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 We study the creation of electron-positron pairs from the vacuum induced by two spatially 
displaced static electric fields.  The strength and spatial width of each localized field is less than 
required for pair-creation.  If, however, the separation between the fields is less than the quantum 
mechanical tunneling length associated with the corresponding quantum scattering system, the 
system produces a steady flux of electron-positron pairs.  We compute the time-dependence of the 
pair-creation probability by solving the Dirac equation numerically for various external field 
sequences.  For the special case of two very narrow fields we provide an analytical expression for 
the pair-creation rate in the long-time limit. 
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1. Introduction 
The creation of electron-positron pairs from the vacuum under an external supercritical 

electric force is one of the most fascinating subjects in quantum electrodynamics [1].  In 1951, 
Schwinger showed that a strong static electric field could break down the vacuum to generate a 
steady flux of electron-positron pairs [2].  Even though the theory does not require a precise 
threshold field strength, the typical field associated with such a pair creation is on the order of 
Ec=1.32×1016 V/cm.  More recent theoretical investigations have shown that there is a second 
mechanism to create pairs.  Even if the field strength is below Ec, pairs can be created if the 
external field varies rapidly in time, as is characteristic of a laser pulse [3-7].  

So far all experimental attempts to observe this intriguing phenomena of the direct 
conversion from light to particles in the lab have been unsuccessful.  The pioneering experiment at 
SLAC [8] has observed pair-production process triggered from collisions of an electron beam with 
an intense laser pulse.  While this experiment was operated essentially in the perturbation domain, 
it did observe the onset of nonperturbative signatures [9,10].  Beginning in the 1980’s it was 
attempted to create a supercritical field via two overlapping Coulomb fields associated with 
colliding heavy ions [11,12].  Positrons were measured but it is believed today that their main 
production mechanism was not necessarily caused by the Coulombic field itself, but triggered by 
nuclear transitions, which are unavoidable in highly relativistic collisions.  

In order to reach the Schwinger limit in a more controllable environment with a time-varying 
external field, the laser intensity has to exceed about 4×1029 W/cm2.  The highest intensity level of 
high-power laser systems is about 1022 W/cm2, but there are presently tremendous efforts 
underway at various labs to approach the Schwinger limit and hopefully one day to observe a 
laser-only induced pair creation process experimentally [13].  In view of the present difficulty to 
provide sufficiently strong fields, several theoretical proposals [14-17] to lower the threshold have 
been investigated involving combinations of static electric, magnetic and time-dependent laser 
fields.  In all cases the fields are required to overlap spatially and to be applied simultaneously.   

In this work we show that there is a third and independent process that could also contribute 
to the creation of electron-positron pairs even if the external field is neither supercritical nor 
time-dependent.  This additional mechanism can be loosely associated with quantum mechanical 
tunneling.  It can be observed if two static and subcritical electric fields are separated by less than 
the quantum mechanical tunneling length.  It is worth mentioning that the pair creation initiated by 
quantum tunneling between spatially localized fields discussed here is fundamentally different 
from the constant field arrangement considered by Schwinger.  For example, Schwinger’s result 
does not require a threshold value for the field.  However Schwinger’s formula shows an 
exponential dependence on the electric field strength and is often associated with a tunneling-like 
process.  
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We compute the time-dependence of the pair creation probability and the positron spectra for 
such a two-field configuration from the quantum field operator.  The operator’s space and time 
dependence is obtained by solving the Dirac equation numerically [18-21].  This computational 
approach to quantum field theory has been introduced recently to study the pair-creation process 
with full space-time resolution. For a recent review, see Ref. [22].  It can provide an alternative 
approach to the traditional S-matrix approach, which is based on the in- and out-states only and 
therefore cannot visualize the processes inside the interaction zone.  In addition to visualizing the 
details of the pair creation dynamics, direct time-dependent quantum field theoretical solutions to 
the Dirac equation have also contributed to the resolution of various conceptual problems related 
to the negative energy states such as the Zitterbewegung [23], the relativistic localization problem 
[24] as well as the Klein-paradox [25-28].   

This paper is organized as follows.  In Sec. 2 we introduce our model system characterized 
by two sub-critical fields.  In Sec. 3 we discuss how the quantum field theoretical pair-creation rate 
in the long-time limit can be related to the single-particle transmission coefficient of the 
corresponding quantum mechanical system.  In Sec. 4 we compare our numerical data with an 
analytical expression for the pair-creation rate that can be derived for the special case in which 
both fields are narrow.  In Sec. 5 we provide a discussion of our results.  
 
2. Quantum field theoretical simulations  

The interaction of electrons and positrons with external force fields is described by the Dirac 
equation (in atomic units), 

 
                      i∂ ˆ Ψ(t)/∂t=[cαzpz+βc2+V(z)] ˆ Ψ (t) (1) 

 
where V(z) represents the scalar potential associated with the external force acting along the 
z-direction.  If we focus on that direction and only a single spin direction, the quantum field 
operator ˆ Ψ (z,t) has only two instead of the usual four components.  In Eq. (1) αz denotes the z 
component of the 2×2 Pauli matrix, β is the diagonal matrix, and c is the speed of light.  As the 
details of how the time-dependent field operator and the associated fermionic operator algebra can 
be obtained numerically from Eq. (1) has been detailed in the literature [22], we present only a 
brief review in the Appendix.  We also show there how the positive energy part of the field 
operator ˆ Ψ (p)(z,t) can be used to compute the spatial density of the created electrons via the field 
theoretical expectation value in the initial vacuum state, ρ(z,t)≡<<vac|| ˆ Ψ †(p)(z,t) ˆ Ψ (p)(z,t)||vac>>.  
As the positive energy part of ˆ Ψ  is based on free states, this density describes in a strict sense the 
true density only if the fields were instantaneously turned off [29,30].  This would include the 
possible changes in particle number due to the time-dependence of the turn-off.  The 
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corresponding integral over all space, N(t)= ∫dz ρ(z,t), yields the time-dependent number of 
electron-positron pairs. 

 The specific configuration of external fields together with the associated potential is 
sketched in Figure 1. The two electric fields have a width of W each and the maxima E1 and E2 are 
separated by a distance denoted by D.   It is important to note that the maximum strengths of the 
two electric fields are chosen subcritical such that each field by itself is not able to produce pairs.  
While below we choose the maximum value of E to be larger than Ec, the width of each field is so 
narrow that an electron would be accelerated to a kinetic energy much less than 2c2.  Note that the 
Schwinger criterion applies only to an infinitely extended field. We also choose D>>W such that 
the spatial overlap of the two electric fields is negligible.  The figure also displays the 
corresponding double Sauter [31] electric potential, defined as V(z)=– –∞

 z∫ dz’E(z’) = V1 
[1+tanh(z/W)]/2 + V2 [1+tanh((z–D)/W)]/2, where V1 and V2 are the heights of two subcritical 
potentials with amplitudes V1 = E1W and V2= E2W.  
 

 
Figure 1. The two electric fields E(z) = (E1/2)sech2(z/W) + (E2/2)sech2[(z-D)/W] and their 
associated potential V(z)=– –∞

 z∫ dz’ E(z’). We have graphed the field and the potential for the 
parameters used in the simulations below, D=0.005 a.u. and W=0.05/c] 

 
For simplicity we have turned the potential on instantly at time t=0.  In Figure 2 we show how 

the number of created electron-positron pairs changes as a function of time for four different 
inter-force separations D ranging from D = 0 to D= 0.03 a.u. 

 We note that each graph is characterized by three different temporal regimes.  At very early 
times, directly after the sudden onset of the two fields, the number of pairs grows first 
quadratically in time N(t)~t2.  This is generally associated with the abrupt turn-on of the fields.  A 
comparison of the graphs suggests that this early time growth behavior is rather independent of D.  
In other words, this initial growth can be viewed as the result of an incoherent process due to each 
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(subcritical) electric field pulse, where the created particles at one force location do not have 
sufficient time to affect the creation process (via Pauli blocking [27,28,32]) at the other location.   

The next time regime depends strongly on the spatial shape of the fields. In each case, the 
long-time behavior is characterized by a permanent linear growth in time, N(t)~S t, where the 
corresponding pair creation rate S = S(V1,V2, D) depends crucially on the inter-field separation D. 
In other words, the graphs show that even though each of the electric fields is subcritical and 
time-independent, this field configuration is able to produce a permanent flow of electron-positron 
pairs. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The electron-positron pair creation probability N(t) due to the two subcritical fields shown 
in Figure 1. The number besides each graph denotes the D chosen in the simulations with 
V1=V2=1.5c2 and W=0.05/c. The dashed line was obtained from a single supercritical field with 
potential height V=2.5c2.  [The numerical simulation parameters are: length of the numerical box 
L=0.15 a.u., number of spatial grid points Nz=512 and temporal grid points Nt= 1000] 

 
In order to better estimate the magnitude of this effect, for comparison we have also included 

in the figure (dashed line) the number of created pairs for a single supercritical electric field with 
strength V = 2.5 c2.  The slope of this graph is similar to the one obtained by two pulses with 
strength V1 = V2 = 1.5c2 and separation D = 0.01 a.u. and far less than the slope for D = 0.005 a.u.  
This comparison nicely illustrates that even though each electric field has only 60% of the 
amplitude of the supercritical single pulse, the resulting pair creation can be much stronger.  In 
fact, for D→0 we approach the production rate of a single electric field with supercritical 
amplitude V1+V2 =3c2. 

Once the distance D is too large (D > 0.03 a.u.), the slope of N(t) approaches zero and there is 
almost no permanent particle growth.  Any particle pair is then created exclusively during the 
temporal phase when the fields were turned on.  It is obvious that using multiple field 
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configurations, the creation dynamics of particles can be controlled. 
 
3. The pair creation rate and its relationship to the transmission coefficient  
 In this section we will focus on the relationship of the long-time pair creation rate S with the 
transmission coefficient associated with a (physically different) situation where a single incoming 
electron scatters off of the same field configuration that produces the electron-positron pairs.  
Based on an original conjecture by Hund [33], one can show that the rate can be obtained from the 
energy integral over the transmission coefficient [16,34], as  
 

  S= 1
2π c2

V−c2
∫ T(E) dE (2) 

 
This surprisingly simple relationship follows from the underlying structure of the energy 
eigenstates associated with the Dirac Hamiltonian given in Eq. (1).  It is valid for the energy 
regime c2<E<V– c2 with V>2c2, at which a portion of the wave function (modeling an incoming 
particle) can actually penetrate the potential barrier of total height V.  This purely mathematical 
transmission, however, does not mean that an actual physical electron can pass through this barrier 
as its energy E is less than the barrier height V.  This mathematical property of the Dirac (and also 
of the Klein-Gordon) equations is related to the famous Klein paradox [25-28]. 
 As this transmission is quite useful to understand the quantum field theoretical pair creation 
process, we illustrate here the dynamics of the underlying quantum mechanical system.  In such a 
simulation, we model the initial state of the incoming electron by a Gaussian wave packet with the 
two-component wave function  

 

 φ(z,t=0) ≡Nm 

1

p

c + c2 + p2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 exp[ipz–(z–z0)2/(2Δz)2]                   (3) 

 
Here Nm denotes the normalization factor such that the total norm is equal to 1, which is conserved 
in time as H is unitary.  The spatial width is denoted by Δz and p is the central momentum 
corresponding to the incoming energy.  The spatial length of the numerical box is 30 a.u.  The 
wave packet is initially localized at z0=–6 a.u.,  
 In Figure 3 we describe the time evolution of the charge density approaching the two fields 
that are located at z = 0 and z = D.  The computational algorithm is similar to the split operator 
method described in the appendix.  The electron wave packet enters the potential region from the 
left side, interacts with the two electric force fields and splits into the reflected and transmitted 
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parts.  The interaction with the field is characterized by the occurrence of high frequency 
oscillations based on the interference of incoming and reflected portions of φ, whose wavelength 
corresponds to the incoming momentum p.  We compare the time evolution for two different field 
configurations, the left sequence is for the inter-force separation D = 0.005 a.u., while the 
snapshots in the right column are for D = 0.01 a.u.  
 In order to test the validity of Eq. (2), we compute the total area of the transmitted portion of 
the charge density to determine the transmission coefficient for that particular incoming  

 
Figure 3.  Snapshots of the charge density for the quantum-mechanical scattering off the two field 
configuration shown in Figure 1 with a spacing D = 0.005 a.u. (left) and D = 0.01 a.u. (right), taken 
at times separated by the interval Δt = 0.02 a.u.  The incoming energy E = 1.5c2 corresponds to a 
central momentum of p = (5/4)1/2c.  The numbers next to the densities are the corresponding total 
probabilities for z>D. [The numerical parameters are: length of the numerical box L = 30 a.u., 
number of spatial grid points Nz = 65 536 and temporal grid points Nt = 20 000, W=0.05/c] 

 
energy E.  The final transmission coefficients for the Gaussian wave packet amounts to T = 0.356 
for D = 0.005 a.u. and T = 0.125 for D = 0.01 a.u., respectively.  We will see below that the amount 
of the transmitted wave packet portion and the transmission coefficient decrease exponentially 
with increasing field separation D, suggesting that tunneling is the main mechanism leading to this 
effect.  A more global description of the relationship between these key parameters will be 
presented in the next section based on a stationary state analysis that will permit us to compare our 
numerical data with analytical results.  
 
4. The transmission coefficient for narrow fields  
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 In this section we will derive an analytical expression for the transmission coefficient 
T(E,V1,V2,D) and use its energy integral to predict the long-time pair creation rate S(V1,V2,D) 
according to Eq. (2).  This will permit us to compare the rates with the long-time slopes dN(t)/dt 
obtained from the quantum field theoretical number of created pairs. 
 Here and below we will focus on the narrow-field limit W→0, for which the potential 
becomes V(z)→V1θ(z)+V2θ(z–D), where θ(…) denotes the Heaviside unit-step function, defined 
as θ(z)≡(1+|z|/z)/2.  This choice has two advantages, first, for any distance D≠0, the two electric 
fields have a completely vanishing spatial overlap that will permit an unambiguous interpretation 
of the results in terms of tunneling. Secondly, this special case leads to analytical expressions for 
the pair production rate, that can be compared with the long-time limit of the time-dependent 
particle numbers. 
 In order to determine the transmission coefficient, we have to find the stationary energy 
eigenstates for the Hamiltonian cαz+βc2+V(z) with the two narrow fields located again at z = 0 and 
D.  As a result there are three spatial regions for which the electric field vanishes, region I (z<0), 
region II between both electric fields (0<z<D), and region III to the right of both fields (D<z).            

 In region I the potential height is zero, such that the momentum of the incoming and 
reflected state is p≡(1/c)√(E2–c4).  In region II the subcritical potential height is less than the 
incoming energy E<V1, the wave function decays or grows exponentially with a factor β≡(1/c)√[ 
c4–(V1–E)2] characteristic of quantum mechanical tunneling.  In region III, the potential provides 
non-decaying states with the momentum q≡(1/c)√[(V1+V2–E)2–c4].  The relevant wave functions 
can be written as, 

 

 
ΦI =

1
2π

1
2E

E + c2

E − c2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
eipz +

1
2π

r
2E

E + c2

− E − c2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
e−ipz         (4a) 

  

 ΦII = A
1
2π

c2 − V1 − E( )
−i c2 + V1 − E( )

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ e

βz + B
c2 − V1 − E( )

i c2 + V1 − E( )

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ e

−βz          (4b) 

  

 
ΦIII =

1
2π

t

2 V1 + V2 − E( )
V1 + V2 − E( )− c2

V1 + V2 − E( )+ c2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ e

−iqz J                            (4c) 

 
The parameters r and t are the reflection and transmission amplitudes and we have T = |t|2|J|.  

By matching wave functions at the boundaries z = 0 and D, we can find the expansion amplitudes 
A and B and after some cumbersome calculations derive the transmission coefficient T as 
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 T(E,V1,V2,D)=
2c2pq

2c2V1V2 sinh2 βD( )/β2 + E(V1 + V2 − E) + c2pq + c4  (5) 

 
Note that the expression depends asymmetrically on V1 and V2.  However, when integrated over 
the energy E the result is symmetric about the sequence of V1 and V2 as one might have expected. 
For large spacing D, the transmission coefficient falls off exponentially with increasing D, 
T=4β2pq/(V1V2)exp(–2βD) as characteristic of a tunneling effect. In the opposite limit, D = 0, T is 
characteristic of a single barrier with height V1+V2. 
 In order to test the validity of this formula, we compare its prediction with the actual 
transmission coefficients obtained from the area of the transmitted wave function portion obtained 
in the quantum mechanical wave packet simulation of previous section. 

In Fig. 4 we compare the analytical expression for T from Eq. (5) with the numerical 
transmission data (circles) for the small width W=0.05/c as a function of the separation D for two 
incoming energies E=1.2c2, and 1.5c2.  The agreement is superb.  The two black dots represent the 
transmission coefficients T = 0.125 and 0.356 for which the time evolution was presented in 
Figure 3. The small amount of discrepancy is expected and associated with the finite width of the 
wave packet used in the simulations leading to Fig. 3. 

 
Figure 4.  The transmission coefficient T as a function of the distance D for electrons with two 
different incoming energies, E = 1.5c2 and 1.2c2. Solid lines are predicted by Eq. (5). The circles are 
the corresponding transmission coefficient obtained from the time-dependent wave packet 
simulations while the two solid circles indicate the transmission coefficient from Fig. 3. 

 
As a next step we compute the actual pair creation rates S via the energy integral over the 

analytical transmission coefficient according to Eq. (2).  As the energy E is contained in the 
momenta p and q, and in the tunneling length β–1, this integral must be determined numerically in 
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general.  
In Figure 5 we compare the analytical rate with the actual slope of the time dependent 

number of particle pairs N(t) obtained from quantum field theory.  We can see that the results 
simulated by quantum field theory also match very well with the analytical solution of Eq. (5).  
The error with the data shown is less than .1%. 

 

 
Figure 5. The pair creation growth rate S as a function of the distance D of the two electric fields.  
Solid lines are the predictions by Eq. (2) and Eq. (5) for W→0. The circles are the corresponding 
growth rates obtained from the time-dependent simulations while the solid circles indicate the 
slopes in Fig. 2. [The numerical simulation parameters are: length of the numerical box L=0.15 a.u., 
number of spatial grid points Nz=512 and temporal grid points Nt= 1000, W=0.05/c] 

     
5. Summary and discussions 
 In this work, we discussed a theoretical formalism that allows us to compute the 
time-dependent pair-creation probability for multiple force field configurations under the 
description of both quantum field theory and quantum mechanics.  These studies suggest that there 
is a third mechanism that can lead to the creation of electron-positron pairs from the vacuum, even 
if the external electric field is neither supercritical nor rapidly oscillating in time.  The formal 
mathematical relationship between the asymptotic pair creation rate and the transmission 
coefficient permits us to study complicated field configurations relatively easily.  Instead of 
carrying out involved quantum field theoretical computations, one can optimize the transmission 
for a special field arrangement.  Based on this relationship one can loosely associate this third 
mechanism with quantum tunneling.   
 In order to avoid a potential confusion, we should mention that in the case of a supercriticality 
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induced pair creation, the corresponding quantum scattering system is characterized by a 
non-vanishing transmission coefficient, based on the fact that there are energetically permitted 
non-decaying (non-tunneling) states under the potential step barrier leading to a non-vanishing 
transmission.  This particular mechanism has sometimes been called “Klein tunneling” [26], even 
though in contrast to our mechanism, there are no exponentially decaying states involved. 
 The effect of tunneling on the pair-creation mechanism also contributes to the general 
discussion about whether global properties such as the potential and its resulting energy levels or 
local properties such as the electric field strength at certain spatial regions are more important for 
the pair-creation process.  Traditionally, the diving of the lowest lying bound state into the 
negative energy continuum has been associated with the onset of pair-creation [1], on the other 
hand, spatially resolved simulations show that the particles are being created only at those local 
regions where the force field is maximum [32].  To examine this question further, we simulated the 
pair-creation process for a potential well with an increase of the width of the well while leaving the 
regions of largest force (the wings of the well) unchanged.  We observed a clear onset of 
supercriticality at widths where the lowest energy eigenstate shifts into the negative energy 
continuum.  The results suggest that the location of lowest energy eigenstate plays a crucial part 
during pair-creation.  These studies are also slightly more complicated as one has to rely entirely 
on quantum field theoretical simulations because the analogous quantum scattering system does 
not permit Klein tunneling and the long-time creation rate vanishes due to Pauli-blocking [32]. 
 The observation also raises interesting questions about the locality and causality of the 
pair-creation process under external fields [35].  As the two electric fields did not overlap, the early 
charge densities associated with the created particles at each location also should not overlap, 
suggesting that at early times, the turn-on induced initial particle growth at each location is 
completely independent of each other.  Only once the particles created at one location have 
propagated to the other region, does the system evolve into its steady state pair creation mode. 
 A possible experimental set-up would be obviously much more complicated than described by 
our oversimplified model system.  But in view of the difficulty to generate supercritical fields, we 
point out that having a sequence of multiple external fields (even if they do not or only minimally 
overlap) could help to enhance the chance of detecting electron-positron pairs in this 
experimentally challenging endeavor.  
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Appendix 
In computational quantum field theory, ˆ Ψ (t) is the field operator for the electron-positron 

complex.  As a hybrid of an operator and a quantum-mechanical wave function it satisfies not only 
the Heisenberg equation of motion but also the ordinary Dirac equation given by Eq. (1).  We can 
expand ˆ Ψ(t) into terms of creation and annihilation operators in the energy range c2<E<V–c2 
where the particle is expected to be created and ignore other terms outside this range.  

 
                               ˆ Ψ t( ) = ˆ b p t( ) | p > +

p
∑ ˆ d n

† t( ) | n >
n
∑                                   (A1) 

 
Here the states |p> and |n> denote the quantum mechanical energy eigenstates of the 

force-free Hamiltonian and the subscripts “p” and “n” represent positive and negative energy, 
respectively.  These eigenstates are time-evolved under the whole Hamiltonian with the external 
field interaction leading to |p(t)> and |n(t)>.  The creation and annihilation operators satisfy the 
fermionic anticommutator relationship [ ˆ b p, ˆ b p'

† ]+ = δ(p–p’) and [ ˆ d n, ˆ d n'
† ]– = δ(n–n’).  These 

operators evolve in time according to 
 
ˆ b p(t)= p'∑ ˆ b p'<p|p’(t)> + n∑

ˆ d n
†  <p|n(t)> = p'∑ ˆ b p'Up,p’(t) + n∑

ˆ d n
†  Up,n(t) (A2a) 

 
ˆ d n
† (t)= p∑

ˆ b p<n|p(t)> + n'∑ ˆ d n'
†  <n|n’(t)> = p∑

ˆ b pUn,p(t) + n'∑ ˆ d n'
†  Un,n’(t) (A2b) 

 
The matrix elements Up,p’=<p|p’(t)>, Up,n=<p|n(t)>, Un,p=<n|p(t)>, and Un,n’=<n|n’(t)> can 

be computed from the evolution of the single-particle Dirac equation.  The solution of Eq. (1) can 
be used to calculate various quantum field theoretical observables.  For the pair-creation process 
we need to compute the corresponding expectation value in the fermionic vacuum state ||vac>>.  
To analyze the total pair creation, first we compute the average particle density ρ(p)(z,t) of the 
created electrons by using the density operator ˆ Ψ †(p)(z,t) ˆ Ψ (p)(z,t). 

For electrons, which have positive energies, the space-time dependent field operator is 
 
ˆ Ψ(p)(z,t)= p∑

ˆ b p(t) wp(z)   (A3) 

 
where wp(z) denotes the two-component spatial representation of the eigenvector of force-free 
Hamiltonians with positive energy. With Eq. (A3) and Eq. (A.2a), the probability density of the 
electrons is 
 
 ρ(z,t) = <<vac|| ˆ Ψ †(p)(z,t) ˆ Ψ (p)(z,t) ||vac>> 
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  = n∑ ⎢ p∑ Up,n(t) wp(z) ⎢2   (A4) 

 
By integrating the probability density spatially, we obtain the average number of created 

electrons as 
 
  N(t)= pn∑ ⎢Up,n(t)⎢2  (A5) 

 
In order to compute Up,n=<p|n(t)>, we solve the single particle Dirac equation starting from 

negative energy state |n> at t = 0. The single-particle Dirac equation is solved numerically the 
split-operator technique [18-21].  In this method the time-evolution operator exp[–iht] is 
decomposed into Nt consecutive actions, each subinterval operators can be approximated by 
exp(–iht)≈exp[(–iVΔt/2)(–ih0Δt)(–iVΔt/2)] where h0 denotes the force-free Hamiltonian. The 
action of exp(–iVΔt/2) can be performed conveniently in the discretized coordinate space with Nz 
grid points.  By using the Fourier-transformation between spatial and momentum spaces, we can 
compute the action of the corresponding propagators via simple multiplications in the relevant 
space. 
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