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Systematic study of Rb atomic properties is carried out using high-precision relativistic all-order
method. Excitation energies of the ns, np, nd, and nf (n ≤ 10) states in neutral rubidium are eval-
uated. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined
for the levels up to n = 8. Recommended values and estimates of their uncertainties are provided
for a large number of electric-dipole transitions. Electric-dipole (5s − np, n = 5 − 26), electric -
quadrupole (5s− ndj , n = 4− 26), and electric-octupole (5s−nfj , n = 4− 26) matrix elements are
calculated to obtain the ground state E1, E2, and E3 static polarizabilities. Scalar polarizabilities
of the ns, np, and nd states, and tensor polarizabilities of the np3/2 and nd excited states of Rb are

evaluated. The hyperfine A- and B-values in 87Rb are determined for the first low-lying levels up
to n = 9. These calculations provide recommended values critically evaluated for their accuracy for
a number of Rb atomic properties useful for a variety of applications.

PACS numbers: 31.15.ac, 31.15.ap, 31.15.ag, 31.15.aj

I. INTRODUCTION

Accurate values of Rb atomic properties are of signifi-
cant present interest owing to the importance of this sys-
tem for ultracold atom studies [1–4]. For example, de-
terministic entanglement of two individually addressed
Rb neutral atoms using a Rydberg blockade mediated
controlled-NOT gate was recently demonstrated in [2].
Rb has been recently used in mixed-species experiments
with degenerate quantum gases [4]. Microwave transi-
tion between two ground-hyperfine states of 87Rb was
recommended as a secondary standard of a second [5].
While neutral Rb has been a subject of a number of ex-
perimental studies, large fraction of them focused on the
first few lowest levels. Very few theoretical data have
been evaluated for their accuracy. In this work, we carry
out extensive study of Rb properties using the all-order
method and evaluate accuracy of our results. In particu-
lar, recommended values of polarizabilities for a number
of exited states are given. Importance of the polarizabil-
ities for a variety of applications was recently discussed
in the review [6]. We note that Rb represents an excel-
lent benchmark cases for the theory vs. experiment com-
parisons owing to its relatively simple electronic struc-
ture and well-developed experimental techniques. Sev-
eral high-precision measurements of Rb properties have
been conducted recently [7–11] and present another mo-
tivation for this work. Availability of high-precision pre-
dictions may be not only useful for variety of current
experiments, but also may stimulate further experimen-
tal work in benchmark high-precision measurements. We
give a brief overview of the earlier experimental and the-
oretical studies of Rb properties below.

Energies, oscillator strengths, radiative transition
rates, and lifetimes in Rb have been studied experimen-
tally and theoretically in Refs. [8, 11–32] during the past

few decades. Large number of publications was also de-
voted to other properties such as multipole polarizabili-
ties [33–40] and hyperfine constants [9, 10, 41–50].
Recently, the lifetimes of the 6s and 5d states of

rubidium have been measured with high-precision in
Refs. [8, 11]. Polarizabilities of highly-excited rubidium
9s, 10s, and 8dj states were determined by measuring
the stark shifts of transitions using an electro-optically
modulated laser beam to excite an atomic beam [7].
The scalar α0 and tensor α2 polarizability values were
100 times more accurate than previous measurements
[36, 37]. Such high accuracy of experimental measure-
ments is a challenge for tests of high-precision approaches
and is one of the motivating factors for this work.
The compilation of experimental measurements of hy-

perfine magnetic-dipole (A) and electric-quadrupole (B)
constants in 85Rb and 87Rb was presented by Arimondo
et al. [45]. In that review, all measurements carried out
before 1977 were included. More recent measurements of
the A and B hyperfine constants of the 6d3/2, 7d3/2, and

8d3/2 states in 85Rb were published by Van Wijngaar-
den et al. [46–48]. Quantum beats due to the hyperfine
interaction were observed in the radiative decay of the
6d3/2, 7d3/2, and 8d3/2 states in Rb. The quantum beat
technique has the advantage of not needing any exter-
nal magnetic fields [46–48]. The only restriction on the
quantum beat method is the requirement that the hy-
perfine coupling times be less than the excited-state life-
time and greater than the excitation pulse duration [46–
48]. Using laser cooled samples of 85Rb and 87Rb in a
magneto-optical trap, high resolution spectroscopy of the
two-photon transitions 5s−5d3/2, 5s−5d5/2, and 5s−7s
were investigated by Snadden et al. [49] using the output
from a mode-locked titanium sapphire laser. The hyper-
fine constants for the 7s term of both isotopes have been
measured with improved accuracy in comparison with re-
sults in [45]. The absolute frequencies of rubidium 5s−7s
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two-photon transition at 760 nm were measured recently
[9] to an accuracy of 20 kHz with an optical frequency
comb based on a mode-locked femtosecond Ti:sapphire
laser. The accuracy of the hyperfine constant of the 7s
state was improved in Ref. [9] by a factor of 5 in com-
parison with previous result [49]. A hyperfine anomaly
in the measurement of the hyperfine splitting of the 6s
excited level in 87Rb was observed in [10]. This measure-
ment was performed by a two-step spectroscopy using
the 5s− 5p1/2 − 6s excitation sequence. The splitting of
the 6s level was measured to obtain the magnetic dipole
constants with high level of accuracy [10].

One of the first high-precision ab initio calculations of
Rb atomic properties was presented by Johnson et al.

[51] using third-order perturbation theory with the ad-
ditional estimates of selected higher-order terms. The
amplitudes of the 5pj → 5s and the 6s → 5pj transi-
tions in Rb and similar transitions in other alkali-metal
atoms were evaluated [51]. Ground- and excited-state en-
ergies, ionization potentials, and electron affinities were
calculated for all the alkali-metal atoms using the rela-
tivistic Fock-space single-double coupled-cluster (CCSD)
method in Ref. [52]. High-accuracy calculation of the re-
moval energies of Rb, Cs, Fr and element 119 was carried
out in Ref. [53] using the CCSD method starting from
the Dirac-Coulomb-Breit Hamiltonian. The relativistic
many-body calculations of atomic properties for alkali-
metal atoms were presented by Safronova et al. [54–58].
Those calculations were carried out using the relativis-
tic single-double (SD) method in which single and dou-
ble excitations of Dirac-Fock wave functions are included
to all orders of perturbation theory and provided accu-
rate values of removal energies, electric-dipole matrix el-
ements, hyperfine constants, and static polarizabilities
[54–58]. Determination of electric-dipole matrix elements
in K and Rb from Stark shift measurements was carried
out in [58]. Magic wavelengths for the ns−np transitions
in alkali-metal atoms were calculated in [57]. Blackbody
radiation shift in 87Rb microwave frequency standard was
calculated with 0.3% accuracy in [59]. State-insensitive
bichromatic optical trapping scheme was studied on the
example of Rb in Ref. [60].

In the present paper, the relativistic all-order method
is used to calculate atomic properties of neutral rubid-
ium for the ns, npj , ndj , and nfj (n ≤ 12) states. We
evaluate a large number of transition matrix elements to
calculate E1, E2, and E3 ground state polarizabilities,
scalar polarizabilities of the ns, np, and nd states, and
tensor polarizabilities of the np3/2 and nd excited states
of Rb. Excitation energies are calculated for the 41 first
excited states. The hyperfine A- and B-values are deter-
mined for the first low-lying levels up to n = 9. The main
motivation for this work is to provide recommended val-
ues for a number of atomic properties via a systematic
high-precision study for use in planning and analysis of
various experiments as well as theoretical modeling.

II. THIRD-ORDER AND ALL-ORDER

CALCULATIONS OF ENERGIES

Energies of nlj states in Rb were evaluated for n ≤ 10
and l ≤ 3 using both third-order relativistic many-body
perturbation theory (RMBPT) and the single-double
(SD) all-order method discussed in Ref. [62], in which
single and double excitations of Dirac-Fock (DF) wave
functions are iterated to all orders. Performing both
calculations allows to evaluate effects of the fourth and
higher orders. We use very large N = 70 B-spline ba-
sis set [63] to increase the number of states that can be
considered. The present calculation of the polarizabili-
ties required accurate representation of rather highly ex-
cited states, such as 6l − 13l, leading to the use of the
large R = 220 a.u. cavity for the generation of the fi-
nite basis set. As a result, higher number of basis states
was required to produce high-accuracy single-particle or-
bitals. Results of our energy calculations are summarized
in Table I. Columns 2–8 of Table I give the lowest-order
DF energies E(0), second-order and third-order Coulomb
correlation energiesE(2) and E(3), first-order and second-
order Breit corrections B(1) and B(2), and an estimated
Lamb shift contribution, E(LS). The Lamb shift E(LS) is
calculated as the sum of the one-electron self energy and
the first-order vacuum-polarization energy. The vacuum-
polarization contribution is calculated from the Uehling
potential using the results of Fullerton and Rinker [64].
The self-energy contribution is estimated for the s and
p orbitals by interpolating among the values obtained
by Mohr [65, 66, 67] using Coulomb wave functions. We
note that the E(LS) is above 0.1cm−1 only for the ground
state.
We list the all-order SD energies in the column labeled

ESD and list the part of the third-order energy miss-

ing from ESD in the column labeled E
(3)
extra. The sum of

the seven terms E(0), ESD, E
(3)
extra, B

(1), B(2), and E(LS)

is our final all-order result ESD
tot , listed in the eleventh

column of Table I. Recommended energies from the
National Institute of Standards and Technology (NIST)
database [61] are given in the column labeled ENIST. Dif-
ferences between our third-order and all-order calcula-
tions and experimental data, δE(3) = E

(3)
tot − ENIST and

δESD = ESD
tot −ENIST, are given in the two final columns

of Table I, respectively.
As expected, the largest correlation contribution to the

valence energy comes from the second-order term E(2).
Therefore, we calculate E(2) with higher numerical ac-
curacy. The second-order energy includes partial waves
up to lmax = 8 and is extrapolated to account for con-
tributions from higher partial waves (see, for example,
Refs. [68, 69] for details of the extrapolation procedure).
As an example of the convergence of E(2) with the num-
ber of partial waves l, consider the 5s state. Calculations
of E(2) with lmax = 6 and 8 yield E(2)(5s) = -3283.1 and
-3297.8 cm−1, respectively. Extrapolation of these calcu-
lations yields -3306.1 and -3306.8 cm−1, respectively, re-
sulting in numerical uncertainty in E(2)(5s) of 0.7 cm−1.
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TABLE I: Zeroth-order (DF), second-, and third-order Coulomb correlation energies E(n), single-double Coulomb energies

ESD, E
(3)
extra, first-order Breit and second-order Coulomb-Breit corrections B(n) to the energies of Rb. The total energies

(E
(3)
tot = E(0) + E(2) + E(3) + B(1) + B(2), ESD

tot = E(0) + ESD + E
(3)
extra + B(1) + B(2)) are compared with experimental values

ENIST [61], δE = Etot - ENIST. Units: cm−1.

nlj E(0) E(2) E(3) B(1) B(2) ELS) E
(3)
tot ESD E

(3)
extra ESD

tot ENIST δE(3) δESD

5s1/2 -30571 -3306.1 678.5 19.3 -30.1 1.7 -33208 -3448.3 364.3 -33664 -33691 483 27
5p1/2 -19932 -1196.5 202.8 9.8 -9.1 0.0 -20925 -1308.3 124.2 -21115 -21112 187 -3
5p3/2 -19750 -1139.7 192.5 7.2 -9.3 0.0 -20699 -1243.5 118.0 -20877 -20874 175 -3
4d3/2 -13100 -1055.2 185.7 2.5 -9.6 0.0 -13976 -1305.2 109.2 -14303 -14335 359 32
4d5/2 -13113 -1049.2 183.2 1.9 -9.4 0.0 -13986 -1294.2 107.9 -14306 -14336 350 29
4f5/2 -6860 -38.5 4.1 0.0 0.0 0.0 -6895 -41.0 4.2 -6897 -6899 4 2
4f7/2 -6860 -38.5 4.1 0.0 0.0 0.0 -6895 -41.0 4.2 -6897 -6899 4 2
5d3/2 -7405 -538.3 101.0 1.6 -6.0 0.0 -7847 -627.3 55.2 -7982 -7990 143 9
5d5/2 -7411 -532.4 99.0 1.2 -5.8 0.0 -7849 -617.9 54.2 -7980 -7987 138 8
5f5/2 -4391 -22.2 2.4 0.0 0.0 0.0 -4411 -23.7 2.4 -4412 -4413 3 1
5f7/2 -4391 -22.2 2.4 0.0 0.0 0.0 -4411 -23.6 2.4 -4412 -4413 3 1
6s1/2 -12884 -760.8 163.3 5.2 -7.8 0.0 -13484 -731.2 84.6 -13533 -13557 73 25
6p1/2 -9633 -361.6 64.8 3.4 -3.2 0.0 -9929 -375.6 37.5 -9971 -9976 46 5
6p3/2 -9569 -346.3 61.9 2.5 -3.3 0.0 -9854 -359.6 35.8 -9894 -9898 44 5
6d3/2 -4705 -287.6 55.1 0.9 -3.4 0.0 -4940 -320.4 29.4 -4999 -5004 63 5
6d5/2 -4708 -283.7 53.9 0.7 -3.3 0.0 -4941 -314.7 28.7 -4997 -5001 61 4
6f5/2 -3049 -13.6 1.5 0.0 0.0 0.0 -3061 -14.5 1.5 -3062 -3063 2 1
6f7/2 -3049 -13.6 1.5 0.0 0.0 0.0 -3061 -14.5 1.5 -3062 -3063 2 1
7s1/2 -7120 -298.2 65.0 2.1 -3.2 0.0 -7354 -279.9 33.2 -7368 -7379 25 12
7p1/2 -5706 -160.3 29.2 1.6 -1.5 0.0 -5837 -163.6 16.6 -5853 -5856 19 3
7p3/2 -5676 -153.9 28.0 1.2 -1.5 0.0 -5802 -157.1 15.9 -5818 -5821 18 3
7d3/2 -3241 -167.9 32.5 0.6 -2.1 0.0 -3378 -181.7 17.1 -3407 -3411 32 3
7d5/2 -3243 -165.3 31.7 0.4 -2.0 0.0 -3378 -178.2 16.7 -3406 -3409 31 3
7f5/2 -2240 -9.0 1.0 0.0 0.0 0.0 -2248 -9.5 1.0 -2249 -2249 1 0
7f7/2 -2240 -9.0 1.0 0.0 0.0 0.0 -2248 -9.5 1.0 -2249 -2249 1 0
8s1/2 -4516 -147.8 32.4 1.1 -1.6 0.0 -4632 -137.3 16.5 -4638 -4644 12 6
8p1/2 -3777 -85.3 15.7 0.9 -0.8 0.0 -3846 -86.4 8.8 -3854 -3856 10 2
8p3/2 -3761 -82.1 15.1 0.6 -0.8 0.0 -3828 -83.1 8.5 -3835 -3837 9 2
8d3/2 -2365 -106.4 20.7 0.4 -1.3 0.0 -2451 -112.2 10.8 -2467 -2469 18 2
8d5/2 -2366 -104.7 20.2 0.3 -1.3 0.0 -2451 -110.0 10.6 -2466 -2468 17 2
9s1/2 -3120 -84.1 18.5 0.6 -0.9 0.0 -3185 -77.6 9.4 -3188 -3192 6 4
9p1/2 -2685 -50.9 9.4 0.5 -0.5 0.0 -2726 -51.2 5.3 -2731 -2732 6 1
9p3/2 -2675 -49.0 9.0 0.4 -0.5 0.0 -2715 -49.3 5.1 -2720 -2721 5 1
9d3/2 -1800 -70.6 13.8 0.3 -0.9 0.0 -1857 -73.9 7.2 -1867 -1869 12 2
9d5/2 -1800 -69.5 13.4 0.2 -0.9 0.0 -1857 -72.4 7.0 -1867 -1868 11 2
10s1/2 -2284 -52.4 11.6 0.4 -0.6 0.0 -2325 -48.1 5.8 -2326 -2328 4 2
10p1/2 -2007 -32.8 6.1 0.3 -0.3 0.0 -2033 -32.9 3.4 -2036 -2037 3 1
10p3/2 -2000 -31.6 5.8 0.3 -0.3 0.0 -2026 -31.7 3.3 -2029 -2030 3 1
10d3/2 -1415 -49.4 9.7 0.2 -0.6 0.0 -1455 -51.3 5.0 -1462 -1463 8 1
10d5/2 -1416 -48.6 9.4 0.1 -0.6 0.0 -1455 -50.2 4.9 -1461 -1463 7 1
11s1/2 -1744 -34.9 7.7 0.3 -0.4 0.0 -1771 -31.9 3.9 -1772 -1774 2 2

Smaller (about 4-6 cm−1) contributions are obtained for
the 4d, 5p, and 5d states and much smaller contributions
(0.5 – 1.5 cm−1) are obtained for the n = 6 states.

Owing to the numerical complexity, we restrict l ≤
lmax = 6 in the ESD calculation. As noted above, the
second-order contribution dominates ESD; therefore, we
can use the extrapolated value of the E(2) described
above to account for the contributions of the higher par-
tial waves. Six partial waves are also used in the calcu-
lation of E(3).

The column labeled δESD in Table I gives differences
between our ab initio results and the experimental val-

ues [61]. The SD results agree better with the measured
values than do the third-order MBPT results (the ratio
of δE(3)/δESD is about 10 for some of cases), illustrat-
ing the importance of fourth and higher-order correlation
corrections. The all-order values are in excellent agree-
ment with experiment.
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TABLE II: Recommended values of the reduced electric-dipole matrix elements in atomic units. The first-order, second-order,
third-order MBPT, and all-order SD and SDpT values are listed; the label “sc” indicates the scaled values. Final recommended
values and their uncertainties are given in the Zfinal column. The last column gives relative uncertainties of the final values in
%. Absolute values are given.

Transition ZDF Z(DF+2) Z(DF+2+3) ZSD Z
(SD)
sc ZSDpT ZSDpT

sc Zfinal Unc. (%)
5s1/2 5p1/2 4.8189 4.5981 4.1855 4.2199 4.2535 4.2652 4.2498 4.253(34) 0.79
5s1/2 5p3/2 6.8017 6.4952 5.9047 5.9550 6.0031 6.0196 5.9976 6.003(48) 0.80
6s1/2 5p1/2 4.2564 4.2895 4.1873 4.1187 4.1451 4.1355 4.1391 4.145(10) 0.23
6s1/2 5p3/2 6.1865 6.2278 6.1121 6.0145 6.0472 6.0342 6.0385 6.047(13) 0.21
6s1/2 6p1/2 10.2856 10.2275 9.5916 9.6839 9.7210 9.7452 9.7133 9.721(24) 0.25
6s1/2 6p3/2 14.4575 14.3787 13.4581 13.5918 13.6468 13.6806 13.6356 13.647(34) 0.25
7s1/2 5p1/2 0.9809 0.9983 0.9506 0.9543 0.9527 0.9581 0.9576 0.953(05) 0.57
7s1/2 5p3/2 1.3925 1.4152 1.3457 1.3521 1.3498 1.3577 1.3567 1.350(08) 0.59
7s1/2 6p1/2 9.3594 9.3793 9.2898 9.1896 9.2258 9.2092 9.2149 9.226(17) 0.18
7s1/2 6p3/2 13.5514 13.5739 13.4980 13.3529 13.3959 13.3754 13.3813 13.396(21) 0.15
7s1/2 7p1/2 17.6123 17.5916 16.7074 16.8435 16.8881 16.9284 16.8751 16.888(40) 0.24
7s1/2 7p3/2 24.7076 24.6820 23.3878 23.5865 23.6546 23.7109 23.6361 23.655(56) 0.24
7s1/2 8p1/2 1.8006 1.7842 1.9447 1.8653 1.8577 1.8557 1.8761 1.858(18) 0.99
7s1/2 8p3/2 2.7269 2.7019 2.9432 2.8330 2.8192 2.8178 2.8444 2.819(25) 0.89
8s1/2 5p1/2 0.5139 0.5254 0.5012 0.5037 0.5022 0.5054 0.5048 0.502(03) 0.64
8s1/2 5p3/2 0.7265 0.7414 0.7056 0.7098 0.7077 0.7124 0.7114 0.708(05) 0.66
8s1/2 6p1/2 1.9219 1.9327 1.8390 1.8532 1.8510 1.8616 1.8597 1.851(11) 0.58
8s1/2 6p3/2 2.7047 2.7192 2.5776 2.6001 2.5974 2.6129 2.6098 2.597(16) 0.60
4d3/2 5p1/2 9.0464 8.8368 8.1134 7.9802 8.0369 7.9943 8.0150 8.037(43) 0.53
4d3/2 5p3/2 4.0817 3.9888 3.6644 3.6029 3.6276 3.6076 3.6177 3.628(20) 0.55
4d3/2 7p1/2 1.1811 1.2154 1.1181 1.0909 1.0914 1.0839 1.0881 1.091(07) 0.68
4d3/2 7p3/2 0.5339 0.5492 0.5016 0.4880 0.4884 0.4843 0.4870 0.488(04) 0.85
4d3/2 8p1/2 0.5780 0.6018 0.5667 0.5551 0.5548 0.5526 0.5529 0.555(02) 0.40
4d3/2 8p3/2 0.2623 0.2729 0.2552 0.2492 0.2491 0.2477 0.2483 0.249(01) 0.57
4d5/2 5p3/2 12.2411 11.9624 10.9928 10.8149 10.8894 10.8313 10.8600 10.889(58) 0.53
4d5/2 7p3/2 1.6007 1.6463 1.5033 1.4641 1.4656 1.4536 1.4617 1.466(12) 0.82
4d5/2 8p3/2 0.7866 0.8183 0.7649 0.7475 0.7475 0.7434 0.7452 0.748(04) 0.54
5d3/2 6p1/2 18.7006 18.6322 18.2462 18.1341 18.1955 18.1879 18.1627 18.195(87) 0.48
5d3/2 6p3/2 8.4432 8.4119 8.2347 8.1778 8.2046 8.1999 8.1905 8.205(27) 0.33
5d3/2 8p1/2 2.6597 2.6818 2.5717 2.4613 2.4628 2.4570 2.4675 2.463(06) 0.23
5d3/2 8p3/2 1.1972 1.2070 1.1461 1.0943 1.0960 1.0920 1.0982 1.096(04) 0.37
5d5/2 6p3/2 25.3401 25.2467 24.7022 24.5410 24.6208 24.6085 24.5791 24.621(80) 0.32
5d5/2 8p3/2 3.5909 3.6199 3.4343 3.2870 3.2920 3.2810 3.2987 3.292(11) 0.33
7d3/2 5p1/2 0.4468 0.4911 0.8134 0.8074 0.7977 0.8046 0.7899 0.798(08) 0.97
7d3/2 5p3/2 0.2170 0.2359 0.3831 0.3793 0.3745 0.3777 0.3711 0.374(03) 0.91
7d5/2 5p3/2 0.6582 0.7150 1.1441 1.1310 1.1179 1.1262 1.1082 1.118(10) 0.87
8d3/2 5p1/2 0.3691 0.4022 0.6341 0.6190 0.6125 0.6158 0.6081 0.613(04) 0.72
8d3/2 5p3/2 0.1774 0.1915 0.2970 0.2894 0.2862 0.2877 0.2843 0.286(02) 0.67
8d5/2 5p3/2 0.5372 0.5795 0.8865 0.8630 0.8545 0.8582 0.8490 0.855(06) 0.64
4d3/2 5f5/2 5.0656 5.0042 4.7764 4.5951 4.6143 4.5755 4.6031 4.614(39) 0.84
4d3/2 6f5/2 2.9432 2.8960 2.9284 2.8192 2.8234 2.8113 2.8146 2.823(17) 0.61
4d3/2 8f5/2 1.5101 1.4794 1.5657 1.5110 1.5021 1.5088 1.5051 1.502(13) 0.84
4d5/2 5f5/2 1.3532 1.3368 1.2758 1.2287 1.2339 1.2238 1.2309 1.234(10) 0.82
4d5/2 5f7/2 6.0517 5.9782 5.7055 5.4948 5.5182 5.4730 5.5050 5.518(45) 0.82
4d5/2 6f5/2 0.7869 0.7743 0.7823 0.7538 0.7550 0.7519 0.7527 0.755(04) 0.58
4d5/2 6f7/2 3.5190 3.4626 3.4985 3.3713 3.3765 3.3625 3.3663 3.377(20) 0.58
4d5/2 8f5/2 0.4040 0.3958 0.4183 0.4041 0.4018 0.4035 0.4025 0.402(03) 0.80
4d5/2 8f7/2 1.8067 1.7701 1.8708 1.8070 1.7969 1.8045 1.8002 1.797(14) 0.79
5d3/2 4f5/2 25.4460 25.4339 25.6456 25.3138 25.3569 25.3007 25.3164 25.357(56) 0.22
5d5/2 4f5/2 6.8028 6.7996 6.8537 6.7677 6.7789 6.7645 6.7681 6.779(14) 0.21
5d5/2 4f7/2 30.4226 30.4081 30.6505 30.2657 30.3160 30.2517 30.2679 30.316(64) 0.21
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III. ELECTRIC-DIPOLE MATRIX ELEMENTS,

OSCILLATOR STRENGTHS, TRANSITION

RATES, AND LIFETIMES

A. Electric-dipole matrix elements

In Table II, we list our recommended values for the
50 E1 ns − n′p, nd − n′p, and nd − n′f transitions.
We note that we have calculated over 500 E1 matrix
elements to evaluate lifetimes and polarizabilities pre-
sented in this work. We list only the matrix elements
that give significant contributions to the atomic prop-
erties calculated in the other sections. To evaluate the
uncertainties of these values, we carried out several cal-
culations in different approximations. We list the lowest-
order Dirac-Fock (DF) ZDF, second-order Z(DF+2), and
third-order Z(DF+2+3) values in the first three numeri-
cal columns of Table II to demonstrate the size of the
second, third, and higher-order correlation corrections.
The absolute values of the reduced matrix elements in
atomic units (a0e) are given in all cases. The many-body
perturbation theory (MBPT) calculations are carried out
following the method described in Ref. [70]. The values
Z(DF+2) are obtained as the sum of the second-order cor-
relation correctionZ(2) and the DF matrix elements ZDF.
The third-order matrix elements Z(DF+2+3) include the
DF values, the second-order Z(2) results, and the third-
order Z(3) correlation correction. Z(3) includes random-
phase-approximation terms (RPA) iterated to all orders,
Brueckner orbital (BO) corrections, the structural radia-
tion, and the normalization terms (see [70] for definition
of these terms).

Next four columns of Table II contain four different
all-order calculations. Ab initio electric-dipole matrix el-
ements evaluated in the all-order SD (single-double) and
SDpT approximations (single-double all-order method
including partial triple excitations [71]) are given in
columns labeled ZSD and ZSDpT. Differences between
the ZSD and ZSDpT values are generally 0.5 % - 2.0 % for
the transitions listed in Table II. The SD and SDpT ma-
trix elements ZSD include Z(3) completely, along with im-
portant fourth- and higher-order corrections. The fourth-
order corrections omitted from the SD matrix elements
were discussed by Derevianko and Emmons [72].

Recently, we have developed some general criteria to
establish the final values for all transitions and evaluate
uncertainties owing to the need to analyze a very large
number of transitions [73]. To evaluate the uncertain-
ties of our matrix elements and to provide recommended
values, we carried out semi-empirical evaluation of the
missing correlation corrections using the scaling proce-
dure. The uncertainty evaluation was discussed in detail
in Ref. [73], and we briefly summarize it below.

The matrix elements of any one-body operator Z =
∑

ij zij a†iaj are obtained within the framework of the

SD all-order method as

Zwv =
〈Ψw|Z|Ψv〉

√

〈Ψv|Ψv〉〈Ψw|Ψw〉
. (1)

The |Ψv〉 and |Ψw〉 are given by the expansions

|Ψv〉 =

[

1 +
∑

ma

ρmaa
†
maa +

1

2

∑

mnab

ρmnaba
†
ma†nabaa

+
∑

m 6=v

ρmva
†
mav +

∑

mna

ρmnvaa
†
ma†naaav



 |Ψ(0)
v 〉, (2)

where |Ψ
(0)
v 〉 is the lowest-order atomic state vector. In

Eq. (2), the indices m and n range over all possible vir-
tual states while indices a and b range over all occupied
core states. The quantities ρma, ρmv, ρmnab, and ρmnva

are single-excitation coefficients for core and valence elec-
trons and double-excitation coefficients for core and va-
lence electrons, respectively. In the SD approximation,
the resulting expression for the numerator of Eq. (1) con-
sists of the sum of the DF matrix element zwv and 20
other terms that are linear or quadratic functions of the
excitation coefficients.
However, only two terms give dominant contributions

for all transition matrix elements considered in this work:

Z(a) =
∑

ma

(zamρ̃wmva + zmaρ̃
∗
vmwa) (3)

or

Z(c) =
∑

m

(zwmρmv + zmvρ
∗
mw) , (4)

where ρ̃mnab = ρmnab − ρnmab and zwv are lowest-order
matrix elements of the corresponding one-body operator.
For most of the transitions considered in this work, term
Z(c) is the dominant term. To evaluate missing correc-
tions to this term, we need to improve the values of the
valence single-excitation coefficients ρmv [74]. These ex-
citation coefficients are closely related to the correlation
energy δEv. The omitted correlation correction can be
estimated by adjusting the single-excitation coefficients
ρmv to the experimentally known value of the valence
correlation energy, and then re-calculating the matrix el-
ements using Eq. (1) with the modified coefficients [74]

ρ′mv = ρmv
δEexpt

v

δEtheory
v

. (5)

The δEexpt
v is defined as the experimental energy [61]

minus the lowest order DF energy ǫv. This is a rather
complicated procedure that involves complete recalcula-
tion of the matrix elements with new values of the va-
lence excitation coefficients. The scaling factors depend
on the correlation energy given by the particular calcu-
lation. Therefore, the scaling factors are different for the
SD and SDpT calculations, and these values have to be
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TABLE III: Wavelengths λ (Å), transition rates A (s−1) and oscillator strengths (f) for transitions in Rb calculated using our
recommended values of reduced electric-dipole matrix elements Zfinal and their uncertainties. The relative uncertainties in the
values of transition rates and oscillator strengths are the same. They are listed in column “Unc.” in %. Numbers in brackets
represent powers of 10.

Transition λ A f Unc.(%) Transition λ A f Unc.(%)
5s1/2 5p1/2 7949.8 3.648[7] 3.456[-1] 1.58 5p3/2 8d3/2 5433.3 2.587[5] 1.145[-3] 1.34
5s1/2 5p3/2 7802.4 3.843[7] 7.015[-1] 1.60 5p3/2 8d5/2 5433.0 1.537[6] 1.021[-2] 1.28
6s1/2 6p1/2 27912.9 4.402[6] 5.142[-1] 0.50 6p1/2 5d3/2 50366.3 1.313[6] 9.983[-1] 0.96
6s1/2 6p3/2 27321.8 4.625[6] 1.035[ 0] 0.50 6p3/2 5d3/2 52412.4 2.368[5] 9.753[-2] 0.66
7s1/2 7p1/2 65634.8 1.022[6] 6.600[-1] 0.48 6p3/2 5d5/2 52331.2 1.428[6] 8.796[-1] 0.64
7s1/2 7p3/2 64157.1 1.073[6] 1.325[ 0] 0.48
7s1/2 8p1/2 28380.8 1.529[5] 1.847[-2] 1.98 4d3/2 7p1/2 11793.3 7.357[5] 7.670[-3] 1.36
7s1/2 8p3/2 28229.8 1.790[5] 4.276[-2] 1.78 4d3/2 7p3/2 11744.7 7.458[4] 1.542[-3] 1.70

4d5/2 7p3/2 11744.1 6.717[5] 9.259[-3] 1.64
5p1/2 6s1/2 13238.8 7.502[6] 1.971[-1] 0.46 4d3/2 8p1/2 9542.6 3.588[5] 2.449[-3] 0.80
5p3/2 6s1/2 13668.7 1.451[7] 2.032[-1] 0.42 4d3/2 8p3/2 9525.5 3.637[4] 4.947[-4] 1.14
5p1/2 7s1/2 7282.0 2.381[6] 1.893[-2] 1.14 4d5/2 8p3/2 9525.1 3.275[5] 2.970[-3] 1.08
5p3/2 7s1/2 7410.2 4.536[6] 1.867[-2] 1.18 5d3/2 8p1/2 24187.3 4.342[5] 1.904[-2] 0.46
5p1/2 8s1/2 6072.4 1.141[6] 6.308[-3] 1.28 5d3/2 8p3/2 24077.5 4.359[4] 3.789[-3] 0.74
5p3/2 8s1/2 6161.3 2.169[6] 6.173[-3] 1.32 5d5/2 8p3/2 24094.7 3.924[5] 2.277[-2] 0.66
6p1/2 7s1/2 38515.5 1.509[6] 3.356[-1] 0.36
6p3/2 7s1/2 39700.7 2.905[6] 3.432[-1] 0.30 4d3/2 5f5/2 10078.5 7.023[6] 1.604[-1] 1.68
6p1/2 8s1/2 18755.6 5.261[5] 2.774[-2] 1.16 4d5/2 5f5/2 10078.0 5.023[5] 7.648[-3] 1.64
6p3/2 8s1/2 19032.3 9.914[5] 2.692[-2] 1.20 4d5/2 5f7/2 10078.0 7.534[6] 1.530[-1] 1.64

4d3/2 6f5/2 8871.3 3.856[6] 6.824[-2] 1.22
5p1/2 4d3/2 14756.4 1.018[7] 6.648[-1] 1.06 4d5/2 6f5/2 8870.9 2.757[5] 3.253[-3] 1.16
5p3/2 4d3/2 15292.6 1.864[6] 6.535[-2] 1.10 4d5/2 6f7/2 8870.9 4.136[6] 6.506[-2] 1.16
5p3/2 4d5/2 15293.7 1.119[7] 5.888[-1] 1.06 4d3/2 8f5/2 7927.7 1.529[6] 2.161[-2] 1.68
5p1/2 7d3/2 5649.3 1.788[6] 1.711[-2] 1.94 4d5/2 8f5/2 7927.4 1.094[5] 1.031[-3] 1.60
5p3/2 7d3/2 5726.2 3.784[5] 1.860[-3] 1.82 4d5/2 8f7/2 7927.4 1.641[6] 2.062[-2] 1.58
5p3/2 7d5/2 5725.7 2.248[6] 1.657[-2] 1.74 5d3/2 4f5/2 91610.2 2.824[5] 5.330[-1] 0.44
5p1/2 8d3/2 5364.1 1.231[6] 1.062[-2] 1.44 5d5/2 4f5/2 91859.4 2.002[4] 2.533[-2] 0.42

scaled separately. The corresponding results are listed in
Table II with subscript “sc”. The scaled SD and SDpT
values are close together, as expected.

The term Z(a) is not corrected by the scaling proce-
dure. However, it is dominant for very few transitions
that give significant contributions to the atomic proper-
ties considered in this work, and we consider such cases
separately. Therefore, we can establish the recommended
set of values and their uncertainties based on the ratio
R = Z(c)/Z(a). We take the SD scaled result as the final
value if R > 1. Otherwise, we use SD result as the final
value. If 0.5 < R < 1.5, we evaluate the uncertainty in
term Z(c) as the maximum difference of the final value
and the other three all-order values from the SD, SDpT,
SDsc, and SDpTsc set. We assume that the uncertainty
of all the other terms does not exceed this value and
add two uncertainties in quadrature. If 1.5 < R < 3,
we evaluate the final uncertainty as the max(SDsc-SD,
SDsc-SDpT, SDsc-SDpTsc). If the term Z(c) strongly
dominates and R > 3, we evaluate the final uncertainty
as max(SDsc-SDpT, SDsc-SDpTsc). In the case of the
5d − 5p matrix elements, the uncertainty is determined
as the difference of the scaled SD and SDpT data ow-
ing to very large correlation correction. We have con-
ducted numerous comparisons of all available data on

various properties of many different monovalent systems
with different types of experiments in many other works
(see [71, 73–83], and references therein) and found that
such procedures do not underestimate the uncertainties
but may somewhat overestimate them in some cases. The
electric-dipole matrix elements for transitions involving
nd states are generally very strongly dominated by the
term Z(c). Therefore, we carried out two sets of the SD
calculations for the nd states to further evaluate the un-
certainty and stability of the scaling procedure. In the
first run, we allow the valence excitations coefficients to
converge to a specified numerical criteria, i.e. the it-
eration process terminates when the relative difference
between valence correlations energies resulting from two
subsequent iterations is below 0.0001. In the second run,
we terminate the iteration process after the third iter-
ation, which results in the scaling factor near 1, closely
reproducing the experimental correlation energy. Scaling
was carried out in both cases and consistency of the re-
sults was studied for the case with the largest correlation
correction, 5d− 5p transition. Even in this extreme case,
the difference (1%) was well below quoted uncertainty
(3%). Extensive study of the optimal iteration and scal-
ing procedures for the nd states was also carried out in
[84]. The results from second run are given for nd and
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nf properties listed in the paper. We note that SDpT
and SDpTsc data were always fully iterated, thus includ-
ing the differences in the iteration and scaling procedures
into the uncertainty.
The last column of Table II gives relative uncertainties

in the final values Zfinal in %. Our final results and their
uncertainties are used to calculate the recommended val-
ues of the transition rates, oscillator strengths, lifetimes,
and polarizabilities as well as evaluate the uncertainties
of these results.

B. Transition rates and oscillator strengths

We combine recommended NIST energies [61] and our
final values of the matrix elements listed in Table II to
calculate transition rates A and oscillator strengths f .
The transition rates are calculated using

Aab =
2.02613× 1018

λ3

S

2ja + 1
s−1, (6)

where the wavelength λ is in Å and the line strength
S = d2 is in atomic units.
Transition rates A (s−1) and oscillator strengths (f)

for the ns − n′p, np − n′s, np − n′d, and nd − n′p, and
nd− n′f transitions in Rb are summarized in Table III.
Vacuum wavelengths obtained from NIST energies are
also listed for reference. The relative uncertainties in
per cent are listed in the column labeled “Unc.”. The
relative uncertainties of the transition rates and oscillator
strengths are twice of the corresponding matrix element
uncertainties since these properties are proportional to
the squares of the matrix elements.

C. Lifetimes

We calculated lifetimes of the 6s - 10s, 5pj - 9pj, 4dj-
8dj , 4fj, and 5fj states in Rb using out final values
of the dipole matrix elements and NIST energies [61].
The uncertainties in the lifetime values are obtained from
the uncertainties in the matrix elements large fraction of
which is listed in Table II. The comparison of our results
with the latest experimental [8, 11, 16, 19, 21, 22, 27–
29] and theoretical [21, 55] values is given in Table IV.
The present lifetimes are in good agreement with expe-
riential results when theoretical and experimental uncer-
tainties are taken into account. The accuracy of the 6s
lifetime measurement was substantially improved in re-
cent paper [8] in comparison with older measurements
[19] (45.57±17ns [8] instead of 46±5ns [19]). Our theo-
retical results for the 6s and 5pj lifetimes are in excellent
agreement with recent precision measurement reported
in [8] and [28], respectively.
The lifetimes of the 5d states are particularly difficult

to calculate accurately owing to very large correlation
contributions to the 5p− 5d matrix elements. For exam-
ple, DHF value for the 5d5/2 − 5p3/2 matrix element is

TABLE IV: Comparison of the Rb lifetimes (in nsec) with
other theory and experiment. Uncertainties are given in
parenthesis. References are given in square brackets.

Level Present Theory Expt.
6s1/2 45.4(1) 45.4[55] 45.57(17)[8]
7s1/2 88.3(5) 88.3[55] 88.07(40)[29]
8s1/2 161.9(9) 161.8[55] 161(3)[27]
9s1/2 271.7(8) 266.36[21] 253(14)[19]
10s1/2 426(1) 417.84[21] 430(20)[21]

5p1/2 27.4(4) 27.04[21] 27.75(8)[28]
5p3/2 26.0(4) 25.69[21] 26.25(8)[28]
6p1/2 122.5(2.2) 123[55] 125(4)[19]
6p3/2 112.4(1.7) 113[55] 112(3)[19]
7p1/2 277.8(4.3) 280[55] 272(15)[19]
7p3/2 255.2(3.4) 258[55] 246(10)[19]
8p1/2 501.0(4.1) 508[55]
8p3/2 464.2(3.2) 471[55] 400(80)[21]
9p1/2 809.3(2.9) 798.84[21]
9p3/2 753.8(2.8) 749.21[21] 665(40)[19]

4d3/2 83.0(0.8) 83.5[55] 86(6)[21]
4d5/2 89.4(0.9) 90[55] 94(6)[21]
5d3/2 240.3(7.3) 243[55] 246.3(1.6)[11]
5d5/2 231.6(8.2) 235[55] 238.5(2.3)[11]
6d3/2 258.0(5.3) 263[55] 256(4)[27]
6d5/2 247.4(5.5) 252[55] 249(5)[27]
7d3/2 339.5(4.3) 331.08[21] 345(9)[22]
7d5/2 327.0(4.4) 319.57[21] 325(22)[19]
8d3/2 468.8(4.2) 455.48[21] 515(30)[16]
8d5/2 452.7(4.3) 440.90[21] 421(25)[19]

4f5/2 60.7(2.2) 59.44[21]
4f7/2 60.8(2.1) 59.44[21]
5f5/2 109.3(1.8) 106.12[21]
5f7/2 109.4(1.7) 106.09[21]

0.439 a.u. while our final value is 1.982 a.u. There are
only two decay channels (5d5/2−5p3/2 and 5d5/2−6p3/2)
in the case of the 5d5/2 level, and 5d5/2 − 5p3/2 chan-
nel contributes 67%. As a result, the uncertainty of
the 5d lifetime is dominated by the uncertainty in the
5d5/2−5p3/2 matrix element, which is 2.6%. As we noted
above, the uncertainty in the respective transition rate is
twice that of the matrix element. There are four de-
cay channels (5d3/2 − 5pj and 5d3/2 − 6pj) in the case
of the 5d3/2 level, and combined 5d3/2 − 5pj contribu-
tion is 63%. Nevertheless, our values are in agreement
with recent measurements [11] taking into account the
uncertainties of our values. Lifetime measurements of
the 5d3/2 and 5d5/2 states of rubidium were performed
using the time-correlated single-photon-counting method
[11]. The 761.9 nm fluorescence from the decay of the
5d3/2 state to the 5p1/2 state was recorded, and result-
ing value of the lifetime of the 5d3/2 state was reported
to be τ =246.3±1.6 ns. Authors recorded the 420.2 nm
fluorescence from the cascade decay of the 5d5/2 state to
the 5s1/2 state through the 6p3/2 state, and extracted
the lifetime of the 5d5/2 state to be τ =238.5±2.3 ns.
These measurements represent more than an order of
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magnitude improvement in comparison with older ex-
periments (lifetime of the 5d5/2 level reported by Marek
and Munster in Ref. [19] was equal to 230±23 ns, while
the lifetime of the 5d3/2 level reported by Tai et al. in
Ref. [14] was equal to 205±40 ns). Small differences be-
tween our present results and all-order calculations from
Ref. [55] are due to differences in the iteration proce-
dure discussed in the previous section, and are generally
within the quoted uncertainties.
We observe some disagreement between our data and

older, less accurate experimental results. For example,
our theoretical lifetime for the 8d3/2 level (468.8±4.2ns)
differs by 10% from the experimental lifetime (515±30ns)
in Ref. [16]. It should be noted that another experi-
mental lifetime obtained 15 years later [22] gave even
larger value (586±15ns). Our theoretical value for the
the 8d3/2 lifetime is good agreement with theoretical
value (455.48ns) given by Theodosiou [21]. The differ-
ence in evaluations of the 5p3/2 and 8d3/2 lifetimes is
in increasing of the number of transitions in the case of
the 8d3/2 level. We need to consider the 10 npj − 8d3/2
transitions with n = 5–9 and j = 1/2 and 3/2 and the
3 nf5/2 − 8d3/2 transitions with n = 4–6. The major
contribution (70%) in the sum of transition rates used in
the evaluation of the 8d3/2 lifetime comes from the sum
of the 5p1/2 − 8d3/2 and 5p3/2 − 8d3/2 transitions rates.
The sum of the 6p1/2 − 8d3/2 and 6p3/2 − 8d3/2 tran-
sitions rates brings additional 12%. The nf5/2 − 8d3/2
transitions with n = 4–6 contribute another 12%. The
last 6% contribution comes from the npj − 8d3/2 tran-
sitions with n = 7–9 and j = 1/2 and 3/2. New, more
accurate, measurements of such lifetimes would provide
excellent benchmark tests of theoretical calculations.

IV. STATIC MULTIPOLE POLARIZABILITIES

OF THE 5s GROUND STATE

The static multipole polarizability αEk of Rb in its 5s
ground state can be separated into two terms; a domi-
nant first term from intermediate valence-excited states,
and a smaller second term from intermediate core-excited
states. The later term is smaller than the former one
by several orders of magnitude and is evaluated here in
the random-phase approximation [85]. The dominant va-
lence contribution is calculated using the sum-over-state
approach

αEk
v =

1

2k + 1

∑

n

|〈nlj‖r
kCkq‖5s〉|

2

Enlj − E5s
, (7)

where Ckq(r̂) is a normalized spherical harmonic and
where nlj is npj , ndj , and nfj for k = 1, 2, and 3,
respectively [86]. The reduced matrix elements in the
dominant contributions to the above sum are evaluated
using out final values of the dipole matrix elements and
NIST energies [61]. The uncertainties in the polarizabil-
ity contributions are obtained from the uncertainties in

TABLE V: Contributions to multipole polarizabilities of the
5s state of rubidium in a3

0. Uncertainties are given in paren-
thesis. The final results are compared with other theory
[39, 40] and experiment [34, 35].

Contr. αE1

5p1/2 105(2)
5p3/2 206(3)
(6 − 26)pj 2(0)
Tail -0.3
Core 9.1
Total 322(4)

αE1
th.[39] 316.4

αE1
expt.[35] 319(6)

αE1
expt.[34] 329(23)

Contr. αE2

4d3/2 2461(21)
(5 − 12)d3/2 26(0)
(13 − 26)d3/2 120(0)
4d5/2 3696(31)
(5 − 12)d5/2 37
(13 − 26)d5/2 148
Tail 1.8
Core 35.4
Total 6525(37)

αE2
th.[40] 6520±80

Contr. αE3

4f5/2 50012(920)
5f5/2 16015(173)
6f5/2 7002( 80)
7f5/2 3708( 43)
8f5/2 2218( 26)
(9 − 12)f5/2 5006
(13 − 18)f5/2 8361
(19 − 26)f5/2 9301
4f7/2 66685(1276)
5f7/2 21354(231)
6f7/2 9336(106)
7f7/2 4944 (57)
8f7/2 2957 (34)
(9 − 12)f7/2 6674
(13 − 18)f7/2 12352
(19 − 26)f7/2 11194
Tail 22
Core 306
Total 237400(1600)
αE2
th.[40] 237000

the matrix elements. The final values for the quadrupole
and octupole matrix elements and their uncertainties are
determined using the procedure that was described above
for the dipole matrix elements.

Contributions to dipole, quadrupole, and octupole po-
larizabilities of the 5s ground state are presented in Ta-
ble V. The first two terms in the sum-over-states for αE1,
αE2, and αE3 contribute 99.4%, 94.18%, and 48.2%, re-
spectively, of the totals. The remaining 6% of αE2 contri-
bution from the (5-26)ndj states is divided into two parts,
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TABLE VI: Contributions to the 6s − 10s, 5pj − 7pj , and 4dj − 6dj scalar polarizabilities of Rb in a3
0. n1f7/2 = (7 − 12)f7/2,

n2f7/2 includes nf7/2 states with n > 13. Uncertainties are given in parenthesis. The final results are compared with other
theory [7, 38].

Contr. α0 Contr. α0 Contr. α0 Contr. α0 Contr. α0 Contr. α0

6s1/2 7s1/2 8s1/2 9s1/2 10s1/2

5p1/2 -166(1) 6p1/2 -2398(9) 7p1/2 -15424(0) 8p1/2 -66575(280) 9p1/2 -220569( 926)
5p3/2 -365(2) 6p3/2 -5212(16) 7p3/2 -33540(107) 8p3/2 -143462(545) 9p3/2 -474280(1802)
6p1/2 1930(10) 7p1/2 13695(66) 8p1/2 62170(298) 9p1/2 214534(987) 10p1/2 612959(2697)
6p3/2 3722(19) 7p3/2 26263(126) 8p3/2 118801(570) 9p3/2 408987(1881) 10p3/2 1166324(5365)

Other 49(1) Other 285(5) Other 1174(22) Other 3691(72) Other 976 (184)
Total 5169(21) Total 32630(140) Total 133200(650) Total 417200(2200) Total 1094000(6000)

[38] 5110 32400 132000 416000 1090000
[7] 417040(360) 1095310(640)

5p1/2 6p1/2 7p1/2 4d3/2 5d3/2 6d3/2

5s1/2 -105(2) 6s1/2 -1930(10) 7s1/2 -13695(66) 5p1/2 -347(4) 6p1/2 -6100(59) 7p1/2 -42366(119)
6s1/2 166(1) 7s1/2 2398(9) 8s1/2 15424 6p1/2 226(14) 7p1/2 1910(91) 8p1/2 9982(323)
7s1/2 5 8s1/2 47(1) 9s1/2 247(3) 5p3/2 -74(1) 6p3/2 -1291(9) 7p3/2 -8983(25)
ns1/2 4 ns1/2 25(0) ns1/2 90(1) 6p3/2 42(3) 7p3/2 356(18) 8p3/2 1856(62)
4d3/2 697(7) 4d3/2 -452(29 5d3/2 -3820(183) npj 10(0) npj 22(1) npj 468(6)
5d3/2 10(1) 5d3/2 12199(117) 6d3/2 84733(237) 4f5/2 534(21) 4f5/2 21546(95) 5f5/2 132300(529)
6d3/2 5 6d3/2 37(3) 7d3/2 94(9) 5f5/2 78(1) 5f5/2 898(54) 6f5/2 1410(9)
nd3/2 22(0) nd3/2 86(1) nd3/2 191(2) nf5/2 97(1) nf5/2 464(15) nf5/2 -765(38)
Core 9 Core 9 Core 9 Core 9 Core 9 Core 9
Total 814(8) Total 12420(120) Total 83270(300) Total 574(25) Total 17880(160) Total 93900(600)

[38] 805 12600 83600 571 18700 96000

5p3/2 6p3/2 7p3/2 4d5/2 5d5/2 6d5/2

5s1/2 -103(2) 6s1/2 -1861(9) 7s1/2 -13131(63) 5p3/2 -442(5) 6p3/2 -7736(50) 7p3/2 -53742(140)
6s1/2 183(1) 7s1/2 2606(8) 8s1/2 16770(54) 6p3/2 254(16) 7p3/2 2149(102) 8p3/2 11230(353)
7s1/2 5(0) 8s1/2 47(1) 9s1/2 244(3) np3/2 10(0) np3/2 88(0) np3/2 460(6)
ns1/2 4(0) ns1/2 24(0) ns1/2 96(1)4 4f5/2 25(1) 4f5/2 1029(4) 4f5/2 -80(1)
4d3/2 74(1) 4d3/2 -42(3) 5d3/2 -356(18) 5f5/2 4(0) 5f5/2 43(2) 5f5/2 6330(24)
5d3/2 1(0) 5d3/2 1291(9) 6d3/2 8983(25) 6f5/2 1(0) 6f5/2 9(0) 6f5/2 69(4)
6d3/2 0(0) 6d3/2 5(0) 7d3/2 14(1) nf5/2 3(0) nf5/2 13(0) nf5/2 44(1)
nd3/2 2(0) nd3/2 10(0) nd3/2 22(0) 4f7/2 509(19) 4f7/2 20588(86) 4f7/2 -1594(20)
4d5/2 663(7) 4d5/2 -381(24) 5d5/2 -3224(153) 5f7/2 75(1) 5f7/2 862(49) 5f7/2 126595(481)
5d5/2 11(1) 5d5/2 11604(74) 6d5/2 80613(210) 6f7/2 25(0) 6f7/2 187(6) 6f7/2 1372(81)
6d5/2 5(0) 6d5/2 45(3) 7d5/2 125(10) n1f7/2 31(0) n1f7/2 158(8) n1f7/2 701(14)
nd5/2 19(0) nd5/2 83(1) nd5/2 195(2) n2f7/2 37(0) n2f7/2 100(0) n2f7/2 184(0)
Core 9 Core 9 Core 9 Core 9 Core 9 Core 9
Total 875(7) Total 13440(70) Total 90350(270) Total 541(26) Total 17500(150) Total 91580(620)

[38] 868 13600 90600 535 18300 93600

resulting from (5-12)ndj and (13-26)ndj states. Finally,
the 48% of αE3 contribution from the (5-26)nfj states are
split in Table V into seven contributions coming from the
5fj, 6fj, 7fj, 8fj , (9-12)nj, (13-18)ndj, and (19-26)ndj
states to show relative importance of these terms. We
use recommended energies from [61] and our final ma-
trix elements to evaluate terms in the sum with n ≤ 13,
and we use theoretical SD energies and wave functions
to evaluate terms with 13 ≤ n ≤ 26. The remaining
contributions to αEk from orbitals with 27 ≤ n ≤ 70
are evaluated in the DF approximation since the contri-
butions from these terms are smaller than 0.01% in all
cases. These terms are grouped together as “Tail”.

Final results for the multipole polarizabilities of the Rb

ground state are compared in Table V with high-precision
calculations from Refs. [39, 40] and experimental mea-
surements presented in Refs. [34, 35]. Our results agree
with values given by Derevianko et al. [39] for the dipole
polarizability taking into account the uncertainty given
in [39]. Our recommended values for the quadrupole and
octupole polarizabilities are in agreement with values of
Ref. [40].

V. SCALAR AND TENSOR EXCITED STATE

POLARIZABILITIES

The valence scalar α0(v) and tensor α2(v) polarizabil-
ities of an excited state v of Rb are given by
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α0(v) =
2

3(2jv + 1)

∑

nlj

|〈v||rC1||nlj〉|
2

Enlj − Ev
(8)

α2(v) = (−1)jv

√

40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑

nlj

(−1)j
{

jv 1 j
1 jv 2

}

|〈v||rC1||nlj〉|
2

Enlj − Ev
. (9)

The excited state polarizability calculations are carried
out in the same way as the calculations of the multipole
polarizabilities discussed in the previous section. We list
the contributions to the 6s, 7s, 8s, 9s, 10s, 5pj, 6pj , 7pj,
4dj , 5dj, and 6dj scalar polarizabilities of Rb in Table VI.
The dominant contributions are listed separately. The re-
maining contributions are grouped together. For exam-
ple, “nd3/2” contribution includes all of the nd3/2 terms
excluding only the terms that were already listed sepa-
rately. We evaluate contribution from ionic core αcore in
the RPA and find αcore = 9.076 a30.
Contributions from the np states with n ≤ 26 to the ns

polarizabilities are so small in comparison with the main
contributions that we group them together with the αcore

contribution in the line labeled “Other”. Contributions
from excited ns and nd states with n > 26 to the np
polarizability are very small αn>26(5p1/2) = 0.061 a30,

αn>26(5p3/2) = 0.048 a30 and are calculated in the RPA
approximation. Contributions from the excited np and
nf states with n ≤ 26 to the nd polarizabilities are only
10−4 a.u.. A counter term αvc(nj) compensating for exci-
tation from the core to the valence shell which violate the
Pauli principle is also evaluated in the RPA and found to
be negligible. The largest contribution of the αvc term is
for the 4d states (αvc(4d3/2) = -0.085 a30 and αvc(4d5/2)

= -0.097 a30).
Final results of the scalar dipole polarizabilities are

compared in Table VI with semi-empirical values of van
Wijngaarden [38] where a Coulomb approximation was
used. These results [38] are in good agreement with our
calculations. The differences are about 0.3% for the po-
larizabilities of the ns and np states. Larger differences
are observed for the nd states (1.5% for the 4dj states
and 5% for the 5dj states). It is expected owing to gen-
erally larger contributions of the correlation corrections
to the nd states, and our more complete treatment of the
correlation corrections.
Our final results are in excellent agreement with re-

cent precision measurements reported in Refs. [7] (0.26%
difference for the α(SD)(9s) and 0.35% difference for the
α(SD)(10s)).
A breakdown of contributions to the tensor dipole po-

larizability α2 for the excited np3/2 (n = 5, 6 and 7), and
ndj (n = 4, 5, and 6) states is presented in Table VII.
Evaluation of the tensor polarizability follows the same
pattern as the scalar polarizability (compare Eqs. (8) and

TABLE VII: Contributions to the np3/2 and ndj tensor polar-

izabilities of Rb in a3
0. Uncertainties are given in parenthesis.

The final results are compared with other theory [38].

Contr. α2 Contr. α2 Contr. α2

5p3/2 6p3/2 7p3/2

5s1/2 103(2) 6s1/2 1861(9) 7s1/2 13131(63)
6s1/2 -183(1) 7s1/2 -2606(8) 8s1/2 -16770(54)
7s1/2 -5(0) 8s1/2 -47(0) 9s1/2 -244(3)
ns1/2 4(0) ns1/2 -24(0) ns1/2 -84(0)
4d3/2 59(1) 4d3/2 -33(2) 5d3/2 -285(14)
5d3/2 1(0) 5d3/2 1032(7) 6d3/2 7186(20)
6d3/2 0(0) 6d3/2 4(0) 7d3/2 12(1)
nd3/2 2(0) nd3/2 8(0) nd3/2 20(0)
4d5/2 -133(1) 4d5/2 76(4) 5d5/2 645(31)
5d5/2 -2(0) 5d5/2 -2321(15) 6d5/2 -16123(42)
6d5/2 -1(0) 6d5/2 -9(1) 7d5/2 -25(2)
nd5/2 -4(0) nd5/2 -17(0) nd5/2 -39(0)
Total -167(2) -2075(21) -12577(101)
Ref. [38] -143 -2040 -12500

4d3/2 5d3/2 6d3/2

5p1/2 349(4) 6p1/2 6100(59) 7p1/2 42366(118)
6p1/2 -226(2) 7p1/2 -1910(30) 8p1/2 -9982( 51)
7p1/2 -5(0) 8p1/2 -54(0) 9p1/2 -289(2)
np1/2 -3(0) np1/2 -21(0) np1/2 -103(0)
5p3/2 -59(1) 6p3/2 -1032(7) 7p3/2 -7186(20)
6p3/2 34(0) 7p3/2 285(5) 8p3/2 1485(24)
7p3/2 1(0) 8p3/2 8(0) 9p3/2 46(0)
np3/2 0(0) np3/2 3(0) np3/2 15(0)
4f5/2 -107(4) 4f5/2 -4309(19) 4f5/2 337(4)
5f5/2 -16(0) 5f5/2 -180(11) 5f5/2 -26460(106)
6f5/2 -5(0) 6f5/2 -39(1) 6f5/2 -284(18)
nf5/2 -14(0) nf5/2 -54(0) nf5/2 -184(0)
Total -51(6) -1203(70) -238(223)
Ref. [38] -49 -1300 -559

4d5/2 5d5/2 6d5/2

5p3/2 442(5) 6p3/2 7736(50) 7p3/2 53742(140)
6p3/2 -254(3) 7p3/2 -2149(36) 8p3/2 -11230(173)
7p3/2 -6(0) 8p3/2 -64(0) 9p3/2 -343(3)
np3/2 -4(0) np3/2 -24(0) np3/2 -117(0)
4f5/2 29(1) 4f5/2 1176(5) 4f5/2 -91(1)
5f5/2 4(0) 5f5/2 49(3) 5f5/2 7234( 27)
6f5/2 1(0) 6f5/2 11(0) 6f5/2 78(5)
nf5/2 4(0) nf5/2 15(0) nf5/2 51(0)
4f7/2 -181(6) 4f7/2 -7353(31) 4f7/2 569(7)
5f7/2 -26(0) 5f7/2 -308(18) 5f7/2 -45213(172)
6f7/2 -8(0) 6f7/2 -67(2) 6f7/2 -490(29)
nf7/2 -24(0) nf7/2 -92(0) nf7/2 -316(0)
Total -24(9) -1070(71) 3875(284)
Ref. [38] -18.3 -1200 3450

(9)). The difference in evaluations of the α0 and α2 val-
ues is in the angular part only. States with n > 13 in
our basis have positive energies and provide a discrete
representation of the continuum. We find that the con-
tinuous part of spectra is responsible for 2% of α2(5p3/2).
We have evaluated the continuum contributions and near
continuum contributions in the range 11 < n ≤ 26 us-
ing SD wave functions for dipole matrix elements. For
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TABLE VIII: Hyperfine constants A (in MHz) in 87Rb
(I=3/2, µ=2.75124 [87]). The SD and SDpT (single-double
all-order method including partial triple excitations) data are
compared with experimental results.

Level A(DF) A(SD) A(SDpT) A(expt)

5s 2S1/2 2175.98 3563.40 3417.25 3417.341 [45]
5p 2P1/2 236.71 425.65 408.53 406.2(8) [45]
5p 2P3/2 42.05 86.53 83.14 84.845(55) [45]
6s 2S1/2 581.17 824.40 806.06 807.66(8) [10]
6p 2P1/2 83.19 136.31 132.34 132.56(3) [45]
6p 2P3/2 14.83 27.84 27.03 27.700(17) [45]
7s 2S1/2 238.06 324.87 319.20 319.759(28) [9]
7p 2P1/2 38.59 61.33 59.78 59.32(3) [45]
7p 2P3/2 6.89 12.55 12.23 12.57(1) [45]
8s 2S1/2 120.22 161.12 158.66 159.2(15) [45]
8p 2P1/2 20.97 32.82 32.05 32.12(11) [45]
8p 2P3/2 3.75 6.72 6.57 6.739(15) [45]
9s 2S1/2 69.02 91.52 90.23 90.9(8) [45]
9p 2P1/2 12.63 19.59
9p 2P3/2 2.26 4.02 4.05(3) [45]

4d 2D3/2 10.36 26.58 29.66 25.1(9) [45]
4d 2D5/2 4.42 -13.66 -16.52 -16.9(6) [45]
5d 2D3/2 6.49 15.24 16.57 14.43(23) [45]
5d 2D5/2 2.75 -6.18 -7.07 -7.44(10) [45]
6d 2D3/2 3.75 8.18 8.76 7.84(5) [45]
6d 2D5/2 1.59 -2.97 -3.30 -3.4(5) [45]
7d 2D3/2 2.28 4.74 5.04 4.53(3) [45]
7d 2D5/2 0.96 -1.62 -1.78 -2.0(3) [45]
8d 2D3/2 1.46 2.96 3.13 2.840(15) [45]
8d 2D5/2 0.62 -0.97 -1.06 -1.20(15) [45]
9d 2D3/2 0.99 1.97 2.07 1.90(1) [45]
9d 2D5/2 0.42 -0.63 -0.69 -0.80((15) [45]

n ≤ 11, we use SD matrix elements and NIST energies
[61] in the sums. Contributions from states with n > 26
is negligible (about 10−4%). Our final results for α2 are
given Table VII. We observe very strong cancelations
of dominant terms in many of the tensor polarizabilities
resulting in larger uncertainties in our values. Final re-
sults for the tensor polarizabilities α2 are compared in
Table VII with semi-empirical values of van Wijngaar-
den [38] where a Coulomb approximation was used. The
agreement between our results and semi-empirical val-
ues from Ref. [38] is at the level of 1% for the 6p3/2 and
4d3/2 states. For all other states (5p3/2, 4d5/2, 5d3/2, and
5d5/2), the differences are about 10%.

VI. HYPERFINE CONSTANTS FOR 87RB

Calculations of hyperfine constants follow the pattern
described earlier for calculations of transition matrix el-
ements. In Table VIII, we list hyperfine constants A for
87Rb and compare our values with available experimental
data from Refs. [45]. In this table, we present the lowest-
order A(DF), all-order A(SD), and A(SDpT) values for the
ns, np, and nd levels up to n = 9. The magnetic mo-
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FIG. 1: (Color online.) Hyperfine constant A(SD)(nlj) as
function of n.

ment and nuclear spin of 87Rb used here are taken from
[87]. The importance of the triple excitations for accurate
evaluation of the hyperfine constants was previously dis-
cussed in Ref. [71], and we take our SDpT values as final.
Our SDpT results are in very good agreement with exper-
imental values for the ns and np1/2 states. Our A(SDpT)

values for the 7s and 6s states are in the excellent agree-
ment with recent measurements [9, 10]. The difference
between theory and experiment is equal to 0.17% for the
7s state and 0.07% for the 6s state.
The correlation correction for the nd5/2 states is of the

same order of magnitude as the DF value and has an
opposite sign. With such large cancelations, it is diffi-
cult to calculate A(nd5/2) accurately. However, we find

good agreement between our A(SDpT) values and experi-
mental values [45], except for the 5d5/2 state, where the
disagreement is about 4%.
Finally, we would like to demonstrate very smooth de-

pendence of the A(SD) hyperfine constants on the princi-
pal quantum number n. In Fig. 1, we present our A(SD)

values for the ns, np1/2, np3/2, nd3/2, and nd5/2 levels
with n = 4 − 13. It should be noted that the values of
A(SD)(nd5/2) are shown with an opposite sign since we
use logarithmical scale.
Hyperfine constants B (in MHz) in 87Rb (I=3/2,

µ=2.75124 [87]) are given in Table VIII. Nu-
clear quadrupole moment Q equal to 0.132 in barns
(1 b=10−24cm2)[88]. The SD and SDpT (single-double
all-order method including partial triple excitations) data
are compared with experimental results [45].

VII. CONCLUSION

In summary, we carried out a study of Rb atomic prop-
erties for the ns, npj, ndj , and nfj (n ≤ 10) states
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TABLE IX: Hyperfine constants B (in MHz) in 87Rb (I=3/2, µ=2.75124 [87]). Nuclear quadrupole moment Q equal to 0.132
in barns (1 b=10−24cm2)[88]. The SD and SDpT (single-double all-order method including partial triple excitations) data are
compared with experimental results.

Level B(DF)

Q
B(SD)

Q
B(SDpT)

Q
B(DF) B(SD) B(SDpT) B(expt)

5p 2P3/2 43.17 93.87 93.87 5.699 12.391 11.967 12.52(9) [45]
6p 2P3/2 15.20 29.32 29.32 2.006 3.870 3.772 3.953(24) [45]
7p 2P3/2 7.05 13.04 13.04 0.930 1.722 1.684 1.762(16) [45]
8p 2P3/2 3.82 6.93 6.93 0.504 0.915 0.896 0.935(22) [45]
9p 2P3/2 2.29 4.11 4.11 0.302 0.543 0.55(3) [45]

4d 2D3/2 3.49 16.87 16.87 0.461 2.227 2.230
4d 2D5/2 4.90 23.93 23.93 0.647 3.159 3.166
5d 2D3/2 2.17 6.90 6.90 0.287 0.911 0.913
5d 2D5/2 3.03 9.73 9.73 0.400 1.285 1.290
6d 2D3/2 1.24 3.33 3.33 0.164 0.440 0.442 0.53(6) [45]
6d 2D5/2 1.72 4.69 4.69 0.228 0.619 0.623
7d 2D3/2 0.74 1.83 1.83 0.097 0.242 0.243 0.26(4) [45]
7d 2D5/2 1.02 2.58 2.58 0.135 0.341 0.343
8d 2D3/2 0.46 1.11 1.11 0.061 0.146 0.147 0.17(2) [45]
8d 2D5/2 0.64 1.56 1.56 0.084 0.205 0.207
9d 2D3/2 0.30 0.71 0.71 0.039 0.094 0.094 0.11(3) [45]
9d 2D5/2 0.41 1.00 1.00 0.055 0.132 0.133

using high-precision relativistic all-order approach and
evaluated uncertainties of our recommended values. The
energy values are in excellent agreement with existing
experimental data. Reduced matrix elements, oscillator
strengths, transition rates, and lifetimes for the first low-
lying levels up to n =8 are calculated. Electric-dipole
(5s − npj, n = 5 − 26), electric- quadrupole (5s − ndj ,
n = 4− 26), and electric-octupole (5s− nfj, n = 4− 26)
matrix elements are calculated to obtain the ground state
E1, E2, and E3 static polarizabilities. Scalar polariz-
abilities of the ns, npj, and ndj states, and tensor po-
larizabilities of the np3/2 and ndj excited states of Rb
are evaluated. Particular care was taken to accurately
treat contributions from highly-excited states. We eval-

uate the uncertainties of our calculations for most of the
values listed in this work. Hyperfine A- and B-values
are presented for the first low-lying levels up to n =9.
This work provides recommended values for a number of
atomic properties via a systematic high-precision study
for use in planning and analysis of various experiments
as well as theoretical modeling.
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