Also shown is the absolute value of the interference term |I |

(triangles) and cross section obtained by using only direct terms in the scattering D (line).

region and can be derived assuming pav/k ≪ 1 (pav being the average electron momentum,

k the photon momentum transfer).

In the case of the hydrogen atom, and also for corresponding higher Z systems, the IA is

known to be adequate even for pav/k . 1. Because the positronium atom is a quantum

mechanical system similar to hydrogen it is interesting to investigate the adequacy of the

IA in the positronium case.

Employing standard operator procedures [9] to the cross section given by Eq. (1), and

using the same technique as described in Section II for the case of positronium in the ground
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state |φ0 >, we obtain the IA cross section in A2 approximation

(
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dω2 dΩ2
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(23)

where |~q > denotes a plane wave of momentum ~q in the electron–positron CM-frame.

After performing the indicated ~q-integrations in Eq. (23) we obtain the IA cross section

(

d2σ

dω2 dΩ2

)

IA

=
32

απ

y

m
σT
ω2

ω1

(J0 + J1) . (24)

Here

J0 =
1

3z3
, (25a)

and

J1 =
1

b2(b+ z)
+

1

b2z
− 2

b3
ln
z + b

z
, (25b)

with

z = 1 + u2 and b =
4

y2(1 + uy)
. (25c)

The variables u and y are defined by Eq. (13).

For comparison we give the corresponding hydrogenic cross section in IA ,

(

d2σ

dω2 dΩ2

)H

IA

=
8

απ

y

m
σT
ω2

ω1

JH0 , (26a)

where

JH0 =
1

3z3H
, (26b)

with

zH = 1 +
(u

2

)2

. (26c)

The positronium IA cross section, given by Eq. (24), consists of two terms. The first term

J0, Eq. (25a), originates from the direct terms of scattering from an electron or a positron

separately, while J1 originates from the interference contribution. For u = 0 and small y we

obtain the ratio of the interference contribution to the direct term contributions,

RIA
ID ≡ J1/J0 ≈

y4

16
+
y6

64

(

1 + 4 ln
y

2

)

+ · · · . (27)
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When compared with Eq. (22), which defines the ratio RID for the A2 calculation under the

same conditions, we observe the same leading power y4, but with a different coefficient and

omitting the ln y factor, leading to a positive (not negative) value of RIA
ID, for small y.

The accuracy of IA is usually expressed in terms of the y-variable, and its validity is

restricted to the Compton peak region. Eisenberger and Platzman [9] asserted, from the

analysis of moments in the hydrogen case, that the relative error of IA in comparison to

the A2 calculation was of order of y4, which they said implied a criterion of y somewhat less

then 1 for its validity. Further, it has been observed that the IA calculation is in very good

agreement with both the S-matrix calculation [10], and experiments, [11], even for y ≃ 1,

both for hydrogen and for heavier atoms. However, based on Eqs. (26a), (18a), Surić[12]

derived, for the relative error in the hydrogenic case for u = 0, the expansion for small y

(

d2σ
dω2Ω2

)H

A2

(

d2σ
dω2Ω2

)H

IA

= 1.− 0.144934 y2 − 0.00993617 y4 + 0.000729726 y6 + · · · . (28)

Eq. (28) demonstrates that the relative error is of order of y2 ( and for u 6= 0 it is even of the

order of y, with terms linear in uy [12]), contrary to Eisenberger and Platzman, but that it

is rather the smallness of the coefficients that secures the validity of IA even for y ≃ 1.

In the positronium case Eq. (28) holds true only if the interference contributions are

dropped in both the IA and the A2 calculations. Keeping the interference contributions,

we obtain for u = 0 an expansion for the ratio of DDCS in the A2 approximation to IA

based on Eqs. (4), (17), (19), (24)

(

d2σ
dω2 dΩ2

)

A2

(

d2σ
dω2 dΩ2

)

IA

= 1− 0.144934y2 + 0.30256383y4 +
3

4
y4 ln y/2

+ y6 (−0.04456214 + 0.1087005 ln y/2) + · · · . (29)

Note that the coefficients of this expansion are much larger compared to the coefficients in

the expansion given by Eq. (28).

From Eq. (29) we find that a value of y = 0.527 (or pav/k = 0.26) gives an error of 10%,

or y = 0.915 (or pav/k = 0.46) gives an error of 30%, which indicates that for positronium

the criterion pav/k ≪ 1 must be used for the validity of IA. The corresponding errors for

hydrogen are 4% and 12% respectively.
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FIG. 7. (Color online) DDCS from positronium Ps and hydrogen H in the A2 approximation and

IA , for the scattering angle θ = 123◦ and the incident photon energy ω1 = 5 keV (left panel) and

ω1 = 2 keV (right panel). In legend |I | is absolute value of interference contribution to the DDCS

obtained in A2 approximation, and IIA is interference contribution to the DDCS obtained in IA .

In Fig. 7 we show results for the DDCS from positronium and hydrogen calculated in

the A2 approximation, Eqs. (17), (19) and (18a), as well as in IA, Eqs. (24),(26a). The

cross sections are shown as a function of scattered photon energy ω2, for a scattering angle

of 123◦ and for the incident photon energies of 5 and 2 keV. We also plot the interference

contributions as |I | for the A2 calculation and I IA in IA calculation.

At an energy of 2 keV, in Fig. 7(b), we notice a significant discrepancy between

A2 calculation and IA calculation for positronium, even in the peak region, where pav/k ≈
0.6. The interference contribution is not negligible. At the same energy for hydrogen

the agreement between the IA and A2 calculation is much better, despite the fact that

pav/k ≈ 1.1.

At an energy of 5 keV, Fig. 7(a), good agreement between A2 and IA calculation is

found for both the positronium and hydrogenic case, but pav/k ≈ 0.25 for scattering on

positronium.

In Fig. 8 we show the total cross sections for positronium and hydrogen obtained from

A2 calculation (already shown in Figs. 1, 2) and from the IA calculation. Fig. 8(a) shows

cross sections for the incident photon energy range 1 → 100 keV, while Fig. 8(b) shows the

lower energy region from 1 → 8 keV. For energy higher than 10 keV, the A2 calculation and

the IA calculation are in agreement for both positronium and hydrogen. For lower energies,
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FIG. 8. (Color online) Total cross sections for positronium and hydrogen in A2 calculation and

IA calculation (left panel). In the right panel the lower energy region is displayed in more detail.

Symbols are the same as in Fig. 7.

Fig. 8(b), the A2 calculation and IA calculation are in fair agreement for hydrogen, but we

notice significant discrepancy in the positronium case. The negative interference contribution

to the scattering is not negligible for these lower energies.

We conclude that the IA calculation for scattering from positronium is reliable for

pav/k ≪ 1, but not for pav/k ≈ 1. In the total cross section the disagreement between the

IA and A2 calculation occurs over the wide range 1 → 10 keV, where interference in the

DDCS in A2 approximation is important. The interference is not accurately represented in

the IA calculation.

VI. CONCLUSIONS

Above 1 keV, where contribution from the A2 matrix element dominates, the contributions

to the DDCS peak region of Compton scattering from positronium come from direct electron

and positron A2 scattering amplitudes and the interference of these amplitudes. Our results

for these DDCS and for the corresponding total cross section for energies below 8 keV

show a significant decrease due to the interference effect. In consequence the positronium

total cross sections are smaller than twice the corresponding hydrogen values. However for

energies above 10 keV, and also for DDCS for higher momentum transfer, i.e. pav/k ≪ 1,

the interference effect is less important. For these higher energies the positronium total
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cross section coincides with twice the hydrogenic and the Klein–Nishina values, which are

the same at such energies.

Our study of the application of IA for positronium demonstrates that the extended

validity of IA , pav/k . 1, observed for hydrogen and heavier atoms DDCS, is not found,

and the stronger criterion pav/k ≪ 1 should be applied. These findings about the validity

of IA for positronium may perhaps apply whenever Compton scattering occurs from more

than one center, as in molecules, so that the interference effect can play a role at lower

energies.
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