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Abstract 

A method for encoding a multi-qubit system into the quantized motional/vibrational 

states of ion-string in an anharmonic linear trap is proposed. Control over this system is achieved 

by applying oscillatory electric fileds (RF) shaped optimally for desired state-to-state transitions. 

Anharmonicity of the vibrational spectrum of the system plays key role in this approach to the 

control and quantum computation, since it allows resolving different state-to-state transitions and 

addressing them selectively. The anharmonic trap architecture proposed earlier [Phys. Rev. A, 

83, 022305 (2011)] is explored here and the optimal control theory is used to derive pulses for a 

set of universal quantum gates. Accurate choice of pulse parameters allows deriving gates that 

are both accurate and simple. Practical realization of this approach seems to be within the reach 

of today’s technology.  
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1. Introduction 

A string of atomic ions trapped and cooled in a linear Paul trap represents a man-made 

quantum system well isolated from the environment. Favorable properties of this system, such as 

long coherence time and possibility of fast and reliable manipulations with its quantum states, 

make it suitable for practical realization of quantum computation. In the original proposal of 

Cirac and Zoller [1], qubits are encoded into electronic states of ions and quantum gates are 

achieved by laser excitation of ions, dependent on their motional eigenstate. The motional mode 

of multiple ions in the trapping potential is used to create entanglement. Realization of this 

proposal in the experiment [2] led to many fascinating developments and explosive growth of the 

field [3-17].  

 While the architecture of Cirac and Zoller relies mostly on the electronic states of 

individual ions, the quantized states of collective vibrational motion of ions along the trap are 

also employed. These states represent quantized eigenstates and form the normal-mode 

progressions (somewhat similar to the vibrational states of naturally occurring molecules). In a 

standard setup the trapping potential is harmonic (quadratic) and the vibrational states are all 

equidistant, like the states of multi-dimensional harmonic oscillator. Frequencies of transitions 

between these states are usually in the few MHz region, but selective excitation/control of these 

states using the RF fields is impossible, because all state-to-state transitions of the “ladder” have 

the same frequency and occur simultaneously. In a standard setup of Cirac and Zoller, the 

selectivity is achieved by laser excitation from different vibrational states into the excited 

electronic state.   

In the earlier publications [18, 19] we explored a new route for direct adiabatic control of 

the vibrational states of ions in a trap. This approach might help to implement the purely 
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vibrational qubits and gates. The idea is to introduce anharmonicity into the trapping potential in 

order to alter the spectrum of system, which should allow addressing the vibrational states of 

ions in trap selectively, through RF fields of appropriate frequency, amplitude, duration and 

phase. In this method of control all ions remain in the ground electronic state and no individual 

addressing of ions is necessary. Phase of vibrational motion can also be controlled, which makes 

this approach suitable for quantum computation. The time-varying control fields can be designed 

using the optimal control theory (or the feedback loop in the experiment) in order to optimize the 

desired control tasks, such as state-to-state transitions, qubit flips, quantum gates, etc.   

In Refs. [18, 19] we showed that vibrational states of single ion can be easily controlled 

this way if quartic potential term is introduced in addition to the quadratic trapping potential. 

We carried out the computational studies/modeling of one qubit encoded into the vibrational 

states of single 111Cd+ ion in such anharmonic trap, with 0  and 1  states of the qubit being the 

ground and first excited vibrational states of the system, respectively. The optimal control theory 

was employed in order to “shape” the control pulses for major quantum gates. Anharmonicity of 

the spectrum was characterized by the anharmonicity parameter, Δ , and it was found that when 

the value of Δ  reaches roughly 1% of the frequency ( π2/Ω = 2.77 MHz) a very accurate control 

is possible by simple shaped pulses. Durations of predicted pulses was ten microsecond; the field 

amplitudes were on the order of 0.1 V/m.  It was concluded that practical realization of such 

control scenario is within the reach of today’s technology. 

Anharmonicity of spectrum plays key role in this method of control [18-24], but creating 

anharmonicities in the vibrational spectrum of a multiple-ion system appears to be less trivial. In 

the first paper of this series, Ref. [19], we considered a three-ion system in a linear trap 

arrangement and tried to determine what functional form of the trapping potential is needed in 
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order to create anharmonicities sufficient for the control (e.g., Δ  ~ 1% Ω ). It was found that, in 

the three-ion case, adding quartic terms to the quadratic trapping potential doesn’t permit to 

achieve the necessary amount of vibrational anharmonicity. Even if a purely quartic (strongly 

anharmonic) trapping potential is used, the normal mode progressions of vibrational states 

remain nearly harmonic (e.g., Δ  ~ 0.001% Ω ). This surprising result was explained by 

deformation of the normal vibration modes in non-harmonic multi-dimensional potentials [19].  

Further attempts to identify a three-ion system with a sufficiently anharmonic vibrational 

spectrum led us into consideration of the trapping potential of the following form: 

42)( zzzU βα +−= ,       (1) 

where α  and β  are two positive numbers.  Note that the quadratic term in Eq. (1) is inverted 

and represents a repulsive, non-trapping contribution. By tuning the values of parameters α  and 

β  in Eq. (1) one can create a very flat strongly anharmonic trap. The shape of such potential, 

the equilibrium positions of three ions and the equilibrium energy of the system are shown in 

Fig. 1(a). The values of α  and β  are chosen such that the quadratic term creates a small 

repulsive “hill” in a trapping well, dominated by the quartic term. Energy of the system is well 

above the top of the hill. Analysis of the normal vibration modes in such trap revealed very 

significant anharmonicities. The center-of-mass motion mode is the most anharmonic ( Δ  ~ 

1% Ω ), while the symmetric stretching and the asymmetric stretching modes are less 

anharmonic. It was concluded that this system is a promising candidate for implementing the 

direct adiabatic control scenario. Note that creating the trapping potentials such as in Eq. (1) is 

quite feasible in the experiment [3].  

In this paper, the second paper of the series, we study further the system of three ions in a 

trap of Eq. (1), Fig. 1(a), with a focus on controllability issues, and explore computationally the 
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following opportunity. We propose to create a purely vibrational two-qubit system by encoding 

the first (control) qubit into the states of less anharmonic asymmetric stretching vibration mode, 

while the second qubit is encoded into the states of more anharmonic center-of-mass motion 

mode. The third mode of this system, symmetric stretching, appears to be dark and should not 

interfere. Using tools of the optimal control theory we carry out modeling of this two-qubit 

system and derive RF fields for direct adiabatic control of state-to-state transitions. Pulses for the 

major quantum gates are obtained and properties of the qubit transformations in this system are 

explored.  

This paper is organized as follows: in Section 2 we review our theoretical framework, 

including Hamiltonian of the system, the method of calculating vibrational states in an 

anharmonic potential, the state-to-state transition moment matrix, and the optimal control theory. 

Optimization of pulses for gates NOT, CNOT and Hadamard transform is presented in Sec. 3. 

Major findings are summarized as Conclusions in Sec. 4. 

2. Theoretical framework 

2.a. Eigenstates of the System 

For a system of three ions in a linear Paul trap the vibrational Hamiltonian is [3, 19]:  

eq
coulombtraptrap VVVTH −++= .     (2) 

Here the kinetic energy operator is: 
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the potential energy of ions in a trap is:  

)()()( 332211trap zUqzUqzUqV ++= ,     (4) 
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the Coulomb repulsion energy is: 

23

32

13

31

12

21
coulomb zz

qq
zz

qq
zz

qqV
−

+
−

+
−

= ,    (5) 

and eqV  is a constant energy shift described below. A set of three Cartesian coordinates 

( 321 ,, zzz ) is used to describe positions of three ions along the axis of linear trap. The radial 

motion of ions in a trap is considered to be sufficiently decoupled from the axial motion and is 

not included in the model. This is a very reasonable approximation for a flat trap with small 

number of ions.  In this work we assume that all ions are equivalent and use the same masses and 

charges: a.m.u. 111== mmn , the mass of 111Cd+ ion, and eqqn 1+== , its electric charge. The 

trapping potential )(zU  of Eq. (1) is employed. The values of coefficients α  and β , as 

suggested in the previous work, are 466.0=α  MHz/a0
2 and 810912.3 −×=β  MHz/a0

4. The 

energy shift by 5eq 10359.52/ ×=πV MHz in Eq. (2) is used for convenience. Its value represents 

the equilibrium (minimum) energy of the system: 

),,(),,( eq
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eq zzzVzzzVV += .    (6) 

The equilibrium positions of ions ),,( eq
3

eq
2

eq
1 zzz  were determined numerically using the Newton-

Raphson method [19]: 3
1 10862.2 ×−=eqz a0, 02 ≈eqz  and 3

3 10862.2 ×=eqz a0.  

The time independent Schrödinger equation for this system is solved numerically. All 

details can be found in Ref. [19]; only a brief summary is given here. The Hamiltonian of Eq. (2) 

is transformed from the Cartesian coordinates ( 321 ,, zzz ) to the normal mode “unscaled” 

coordinates ( 321 ,, ζζζ ) by:  



7 
 

eq

eq

eq

z
z
z

z
z
z

3

2

1

331

221

111

3

2

1

)(
)(
)(

+=
ζωω
ζωω
ζωω

A ,                  (7) 

using the matrix of normal mode eigenvectors: 

333231

232221

131211

aaa
aaa
aaa

=A ,                (8) 

and the normal mode frequencies ( 321 ,, ωωω ), derived from the normal mode analysis at the 

minimum energy point ),,( eq
3

eq
2

eq
1 zzz . Wave function of the system is expressed in these 

coordinates, ),,( 321 ζζζψ v , and is expanded in terms of the three-dimensional direct-product 

basis set of one-dimensional harmonic oscillator functions in 1ζ , 2ζ  and 3ζ :     

∑=
kji

kjivv kji
C )()()(),,( 321321 ζϕζϕζϕζζζψ .                                      (9) 

An efficient basis set is constructed using frequencies ( 321 ,, ωωω ) and effective masses 

),,( 321 μμμ  of the normal modes. Numerical diagonalization of the Hamiltonian matrix in this 

basis set gives accurate eigenvalues and eigenfunctions. These were tabulated and are available 

from Ref. [19]. Analysis of wave functions allowed to assign the normal mode quantum numbers 

( 321 ,, vvv ) to these states and fit the spectrum by a multi-dimensional Dunham formula [25]. 

Coefficients of the fit gave us values of frequencies of the system [19]:  

            738.221 =Ω π  MHz,    

 580.5422 =Ω π  MHz,        (10) 

      886.5423 =Ω π  MHz,        

and the following set of (intra-)mode anharmonicities:  
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2
1 10361.42 −×−=Δ π  MHz, 

3
2 10106.12 −×=Δ π  MHz,                (11) 

3
3 10371.12 −×−=Δ π  MHz, 

for the three normal vibration modes. The inter-mode anharmonicities (couplings) are also 

important for the control; their values are:  

 3
13 2 4.871 10π −Δ = − ×  MHz,  

 2
12 2 1.102 10π −Δ = − × MHz,      (12) 

2
23 2 3.872 10π −Δ = ×  MHz.   

From these results we see that Mode 1, the center-of-mass motion mode, is the most anharmonic 

( 1Δ  = 1.6% 1Ω ). We expect this mode to be the easiest to control and, based on this property, we 

choose to encode states of the main qubit (second qubit) into states of this mode. Mode 3, the 

asymmetric stretching mode, is considerably less harmonic ( 3Δ  = 0.003% 3Ω ) and would be 

impossible to control by itself. However, we can try to employ this mode for encoding states of 

the control qubit (first qubit). Note that frequencies of these two modes are very different, 738.2  

MHz and 886.54  MHz, which should simplify the control. Although it may look like the 

frequency of Mode 2, the symmetric stretching mode, is dangerously close to the frequency of 

Mode 3, it should not be a problem since Mode 2 appears to be dark (see Sec. 2.d. below) and 

should not interfere.  

It is reasonable to choose two lower states (the ground and the first excited vibrational 

states) of each active mode to represent states 0  and 1  of the corresponding qubit. So, the 

following mapping between the vibrational states of the three-ion-string, labeled by three normal 

mode quantum numbers ( 321 ,, vvv ), and the four states of the two-qubit system is proposed:  
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00  ⇔ (0,0,0);       01  ⇔ (1,0,0);        

10  ⇔ (0,0,1); 11  ⇔ (1,0,1).         (13) 

Energies of these states are shown in Fig. 1(b) relative to the classical minimum energy of the 

system eqV .  Note that energy of the ground state (0,0,0) above eqV  represents the quantum zero-

point energy of the system.  

We would like to note that notions of the normal modes are used here for qualitative 

purposes only, mostly for convenience of discussion. Their frequencies, anharmonicities, and the 

normal mode quantum numbers are all approximate moieties. In reality we are dealing with exact 

eigenstates of the system, use numerically accurate values of their energies and wave functions 

and encode states of the two-qubit system into these exact eigenstates.   

2.b. Method of control 

In order to control the vibrational states of ions in an anharmonic trap we propose to 

apply a time-dependent electric field ),( tzε  along the axis of the trap. When this control field is 

introduced, the full Hamiltonian of the system becomes:  

),(),(),( 332211trap tzqtzqtzqHH Φ+Φ+Φ+= ,                                     (14) 

where  

∫−=Φ
z

nn dztztz
0

),(),( ε              (15) 

is the electric potential of the control field at the position of each ion. The easiest approach for 

the control is to create a spatially homogeneous field with the time-dependent amplitude )(tε , 

which results in a linear control potential with the time-dependent slope, )(),( tztz ε−=Φ , and 

leads to a simple expression for the control Hamiltonian: 
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)()( 332211trap tzqzqzqHH ε++−= .                                               (16) 

For convenience, we introduce the dipole moment function of ions as  

332211321 ),,( zqzqzqzzzd ++= .                                               (17) 

Using this definition, the control Hamiltonian of Eq. (16) can be rewritten: 

dtHH ⋅−= )(trap ε ,                                                           (18) 

For the case of three equivalent ions with the charge q, such as the system studied in this work, 

the dipole moment function is very simple:  

)(),,( 321321 zzzqzzzd ++= .                                      (19) 

2.c. Optimal Control Theory 

The purpose of computational pulse optimization is to derive the time dependence 

(shape) of the control pulse that permits to achieve the transfer of population from a given initial, 

iφ  , to a chosen final vibrational state, fφ . Time-dependent wave function of the system driven 

by the pulse is denoted as )(tψ  and, ideally, we want to obtain fT φψ =)(  starting with 

iφψ =)0( , where T is duration of the pulse. In practice, the measure of success of the control 

pulse is the value of overlap 
2

)( fT φψ  between the actual final wave function and wave 

function of the target state. The control pulse designed to induce multiple state-to-state 

transitions (e.g., different transitions of the quantum gate) can be assessed by the value of 

cumulative transition probability defined as:  

∑=
m

m
f

m T
M

P
2

)(1 φψ .                                                (20) 
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Here the index m labels M transitions we want to optimize simultaneously, Mm ≤≤1 . For 

example, for optimization of the gate NOT we can choose 10 →  and 01 →  transitions 

)2( =M  and define 0)1( =iφ , 1)1( =fφ , and 1)2( =iφ , 0)2( =fφ , respectively. For more 

complicated gates we have to include more transitions into the simultaneous optimization 

procedure. The M transitions chosen for pulse optimization are sometimes called the training set 

[26, 27]. 

 The optimal control field )(tε  is obtained by maximizing a multi-target functional 

defined as [28]: 

∫−=
T

dtttPJ
0

2)()( εα
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂+− ∫∑

T
mmm

f
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m
dtt

t
iHtT

0

)()()(Re2 ψψφψ .  (21) 

The second term in Eq. (21) is included in order to minimize energy of the pulse and constrain its 

smooth switching on and off. The penalty function )()( 0 tst αα = , where 0α  is a constant 

penalty factor and ( )Ttts π2sin)( =  is a smooth envelope function, allows to reduce the field 

amplitude at the beginning and the end of the pulse. Minimization of the last term in Eq. (21) 

ensures that evolution of wave function obeys the time-dependent Schrödinger equation. H is 

Hamiltonian of the system, Eq. (14).                                                                                    

Variations of the functional in Eq. (21) with respect to )(tmψ , )(tmψ  and )(tε  leads to: 

 (i) A set of M Schrödinger equations  

                                )(ˆ)( tHt
t

i mm ψψ =
∂
∂ ,        m

i
m φψ =)0( ,    (22) 

to propagate M wave functions )(tmψ  from 0=t  to Tt =  independently, each with its own 

initial state m
iφ  as boundary condition;  

(ii) A set of M Schrödinger equations                            
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)(ˆ)( tHt
t

i mm ψψ =
∂
∂ ,      m

f
m T φψ =)( ,    (23) 

to propagate M wave functions )(tmψ  from Tt =  to 0=t  (backward in time) each with its own  

final state m
fφ  as boundary condition, and  

(iii) One equation for the universal field that drives all these 2M transitions:  

)()()()(Im)()(
0

tdttttst
m

ψψψψ
α

ε ∑−= .                             (24) 

The field )(tε  of Eq. (24) is improved iteratively, using information from the forward and 

backward propagated wave functions )(tmψ  and )(tmψ  of Eqs. (22, 23). Note that 2M 

Schrödinger equations in (22) and (23) are coupled only through the field )(tε  of Eq. (24).  

Time-propagation of Schrödinger equation is carried out numerically by expanding wave 

function over the basis set of system eigenstates (calculated numerically, see Sec. 2.a): 

 v
v

tiE
v

vetat ψψ ∑ −= )()( ,                                                  (25) 

and solving a set of coupled equations for the time-dependent coefficients )(tav  using forth-order 

Runge-Kutta method [29].  

2.d. Transition Matrix 

The integral ψψ d  in Eq. (24) can be expressed through time-dependent coefficients 

)(tav  of expansion (25) and elements of the dipole moment matrix: 

),,(),,(),,( 321'321321', ζζζψζζζψ vvvv zzzdM = .                                  (26) 

Note that in this formula the wave functions of eigenstates are expressed, and the integration is 

carried out, using the normal mode coordinates ( 321 ,, ζζζ ), while the dipole moment function, 
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as defined in Eq. (19), is expressed in Cartesian coordinates ),,( 321 zzz . The dipole moment 

function should be converted into the normal mode coordinates using transformation of Eq. (7): 

                              2322212
2

1
1312111

1

1
321 )()()( ζ

ω
ωζ

ω
ω aaaqaaaqzzzqd +++++=++=     

)()( 3213332313
3

1 eqeqeq zzzqaaaq ++++++ ζ
ω
ω .                            (27) 

Note that for the system of three equivalent ions the last term in Eq. (27) vanishes simply 

because eqeq zz 31 −=  and 02 =eqz . The symmetric stretching mode, Mode 2, is characterized by 

3212 aa −=  and 022 =a , which means that the second term in Eq. (27) also vanishes. Thus, the 

dipole moment function does not depend on 2ζ  at all, which means that Mode 2 is dark. The 

dependence of ),( 31 ζζd  on both 1ζ  and 3ζ  is linear:  

3332313
3

1
131211131 )()(),( ζ

ω
ωζζζ aaaqaaaqd +++++= .      (28) 

Due to different frequencies and properties of the normal modes eigenvectors, the slope of 

),( 31 ζζd  for Mode 1 is more than order of magnitude sharper than for Mode 3.  

The dipole moment function of Eq. (27) and the wave functions of Eq. (9) are substituted 

into Eq. (26). Using properties of the basis set functions [30] the integration in Eq. (26) is carried 

out analytically and elements of the dipole moment matrix are expressed through coefficients 

kjivC of the basis set expansion: 
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Here ( 321 ,, ωωω ) are frequencies and ( 321 ,, μμμ ) are effective masses of the basis set functions 

[19], i.e., normal modes of the trap. For the system studied in this work the second and last terms 

of this sum vanish exactly (due to properties of the dipole moment function, see above) and are 

given here only for the purpose of generality.  

The usual symmetry considerations are applicable to the transition matrix of Eq. (29). 

The dipole moment function ),( 31 ζζd  is an asymmetric (linear) function of both 1ζ  and 3ζ . 

Thus, the matrix elements are non-zero only for transitions between states of different 

symmetries (e.g., symmetric-to-asymmetric states and vice versa), leading to the following 

selection rules: 

 5,3,1 ±±±=Δv  etc.,       (30) 

for both Modes 1 and 3. Since the system is only weakly anharmonic, the 1±=Δv  transitions are 

much brighter than the 5,3 ±±=Δv  etc. transitions.  

Note that the symmetric stretching mode is dark only in the case when a spatially 

homogeneous field is used, as assumed in this work. Creating a quadrupole potential would 

allow controlling the symmetric stretching mode too. This opportunity will be studied 

theoretically and computationally in the future work.    

3. Results and Discussion 
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It is understood that it may be difficult to create in the experiment the time-varying field 

)(tε  exactly as recommended by theory, and that the experimental implementation may have 

some practical constrains not included into our model. Still, it is desirable to have a theoretical 

benchmark of the approach, before any practical implementation is attempted, in order to see 

how difficult or easy would it be to implement this method of control.  

3.a. Gate NOT on Second Qubit 

For this gate the training set of four transitions was chosen as: 

0100NOT → ,                                                                                 (31) 
0001NOT → ,                                                                                 (32) 
1110NOT → ,                                                                                 (33) 
1011NOT → .                                                                                 (34) 

Recall that in our approach the qubits are encoded into collective vibration modes, not into 

individual ions, and the control field is applied to the entire system, not to the individual qubits. 

For this reason, the state of first qubit should also be reflected in the training set of transitions, 

even if we are trying to optimize pulse for controlling just the second qubit. In this sense our 

gates are global. First two transitions of the training set describe action of gate NOT on second 

qubit with the first qubit being in state 0 , while next two transitions of the training set describe 

gate NOT on second qubit with the first qubit being in state 1 . Due to anharmonicities, the 

frequencies of corresponding 0100 ↔  and 1110 ↔  transitions are slightly different.  

Optimization procedure is not fully automated. The pulse duration and the maximum 

allowed field amplitude should be tuned manually. A number of independent computational 

experiments were carried out with different values of the target time in the range between 2 μs 

and 20 μs and different values of the penalty factor between 1011 and 1013. The following values 

led to the simplest pulse shape and were finally adopted for the gate NOT: T = 4 μs and α = 2.0 × 
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1012. A very large number of iterations, 4000 forward-backward loops, were needed in order to 

converge the pulse shape. The length of time-step in the wave packet propagation was on the 

order of 0.5 nanosecond (9000 time steps in total).  

The 4 μs pulse derived for the gate NOT on the second qubit is presented in Fig. 2.  The 

pulse is quite symmetric and its shape is simple, the maximum field is achieved in the middle of 

the pulse. This shape reflects the envelope function (see Sec. 2.c.) used to switch the pulse on 

and off smoothly. Amplitude of the electric field does not exceed 0.57 V/m. Such pulses should 

be relatively easy to produce in the experiment. 

Figure 3 shows evolution of state populations during the pulse. Four frames of the picture 

correspond to four transitions of the training set. We see that, overall, the population transfer is 

quite direct, in a sense that population of the initial state(s) is monotonically transferred to the 

final state(s), without any reverse transfer. Note, however, that the system does not behave as an 

isolated four-state system of two qubits. Upper states of the normal mode progressions can gain 

some population during the pulse. Here, the states 02  and 12  are excited most significantly 

(populations exceeds 0.1), which can be seen in Fig. 3 without any magnification. However, the 

system is well controlled -- by the end of the pulse all population is dumped into the target 

state(s) of two qubits. The value of cumulative transition probability, as defined in Eq. (20), 

reaches P = 0.996.  

Fourier analysis of the pulse in Fig. (2) shows that its spectrum is dominated by structure 

in the =Ω π2 2.7-to-3.2 MHz region, which corresponds to excitation of one quantum of 

vibration in the second qubit. The structure is asymmetric. Its most intensive peak corresponds to 

frequency of 10 ↔  transition. A wing, composed of series of less intense peaks, expends into 

the blue part of spectrum and covers 21 ↔ , 43 ↔  and 54 ↔  transitions, which means 
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that this pulse is trying to control selectively the ladder of transitions (an anharmonic oscillator). 

Note that all these transitions are well resolved by the pulse – the widths of peaks in the spectrum 

are narrower than frequency differences. However, the transitions 0100 ↔  and 1110 ↔  

etc., are not resolved. Frequencies of these transitions are very close to each other because 

anharmonicity of first qubit is very small. Widths of peaks in the spectrum are much broader 

than this frequency difference, which means that the 0100 ↔  and 1110 ↔  transitions are 

controlled together, rather than selectively.  

Intensity of the signal near the frequency of 32 ↔  transition is suppresed relative to 

others, which explains why the population of state 3  remains low during the pulse.  Fourier 

analysis shows no frequency components near Ω2  for the second qubit, consistent with selection 

rules of Eq. (30), and only small intensity near =Ω π23 8.8 MHz region, 30 ↔  transition in 

the second qubit, consistent with low population of state 3 . Nothing in the spectrum 

corresponds to transitions between states of the first qubit.  

Results obtained with longer pulses indicate that increase of the pulse duration leads to 

the decrease of the field amplitude and, at a consequence, to the decrease of population of the 

interfering upper states. For example, we found that during the pulse optimized with T = 20 μs 

the field does not exceed 0.25 V/m, populations of states 02  and 12  do not exceed 0.02, while 

the cumulative transition probability reaches P = 0.9998.  

3.b. Conditional NOT (CNOT) on Second Qubit 

For the gate CNOT the training set of transitions is: 

0000CNOT → ,                                                      (35) 
0101CNOT → ,                                                      (36) 
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1110CNOT → ,                                                       (37) 
1011CNOT → .                                                       (38) 

 
Experimentation with pulse duration showed that CNOT gate requires much longer pulses than 

NOT gate. In order to obtain accurate CNOT gate, we had to increase the pulse duration to T = 

30 μs. The number of time steps for wave packet propagation was increased to 18,000. Variation 

of the penalty factor revealed an interesting feature. It is demonstrated below using results for 

two pulses, one with α = 6.0 × 1012 and the other with α = 8.0 × 1011. 

 The pulse optimized with a larger penalty factor, α = 6.0 × 1012, is shown in Fig. 4. This 

pulse is simply shaped, symmetric, and consists of two time-delayed sub-pulses. The maximum 

field amplitude of about 0.06 V/m is achieved at approximately t = 7.5 and 22.5 μs. The state-to-

state transitions driven by this pulse are shown in Fig. 5. Four frames correspond to four 

transitions of the training set. When the control qubit is in state 1  the population transfer is 

monotonic and is very much direct, see Figs. 5(b) and 5(d). Only two states of the system are 

involved and those are states 10  and 11  of the qubit. Transitions to any upper states of the 

system are suppressed. When the control qubit is in state 0  the population transfer is not 

monotonic: The first sub-pulse creates a superposition state of 00  and 01 , while the second 

sub-pulse returns population back to the initial state(s), as required by this gate, see Figs. 5(a) 

and 5(c). Cumulative accuracy of the qubit transformation is very high, P ~ 0.9995. Fourier 

analysis of the optimized pulse shows that only the 0100 ↔  and 1110 ↔  transitions are 

induced (again, together rather than selectively), while the frequencies of all other transitions are 

completely suppressed. Even the frequency of 21 ↔  transition in the second qubit is entirely 

suppressed, which explains why population is restricted to only states 0  and  1  of the qubit.  
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The fact that transitions to the upper states of the system can be suppressed and 

population is restricted to only four states of the 2×2 qubit space is very interesting. We believe 

that such high selectivity is made possible by the relatively low amplitude of field of the pulse in 

Fig. 4, leading to very delicate control of vibrational excitations.  

In order to support this hypothesis we present results for another pulse, optimized with 

lower penalty factor α = 8.0 × 1011. In general, lowering the penalty factor allows raising 

amplitude of the field during the optimization procedure. The optimized pulse shape for this case 

is presented in Fig. 6. The maximum field amplitude of this pulse is roughly 0.51 V/m, about an 

order of magnitude higher compared to the previous case. The pulse shape is much more 

complicated, asymmetric, containing multiple sub-pulses of different amplitudes. This shape 

reflects complicated evolution of state populations presented in Fig. 7. During the pulse, the 

populations are exchanged back and forth between the initial and the final states of the qubit, and 

are also transferred to the excited states of the system, 02  and 12 . Despite complicated 

evolution during the pulse, at time Tt = the population is directed towards the target states, 

leading to high accuracy of qubit transformation, P ~ 0.9996. Fourier analysis of this optimized 

pulse shows a spectral structure that covers 10 ↔ , 21 ↔  and 43 ↔ , transitions in the 

second qubit,  which clearly corresponds to control of the ladder. The frequency of 32 ↔  

transition is, again, somewhat suppresed. 

Two examples of CNOT gate presented here suggest that a careful choice of constrains 

on the control field, such as pulse duration and field amplitude, may be necessary in order to 

obtain the control pulses of desirable accuracy and simplicity.   

3.c. Hadamard Transform of Second Qubit 
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Training set of transitions for the Hadamard transform of the second qubit is: 

( )0100
2

100HAD +→ ,     (39) 

( )0100
2

101HAD −→ ,     (40) 

( )1110
2

110HAD +→ ,       (41) 

( )1110
2

111HAD −→ ,      (42)  

( ) ( )1000
2

111100100
2
1HAD +→+++ .                                         (43) 

 
The fifth transition here is the sum of the first four transitions and is included in order to achieve 

control over phases, which is essential for this gate. Note that the cumulative probability of Eq. 

(20) neglects phases of transitions, since moduli squared of overlaps are used. However, the 

accuracy of gates like Hadamard should be measured by a phase-sensitive moiety, like fidelity 

defined as [31, 32]: 

2

2 )(1 ∑=
m

m
f

m T
M

F φψ .     (44) 

One solution is to replace P by F in the functional of Eq. (21) and re-derive the equations [31, 

32], but this approach was not followed here. A simpler fix to the standard procedure is to 

include, in addition to four transitions of the training set, one more transition that represents sum 

of the previous four [21, 33]. In order to ensure that the phase is indeed controlled, the fidelity of 

Eq. (44), rather than probability of Eq. (20), should be monitored as convergence criterion. 

Different values of pulse duration and penalty factor were tried and the following 

parameters were finally adopted: α = 1.0 × 1012 and T = 35 μs. The number of time steps was 

also adjusted to 55,000.  
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The optimized pulse is presented in Fig. 8. The pulse is asymmetric and consists of three 

sub-pulses of slightly different amplitudes. Maximum amplitude of the field is about 0.13 V/m. 

Roles of these sub-pulses are revealed by analysis of state populations presented in Fig. 9. The 

first sub-pulse achieves a significant transfer of populations, creating a superposition state with 

probabilities close to needed 50/50, while the second sub-pulse manipulates phases of the 

optimized transitions (with only minor population transfer). Third sub-pulse finalizes the entire 

transformation by minor transfer of remaining populations and fine phase correction. Analysis of 

phase angle of the optimized transitions supports this conclusion:  During the first sub-pulse 

phases are not controlled at all. The second sub-pulse reduces phase differences monotonically to 

only ~ 30-50º. The third sub-pulse reduces phase differences to less than 4º at the end of the 

pulse. The cumulative transition probability of this Hadamard gate is P ~ 0.998. Its fidelity is 

slightly lower, F ~ 0.990, due to small residual difference of phases. 

Fourier analysis of the optimized pulse shows two spectral structures. First structure is in 

the =Ω π2 2.7-to-3.0 MHz region (excitation of one quantum in the second qubit). Here the 

10 ↔  transition is clearly dominant, while the 21 ↔  transition is significantly suppressed, 

consistent with low population of states 02  and 12  in Fig. 9. The second spectral structure is 

in the =Ω π2 54.8-to-54.9 MHz region, which corresponds to excitation of one quantum of the 

first qubit. Transitions between 10 ↔ , 21 ↔ , 43 ↔  and 54 ↔  states of the first 

qubit are covered by the blue-side wing of this spectral structure. We tend to state that these 

transitions are partially resolved because they all have different intensities, due to slope of the 

wing and some minor oscillations of intensity.  
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Note that frequency components that control first qubit have not been observed in the 

optimized NOT and CNOT pulses discussed above. We found that these frequencies appear only 

when we include the fifth transition into the training set (e.g., Eq. (43)) in order to control phases 

of the optimized transitions. The pulses optimized for such truly coherent manipulations of the 

qubit states always contain frequency components for control of both qubits of the two-qubit 

system.   

4. Conclusions 

In this paper we carried out the first optimal control study of a system of multiple ions in 

an anharmonic linear trap. The method of encoding qubits into the quantized collective 

motional/vibrational states of the linear ion-string was proposed and explored computationally. 

The time-varying RF fields were used to achieve adiabatic control over these states.  

Although all ions are identical, the vibration modes of the ion-string are different and the 

qubits, encoded into these modes, are also different. The numerical analysis of frequencies and 

anharmonicities of the vibration modes was used to identify modes most suitable for encoding 

qubits. It was shown that in a strongly anharmonic trap, obtained by combining a repulsive 

quadratic with an attractive quartic potentials, the center-of-mass motion mode is the most 

anharmonic. It is most suitable for encoding states of the main qubit. The control qubit can be 

encoded into a less anharmonic asymmetric stretching mode. The symmetric stretching mode 

remains dark in our approach.  

Optimal control theory was used to derive pulses for a set of universal quantum gates. It 

was shown that if the parameters of the pulse, such as pulse duration and maximum field 

amplitude, are carefully chosen, the qubit transformations (gates) are accurate and the pulses are 
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simple. Durations of the pulses obtained were in the 4 μs to 40 μs range. Amplitudes of the 

control fields were on the order of 0.1 V/m.  

Only one set of parameters for the shape of the trap was considered in this paper. It seems 

feasible, however, to further increase anharmonicity of the vibrational spectrum of the system by 

changing parameters of the trapping potential. Higher anharmonicities, in turn, should simplify 

the control and allow deriving more accurate and shorter gate pulses. Exploring a system of more 

than three ions offers more opportunities. There should be more than one anharmonic mode that 

can be efficiently controlled and used for encoding qubits. These opportunities will be explored 

in the future work. 
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Fig. 1: a) Equilibrium positions of ions and minimum energy of a three-ion string 
trapped in a flat anharmonic potential of the form 42 zz βα +− ; b) Vibrational 
spectrum of this system and the encoding of two-qubit states proposed in this work. 

 



27 
 

 

Fig. 3 (Color online): Evolution of state-populations during the gate NOT. Four frames 
of this figure correspond to four transitions optimized as a training set.   
 

Fig. 2: Optimally shaped pulse for the gate NOT.  
 



28 
 

 

Fig. 4: Optimally shaped pulse for the gate CNOT. Low field regime.  
 

Fig. 5 (Color online): Evolution of state-populations during the gate CNOT. Low 
field regime.  Four frames of this figure correspond to four transitions optimized as a 
training set.    



29 
 

 

Fig. 6: Optimally shaped pulse for the gate CNOT. High field regime.  
  
 

Fig. 7 (Color online): Evolution of state-populations during the gate CNOT. High field 
regime. Four frames of this figure correspond to four transitions optimized as a training 
set.    
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Fig. 8: Optimally shaped pulse for the Hadamard transform.  

Fig. 9 (Color online): Evolution of state-populations during the Hadamard transform. Four 
frames of this figure correspond to four transitions optimized as a training set. 
 


