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Recent numerical investigations (Pal and Veértesi, PR®L.(2) suggest that the 13322 inequality, arguably
the simplest extremal Bell inequality after the CHSH indijyehas a very rich structure in terms of the entan-
gled states and measurements that maximally violate ite Hee show that for this inequality the maximally
entangled state of any dimension achieves the same violtitan just a single EPR pair. In contrast, stronger
violations can be achieved using higher dimensional stakésh arelessentangled. This shows that the max-
imally entangled state is not the most nonlocal resouroen @hen one restricts attention to the most simple
extremal Bell inequalities.

I. INTRODUCTION not give the maximum violation. More specifically, for every
dimensiond there is a Bell inequality (such as the CGLMP

Entanglement is a powerful resource, facilitating compu-nequality [14]) which in that dimension is maximally vio-
tation, communication, or more generally any nonlocal tasklated by a state different from the maximally entangledestat
Like all resources it is useful to be able to measure it, sb tha— @ State witHowerentanglement[1, 2, 39]. Conversely, itis
entangled states could be ranked according to their usedsin SOMetimes necessary to use a larger amount of certain maxi-
for a given task. A very natural measure for the entanglemerip@lly non-local resources in order to simulate all possible
of any bipartite statél) € #4 ® H is the entropy of entan- relat|0_n5 coming from some less entangleq state, compared_t
glementE (V) = S(pa) [5], whereS(pa) = —Tr(palog pa) what is necessary to simulate those coming from the maxi-
is the von Neumann entropy apd = trz (| ¥)(¥|) is the re- mally entangled state [11]. This has prompted the reatinati
duced density operator ¢¥) on one of the two subsystems. thatnonlocalitymight be a resource of a different nature than

In any dimensiond this measure is maximized by the maxi- €ntanglement, and many other examples have been discov-
mally entangled state ered in the realm of Bell inequalities and quantum cryptegra

phy (see [29] for a survey), as well as quantum information
T theory [7, 9]. In a recent breakthrough, Junge and Palazue-
|Uy) = — Z 15)]5) . (1) los[22] showed using tools employed in the study of operator
Vd = algebras and a probabilistic argument that thesistsa family
of Bell inequalities for which the maximally entangled staf
Since |¥,) exhibits the largest amount of entanglement, itany dimension can only lead to arbitrarily weaker violasion
would be natural to guess that it would indeed be the mosthan optimal. However, these Bell inequalities are vergdar
useful state for any nonlocal task. This belief is reinforbg ~ and non-explicit.
the fact that this state has proven extremely useful for many
guantum information problems (e.g. [6, 8, 17]), and is by it-
self a sufficient resource for the creationasfy other nonlo-
cal state as soon as one allows local operations and classica

communication (LOCC) [6]. Moreover, it is known that an . : . .
unication ( ) [6] ver it W 4 The only extremal [40] Bell inequality with two settings

shared pure stat@) violates a Bell inequality if and only if = . . .
it is entangled [19, 36], suggesting that the amount of entanand two outcomes per site is the CHSH inequality, for which

lement may play a central role in quantifying the strength o 't is known that achieying_violations close to op_timal re@s?
gonlocal cor);ejlat?/ons a fying g the use of a state arbitrarily close to an EPR pair [21]; ogtim

For a long time it was implicitly assumed that ;) is the measurements are also well-understood [28.]' . .
most useful state with respect to violation of Bell inequali N 9eneral, the nonlocal properties of Bell inequalitiettwi
ties [4]. The first doubts cast on this conjecture stem fronf© Settings and two outcomes per site are reasonably well-
a result by Eberhard [16] who showed that when it comes t(ynderstoo_d. In thet case itis k_nown that we may Wlthou_t loss
closing the detection efficiency loophole less entanglatst  Of 9enerality restrict our attention to entangled stateh vo-
can be more useful. More recently, such doubts were cor@! dimensiore only [20, 27], as they are sufficient to repro-
founded by the surprising fact that, at least in small dimenduce all possible correlations. As a consequence, those in-

sions in which numerical experiments can be conducteobther_equa”ties lend themselves to extensive numerical and/anal

are inequalities for which the maximally entangled statesdo !C&! investigations. _ _ o
In contrast, as soon as one considers inequalities with more

than two settings per site, the minimal local dimension re-

quired to achieve optimal violation is not known. In fact; re
*Electronic addresszi di ck@ecs. ber kel ey. edu cent extensive numerical investigations [33] suggest ttat
TElectronic addresssehner @us. edu. sg simplest extremal inequality after CHSH, thgso inequality

A. The I3322 inequality



(first introduced in [18], its name refers to the fact it hagth

Theorem 1. For all dimensionsi > 0, and any observables,

settings and two outcomes per site), allows for a surpriging using the maximally entangled stdfe) = |¥,;) canlead to a

complex structure of the maximally violating states.
We will use{A;}jcq1,2,31 and{ By }req1,2,3) to denote the

measurement operators for the first of the two possible out-
comes for Alice and Bob respectively. Using the common

shorthands
<AJBk> = <\IJ|AJ & Bk|\11> 5 (2)
(4;) == (V]4; ®@id[¥) , 3)
(By) := (V]id @ By|¥), (4)
we define
(I3322) 1= — (A2) — (B1) — 2(B2) + (A1 B1)
+ <AlBQ> + <AgBl> + <A2.BQ> - <AlB3>
+ <A233> - <A3Bl> + <A3BQ> (5)
While for classical correlations we have
(I3322) <0, (6)

violation of at most

(I3322) <

. 8)

.

Note that in contrast with previous work, (7) tells us that
a value of1/4 can be attained using just one EPR pair, and
hence the maximally entangled state in any dimension is no
more powerful than the maximally entangled statedfer 2.

Our result gives a strong demonstration that maximally en-
tangled states are not the most nonlocal. Posterior to otk, wo
aresult appeared [25] showing, among other things, thatthe
also exists Bell inequalities with two outcomes and two set-
tings for which the maximally entangled state is not optimal
Similar results also follow from previous work [16, 20, 27].
However, these inequalities are somewhat artificial (th&-mo
vation for the work [25] is in a different context in which $uc
inequalities are indeed interesting); in particular it roln
that they are not extremal and one already knows [20, 27]
that an optimal violation can always be reached with local

there exist measurements [13] such that using just one EPimension2. Our result contributes to the understanding of

pair (i.e.|¥) = |¥5)) one can get

1

(I3322) = 1 (7)

more complex Bell inequalities, by showing that a similagph
nomenon arises naturally and in a setting where using states
of arbitrarily large dimensiogan actually be helpful — but,

as we show, maximally entangled states themselves are not.

Yet, the precise maximum df3322) over all quantum states
and measurements remains unknown. Numerical upper-
bounds were obtained using a SDP hierarchyin [15]. This was
followed by recent exhaustive numerical investigation®ay

and Vértesi [33], who report very interesting results. ifhe

experiments suggest that the optimum violation of (6), even pgefore embarking on our proof, it is worth pointing out
though it only involves a constant number of settings anel outinat there does in fact exist a generic family of states that
comes, might only be reached in infinite dimension. Indeeda|ways allow us to obtain the maximum violation fany
they find strategies obtaining a value of a;t_le&_ﬁr5084_... Bell inequality. These states, however, exhibit less aitan
(matching the upper bound up to precisidiT * in dimension  ment than the maximally entangled state of same dimension.
~ 100), and moreover in their experiments this value keepsrpjs “unjversal” family of states are known asbezzlement
increasing as the dimension of the strategies is aIIo_wed—toll stateg38]. They previously played an important role in more
crease. Moreover, even though the observables which &hiey,olyed tasks in quantum information theory, namely the so
the maximum V|olat|(_)n in a given dlmensmn_ have a rather.gjieq quantum reverse Shannon theorem [7, 9], which pro-
simple and systematic form, the corresponding state has gfjjed another example where the maximally entangled state
interesting distribution of Schmidt coefficients, and igisite g not sufficient to achieve the corresponding channel simul
far from the maximally entangled state. Their results, howsjon result, but the universal embezzlement states arekdje

ever, provide no indication of whether similar violationggint roperty of thel-dimensional embezzlement stéde;) that is
be reached (perhaps at the price of increased dimensiam) Wiﬂsed is that, foany pure staté®), there existsl andd’ such

much simpler entangled states, such as the maximally emaﬂiat|<1>d> ~ |®4) ® |), where the equivalence only requires

gled state. the application of local unitaries on each system; no commu-
nication is needed [38]. Since an embezzlement state can be
used to obtain any other pure state by local unitary operatio

it immediately follows that any Bell inequality can be maxi-
mally violated by an embezzlement state (of possibly higher
Our main resultis thatindeed the maximally entangled statelimension), as pointed out recently in [32]. This demonsta

C. Generic states

B. Result

does not lead to optimal violation of thigsso inequality. In
fact, a maximally entangled state of dimensibis no more
useful than one of dimensio?, that is, a single EPR pair.
More precisely, we show the following

that, even though in small dimensions it might seem like ev-
ery inequality has its own specialized maximizing statenié
allows the dimension to grow larger, then a simple class of
states is sufficient to obtain maximal violations.
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Il. USING THE MAXIMALLY ENTANGLED STATE of the form (10) forA; and (11) forA,, and similarly for
(B1,B2) in Bg. We number the blocks dfA;, A5) using

We now give a detailed overview of the proof of our main €ven indice, ..., d and call the corresponding.coefficie.nts
result (Theorem 1), relegating technical details to the ap¢zis2i; the blocks of(By, By) are numbered using odd in-
pendix. Throughout we will refer to a particular choice of dicesl, ..., d+1and corresponding coefficients 1, sai1.
measurements applied to the maximally entangled state as aln general the basé$, andB are unrelated, but we argue
strategy Since our game is binary, it is known that we may that, under the condition that the strategy maximizes (&) t
assume without loss of generality (and without affecting th Mustin fact be permutations of one another. To see this, note
underlying state) that the operators used by Alice and Beb arthat (5) can be re-written as
projectors [12, Proposition 2], and we will denote them by

{4;,id — A,} for Alice and{ By, id — By} for Bob. We will (Is322) =
also refer to (A1 + Az, B1 + Ba) + (A2 — Ay, Bs) + (A3, B, — By)
— (As,id) — (id, B1) — 2(id, B 12
w = (Tg20) ) (Ag,id) — (id, B1) — 2(id, B2) (12)
where

as thevalueof a particular strategy. Our goal is to show that
is at mostl /4, irrespective of the dimensiah We first intro-
duce an important tool in our analysis, the CS decomposition
of a pair of projectors. This decomposition was also at the
heart of the results in [20, 27], where it was used to handie thand we used that ifl') is the maximally entangled state then
case of onlytwo observables per site.

The CS decomposition. Given a pair ofd-dimensional (V|[A® B|¥) = (A, B) . (14)
projectors P and @, there exists an orthonormal basis in )
which the two projectors are jointly block-diagonal (seeNOte that since thel; operators always appear on the left
for instance [10]). Moreover, the blocks can be either Of the tenscT)r product (Alice’s side), we will henceforth ar-
dimensional, in which cas® and( either have @ or a1 gue aboutd; rather than4;, omitting the transpose sign for

in that block, or2-dimensional, in which case they can be si_mpllicity o% notation. For the moment, let's ignore the eon
written in the form tribution of the last three terms in (12). Observe thht

(resp. Bs) only appears in the termAs, B, — By) (resp.

(A,B) = éTr(ATB) (13)

p_1 <1 —c —s > (10) (A — A1, B3)). When maximizing overds it is thus clear
2\ —s 1+4¢)’ that the optimal choice is to maké; the projector onto the
1/1—c s positive eigenspace dB; — B; (resp. Bs to project on the

Q= 3 ( s 14 C) , (12) positive eigenspace ol; — A;). This in particular implies

that the value of those two termsirglependenof the choice
of B (resp.B4). Hence the choice of the basBg, Bz only
bears influence on the value of the first term in (12).
Let us now examine the first term. Note that the precise
form (10), (11) in which we wrote the CS decomposition en-
Our proof proceeds in two steps. Step 1 is to show thasures thatd; + A, is diagonal inB4 (resp. B, + By in
we can greatly simplify the form of Alice’s and Bob’s mea- B5). It is well known (see Claim 6 in the appendix) that
surement operators. The main idea is to show using the C84, + A,, B; + Bs) is maximized whenever the vectors in
decomposition that for any strategy maximizing (5) there ex Bz are a permutation of those 4. It follows that for the
ists a basis in which all measurements are tridiagonal [41]optimal choice of based; + A, andB; + B, will necessarily
This lets us greatly reduce the number of parameters and givse simultaneously diagonal.

for some coefficiente € (—1,1) ands = 1 —¢2 The
anglesf such thatc = cos @ are called theprincipal angles
between the subspaces on whieland@ project.

a relatively simple analytic expression for the valuef the However, this does not necessarily imply that the blocks of
strategy. S_tep 2 consists in u_pper-bo_undmg this simple extA,, A,) are aligned with those ofB;, B,), as correspond-
pression using standard analytic techniques. ing pairs of basis vectors need not match — in fact, if they

did, then it is not hard to see that the strategy would be re-
duced to a convex combination 8fdimensional strategies,
A. Step 1: A simple joint normal form which would conclude our proof. Nevertheless, by a sim-
ple argument we can show that without loss of generality
This is arguably the most crucial step in our proof, as it letsthe blocks are simply “shifted”: there exists an ordering of
us show that a completely arbitrary strategy given by projecB4 = {es,...,eq} such that if the blocks ofA;, As) cor-
_____ 3 can be put into a much simpler form respond to pairge;, ez2), (€3, e4), . .. then those of By, Bs)
without decreasing its value. As we mentioned previouslycan be seen to correspond to pdits, e1), (e2, e3), - . ..
the key idea is to apply the CS decomposition twice, once The exact form we obtain for the strategies is given in Def-
to the pair(A;, As), and once to the paifB;, B2). This inition 4 in the Appendix, and gaps in the argument above are
results in two orthonormal basé$, and Bg such that the filled in the proof of Lemma 5, which can informally be sum-
matrices of(A4;, As) in B4 are block-diagonal, with blocks marized as follows.
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Lemma 2 (Lemma 5, informal) There exists a basis done using standard analytical techniques provided inphe a
(e1,...,eq) In which pendix.

e (A1, As, Bs) (resp. (Bi, Bs, As)) are jointly block-

_ Lemma 3. Leteg;—q € [—1,1],fori=1,...,d/2+ 1. Then
diagonal.

the expressiow = w(¢;) in (15)is upper-bounded bi«.

e The blocks corresponding to each of these decomposi-
tions are shifted: blocks df4;, A;, B3) correspond to
pairs (e2;—1, e2;), while blocks of( A, As, B3) corre-
spond to pairges;, €2i41)-

e The blocks of A;, A) are of the form(10), (11) with
coefficients(ca;, s2;), © = 1,...,d/2, while those of
(B1, By) are of the same form with corresponding co-
eﬁ:iCientS(CQi+1, 52i+1), = O, ceey d/2 — 1.

Ill. CONCLUSION AND OPEN QUESTIONS

We have provided a concrete example of a simple inequal-
ity for which it can be shown that the maximally entangled
state of any dimension is not the most nonlocal state. An in-
teresting question, already asked in [33], is whether ome ca
show that optimal violation of théssoo inequality requires
a state of infinite dimension. This is strongly suggested by
the strategies found numerically by Pal and Vértesi, Whic
even though they are based on an entangled state which is
) o ) very far from the maximally entangled state, have a matrix

Once we have found a nice basis in which to express aljorm which is quite similar to the one in Def. 4. Extending
observables appearing in the strategy, it should appeap as pyr argument to show that Alice and Bob’s measurements al-
surprise that the value of (5) should be easily expressible ayays have this form, even when they do not use the maximally
a function of the coefficientéc; );—1,....a, since these are the gntangled state, would be a big step towards proving that no
only free parameters left in our choice of strategy. In factfinite-dimensional strategy is optimal [3]. This would noty
fixing coefficients:; wherei is even, it is not hard to determine paye very interesting consequences for our understanding o

B. Step 2: The value of a strategy in joint normal form

the optimal choice of coefficients for odd:. This reduces
the size of our problem to th&/'2 parameterss, ..., c;. One

Bell inequalities, but also for the optimization of polyniats
with non-commutative variables. In particular, it wouldgin

can then show that the strategy has the following value (cfinat the SDP hierarchies suggested in [15, 30, 31] only con-

Lemma 8 for a more precise statement):

/2
1 C1 — Cd+1
W= ;f(cﬂflv@ﬂrl) t—a (15)

where

1 1
f(I,?/):\/(I+l/)2+1+§\/1—$2+§ 1—y?-2.

We have thus rephrased the problem of maximizjfigz2)

over all strategies in terms of maximizingover all admis-
sible coefficientca;—1);—1,....a/2+1- TO prove our claim, it
only remains to prove an upper bound @nwhich can be

verge in the limit of infinitely many levels, which is an open
problem even outside the realm of quantum information.
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Appendix A: A joint normal form for strategies using the
maximally entangled state

The goal of this section is to prove Lemma 5, which shows
that any optimal strategy must have a certain simple joint no
mal form. Before we define it precisely, note that in order
for the strategy{ A;, B };.x=1,....3 to be optimal, for a fixed
choice of{ B } it is necessary that the operatgt$; } be cho-
sen so as to maximize

(V[A1 @ (B1 + B2 — B3)|¥) (A1)

(U|As ® (By + By + Bs —id)|¥) (A2)

(U[As ® (B2 — B1)[¥) (A3)
while for fixed{A,}, the{ B} should maximize

(V|B1 @ (A1 + Az — Az —id)|¥) (A4)

(U|By ® (A1 + Ay + Az — 2id)|T) (A5)

(U[Bs ® (A2 — A1)[V) (A6)

entanglement.

Since|¥) is the maximally entangled state, for amyand

B we have(V|A ® B|V) = 1Tr(ABT) =: (4, B), where
(-,-) denotes the real Hilbert-Schmidt matrix inner product.
To simplify notation, and since the; operators always ap-
pear on the left of the tensor product (Alice’s side), we will
argue abouMJT rather thanA4;, omitting the transpose sign.
Hence given for instanc®;, B, and Bs, the A; maximiz-
ing (A1) is simply the projector on the positive eigenspate o
By + By — Bs. In particular, if By, B, and B3 have a joint
block-diagonalization this will be reflected i, + By — Bs
and hence iM;. This observation, combined with the CS de-
composition for a pair of projectors, will let us find a simple
joint form for all the A; andB;,, as explicited in the following
definition.

Definition 4. Foranyc € [—1,1], lets = v/1 — ¢? and define
the2-dimensional projectors

Pi(c) = % (1_-; 1150) , (A7)
Pye) = (1? ljc) , (A8)
Py % G }) . (A9)

We say thati-dimensional projectord A4, By} are in joint
normal formif there exists a basis @ such that either



e For even dimensions, there exist reals; € [—1,1],
i=1,...,d+ 1suchthat:

— A (resp. Ay) is block-diagonal with block&?! =
P (621‘) (reSp.LQi = PQ(CQ»L')), 1=1... d/2

— Bj is block-diagonal with blocks all identical to
Ps.

— By (resp. Bs) is block-diagonal, with the first
block R} (resp. Rj) one-dimensional equal to
(152), the followingd/2 — 1 blocks RY"*! =
Pi(—coi41) (resp. RS = Py(—c2i41)), i =
1...d/2—1,andthe last block] " = (1=511)
(resp. Ry ™! = (15,

— As is block-diagonal with its first block one-
dimensional equal tq1), the following blocks

all identical to P;, and the last block one-
dimensional equal t¢1).

e For odd dimensiongl, there exist reals; € [—1,1],
i=1,...,d+ 1such that:

— Ay (resp. Aj) is block-diagonal with(d —
1)/2 2-dimensional blockd.?’ = P;(co;) (resp.
L3 = Py(ci)), i = 1...(d — 1)/2, and a fi-
nal 1-dimensional block.{ ™" = (%) (resp.

d+1 _ (l—cay1
Ly™ = (T))’

— Bs is block-diagonal with the firgid—1) /2 blocks
all identical to P5, and the last oné-dimensional
equal to(1).

— By (resp. Bs) is block-diagonal with an ini-
tial one-dimensional blocz} = (152) (resp.
Ry = (32)) and the following(d — 1)/2
blocks RT"™' = Pi(—co41) (resp. R =
PQ(_CQi+1), 1=1... (d — 1)/2

— Ajs is block-diagonal, with the first-dimensional
block equal to(1), and all following blocks iden-
tical to Ps.

Or the same as above, but with the roleq df;, A», B3} and
{Bi, B2, A3} exchanged.

The main lemma of this section is the following:

Lemma 5. SupposeA,, A,, A3 and By, Bo, B3 are six d-
dimensional projectors achieving the maximun{®fover all

6

on the choice of basi§|e;) }, but only on the eigenvalues of
By — B;. Hence of all the terms in (5), the only ones whose
value depends on the choice of the bajges } and{| f;)} can

be grouped together &¥|(A; + As) ® (B; + Ba)|¥).

Claim 6. Let|¥) = %Zi li)i), and A = 3", vi|ug) (ui
andB =}, fi|v;)(v;| positive. Then the expression|A ©
B|¥) is maximized when thie;), |v;) are a permutation of
the Schmidt basis o).

Proof. For any two matricesi, B we have(V|A ® B|¥) =
1Tr(AT B). Note thatA”' has the same eigenvaluesasWe
then have by [23, Lemma IV.11] that there exists a permuta-
tion € Sy such that

d
1 T A B
~tr(ATB) < S ONGAT, (A10)
j=1
where ..., A} and P, ... AP are the eigenvalues of
and B respectively. O

Given our specific choice of basis for the block-
diagonalization, we have thalt; + As (resp.B; + B») is di-
agonal in the basi§le;)} (resp.{|f:)}), hence Claim 6 shows
that these two bases may be taken equal (up to permutation)
without lowering the value of the strategy.

We call a strategy given by projectofsi;, By}, irre-
ducibleif it cannot be decomposed as a direct sum of lower-
dimensional strategies. We show that any irreducibleeggsat
has the form described in Definition 4.

Claim 7. Supposd A;, B;} is irreducible. Ifd is even, then
either all blocks of the joint decomposition ofi;, Ao, Bs}
and {Bj, B2, A3} are two-dimensional, or{A;, A5, Bs}
have exactly twol-dimensional blocks and By, Ba, A3}
none (or vice-versa). I# is odd, then each ofA;, As, Bs}
and { By, B2, A3} have exactly one commdndimensional
block.

Proof. We treat the case of even dimension, the odd-
dimensional case being analogous. Reason by contradiction
and first assume e.g. thé#,, A,, B3} each have more than
two 1-dimensional blocks in their joint block-diagonalization
We show that there is a non-trivial subspace stabilized by al
operatorg A;, By}, contradicting the strategy’s irreducibility.
Let |e;) be the vector corresponding to a one-dimensional
block of { A1, A2, B3}. Since the{|f;)} are a permutation

d-dimensional strategies using the maximally entangletésta Of {lei)}, there exists ari, such that|f;,) = |e1). There

|¥). Then there is @' < d, and ad’-dimensional strategy in

are two possibilities foff;, ): either it is a joint eigenvector of

joint normal form which achieves a value at least as large asB1, B2 and4s (i.e. it corresponds to a one-dimensional block

that of {4;, By }.

Proof. Apply the CS decompositiontd; andAs, resulting in
a joint block-diagonalization bas{ge;) };, and toB; and B,,
resulting in{| f;) }:. We first show that we may takge;)} =
{|f:)} without lowering the value of the strategy.

As we already noted, the optimal choice s (resp. B3)
is the projector on the positive eigenspace3af— B; (resp.

in their joint block-diagonalization), or there exists aaléx

io such that Spafifi,), |fi,)} is left invariant by the action

of By, B, and As (i.e. it corresponds to a two-dimensional
block). In the first case we have already found a strict sub-
space Spafje;)} stabilized by all{A;, B;}. In the second
case we can iterate this procedure, assuming without loss of
generality thateo) = | fi,). There are again two cases: either
|e2) corresponds to &dimensional block of Ay, A5, B3}, in

As — Ay). This implies that the value of (A3) does not dependwhich case Spafie;), |e2)} is a non-trivial stable subspace,



or there is a vectdes) such thaf|es), |es)) correspondstoa and for odd dimensiod by
2-dimensional block of A;, Ao, Bs}. We will then find anis

such that f;,) = |es), and so on. N
In all cases, the process must end as soon as one of the vec-“ = 3 > fleans i) (B2)
tors |ex) encountered corresponds tal-alimensional block =1
of {41, A, Bs}. Given our assumption that there were three 4 l(cd Capy + LG g 1 /1 _ CZ) ’
or more such blocks, we have found a strict subspace stabi- d 2 2
lized by all{ A;, By}, contradicting the irreducibility assump- \where
tion. O
. . . fla,y)
As a consequence of Claim 7, we can block-diagonalize the 1 1
pair of projectorg A, As) with blocks =V(@E+y?2+1+ 5\/1 — a2+ 5 1—y2—-2. (B3)
L‘f’i — 1 (1 —C2i TS > , (A11) Proof. We treat the cases of even and odd dimension sepa-
2 —S52; 1 + C2; rately
12 _ 1 (1 —Coi 89 ) (A12) a. d even. In that case we know that the block-
9 S9i 14coi) diagonalization of eithef A, A2, B3} or { By, B2, A3} con-

tains exactly two1l-dimensional blocks, while the other
wherecy; € (—1,1) andsy; = /1 — ¢3;, together possibly contains none. We assume th@B;, By, A3} has nol-
with an initial and finall-dimensional blocks, depending on dimensional blocks; the other case is treated symmetyicall
the parity of the dimension. In this case we can write
In the definition of a normal form we also require the one-

dimensional blocks to have the same coefficients for bbth l-c 1 52 8 8
and As, which is is easily seen to hold without loss of gen- 1 502 4(')02 1
erality from the optimality of the strategly4;, B;.}. Indeed, Ay = 3 0 0 G ) sS4 | (B4)
let i be the index of such a block, corresponding to vector 54 Ty
le;); A1 and A, are necessarily chosen so as to maximize : : :
the value of (A1) and (A2) respectively, and the coefficient 1_ 0 0 0
in front of (A1), ;, and(Az); ; will be the same in both equa- 001 14 0
tions, so that the optimal choice is the same. Similarly, the 1 0 € ) i?’ 0 .
matrices(B;, B;) can be block-diagonalized with blocks: By = 5 0 803 0 €3 e ,  (BY)
5 e
. 1 /1+ ¢y — S5,
R21+1 _ - 2141 2i+1 A13
! 2\ —s2i41 1—coiq1) (AL3)
. 1 (14 ¢y So; where A; and B; are identical toA; and B, respectively
Ry = 3 < Sm_ilﬂ 1 _20;1“) : (A14)  but have their off-diagonal elements negated, and, ., <
{-1,1}.
Finally, it is easy to infer from (A3) (resp. (A6)) the necass Fixing the coefficients of3; and By, we can derive con-

form of Az (resp. Bs): indeed, it is simply the projector on straints on those ofi; and A, from the constraint that they
the positive eigenspace & — B; (resp.A; — A;), whichis  should be chosen so as to maximize (A1) and (A2). The two
a block P; wheneverB, B, (resp. A, Az) have a common equations are similar; let's look at (A2). Its value can bk ca
2-dimensional block, and a blog¢k) wheneverB,, B, (resp.  culated as

Ay, As) have a common one-dimensional block. O 1
p D (A2)i i ((B1)ij + (Ba)ij + (Bs)ij — 6 ;)
i,j

d
(14 c2i) (1 + caiv1) + % — 1))

d/2 0
Z?

Appendix B: The value of a strategy in joint normal form 9

~

(1 — 621‘) ((1 — CQifl) —+ % — 1)

SR
N =

i

In this section we derive an expression for the value ob-
tained in (5) for any strategy in joint normal form (Lemma 8),
and then show how it can be upper-bounded by analytical +
techniques (Lemma 10).

N | =

Lemma 8. Suppose{A;, By} is a strategy in joint normal
form, described by a certain block structure and correspond
ing sequence of coefficients Then the value of5) for this

HM\
= Q_‘lH

strategy for even dimensiodss given by = % <1 — C2i (_ — 021'1)
d/2 .
€1 = Cd+1 .
Zf R 7 R 2 (Gram)+2) @)



Settinngi = (Cgi_l + Cgi+1)/2, for a fixedco; 1, C2i+1 the Claim 9. Let f(l‘,y) = \/(x + y)2 +1+ \/1 — 1‘2/2 +
choice ofcy; which maximizes (B6) is2; = 27; (472 + /T—42/2 — 2 be defined of—1, 1]2. Then
1)~1/2, which glve3<31value03’rzd/2 VAT +1/24+1/2+

(coit1 — c2i—1)/2 for (A2). (A1) is maximized for the same 1. The maximum of (a,b) + f(b,c) over all a,b,c €

choice of coefficients, and has exactly the same value. Con-  [—1,1]% such thata + b > 0 andb + ¢ < 0 is less
cerning (A3), we find that its value is simply than.244.
d/2 1 . )
1 2. The maximum of(1, b)+f (b, c) overallb, c € [—1,1]
p > (A3)i;((Ba)ij — = Z s2i+1 . (B7) such thatl + b > 0 andb + ¢ < 0 is less than103.
irj

Combining (A1),(A2) and (A3), and subtracting 3. The maximum of(a, 1) overalla € [—1, 1] isless than

(1/d)(Tr(By) + 2Tr(B,)), we obtain the value of (5), -368.
whichiis thus Lemma 10. Let¢; € [-1,1],fori = 1...d + 1. Then the
1 42 expressiow = w(¢;) in both(B1) and(B2) is upper-bounded
W:EZ(\/(CQi—l +C2i+1)2+1+1) by ;-
i=1
] L Y2t Proof. First note that the maximum value of the expression
+ —(eq l_cl)+_ /1_021_ Cd Cd+1 + a- cd+1 -1+ \/1—Cd over a||61,0d+1 S
ale d ; 2 {-1,1} and o € [—1,1] is less thanl /4, hence (B2) is
1 cap1—a always lower than (Bl) Hence it is sufficient to show that
-9 (5 Y ) ’ (B8) = L2 Flenimt, o) + 9524 s upper-bounded

by 1/4, for any evend and (cz,...,cq) € [—1,1]"! and

where we replacesh; 1 = /1 — ¢3,,. Using the definition = ©1> ¢a+1 € {=1 1}'
of f, this can be re-written as Itis easy to verify thaf (z, y) < 1/2onthe squarér, y) €
' [—1,1]%. Unfortunately, the extra terri*—_** potentially

142 induces an additivé/d, so that it is not so immediate to bound
Z Fleaion, caipr) + LG4t w. Note that we can assume that= 1 andcq,, = —1, since
24 otherwise the bound follows trivially from the upper-bowrd
flz,y) < 1/2.

b. d odd. In that case, each ofA;, As, B3} and
{Bi, B2, A3} must have d-dimensional-block in their joint
block-diagonalization; say that the one fpA;, A2, B3} is . . e : .
the last block while the one fdif3,. By, s } is the first block. fn];s.t suchi. We distinguish four cases, depending on the value
We can proceed exactly as above to evaluate the value of this 10
strategy, under the condition that it is optimal and hence-ma o If d = 4, one gets thayf(1,cs) + f(cs, —1) < 0.
imizes (A1)-(A3), which lets us express the even coeffigent Adding (c1 — cq41)/8, one c:';m see tha17< 1/4. We

c9; as a function of the odd ones; ;. Omitting a few cal- assumel > 4 for the remaining cases.
culations very similar to the ones we performed in the even-

dimensional case, we obtain that the value of this solugon i

Given the value of; andcyy 1, there must exist ahsuch
that62i71 + C2i41 > 0 and02i+1 + c2i43 < 0; let 10 be the

e If ig = 1, we can use the second bound in Claim 9

| @D/ ) to bound f(c1,c3) + f(cs,¢5) by .103, sincec; =
W= Coi 14 Co1 P+ 141) 4+ =(cy—c 1. In this case the value of (c1,c3) + f(c3,¢5) +
d ; (\/( 21+ C2it) ) d( ) f(Cd—1,cq41) is at most.103 + .368 < .5. Adding
1 1 1 = (&1 — ca41)/2 and dividing byd, we see that
+ 3(1 — Cd+1) (5 —ca) w < 1/4 irrespective of the value of the other (re-
(d-1)/2 call thatf(x,y) < 1/4forall (z,y)).

1 5 1 o
+ d Z V 1 =31 =3 (5 - ﬁ) (B9) e If io = d/2 — 1, the same bound can be obtained by

-y symmetry.
- E Z (a; —2) (B10) e Otherwisel < iy < d/2 — 1, in which case by using
i=1 the first and last bounds from Claim 9 we see that the
4 l(cd Cay1 + €17 Cdt1 1+ 1 /1 _ci) ) value Off(cl,C.3)+f(02i_1,02i+1)+f(02i+1,02i+3)—.|—
d 2 2 f(ca—1,cas1) is at most.244 + 2 - .368 < 1. Again
0 addingl = (¢; — ¢q41)/2 and dividing byd, one sees

thatw < 1/4 irrespective of the value of the other
It now remains to bound. The following claim, proven in
Section C, will be useful. O
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Appendix C: Details of Claim 9 SDP hierarchy searches for such polynomials up to degree

2¢ by searching for a matrix), such thatQ), > 0 and for

We now provide the details of Claim 9. To find the claimed v¢ = (1,a, 2, 2, ...) being the vector of all possible monomi-
upper bounds we use a well-established optimization techals up to degreé where we have;}ngg = p. To convince
nique based on a hierarchy of semidefinite programs (SDPs)urselves, note that this means we searci@for 0 such that

backed by the real Positivstellensatz [34, 35]. More specifi

1
cally, if ¢ denotes a claimed upper bound, our goal will be to t— (ac + 3%~ 1) = v}Qw@ (C4)
show that for any variables b andc satisfying the constraints ) ) y
we havet — h(a, b, c) > 0, whereh(a, b, c) denotes the func- +ti(a®+2a+2—27) +ta(1 —a® — 2%)
tion we wish to optimize in case 1, 2 or 3. To this end, we will 54 ths for variables satisfying the constraints
first rewrite any terms involving/- in the functioni(a, b, c)
in terms of additional variables. Second, we will use poly- B | O
nomial optimization techniques from [34, 35] to obtain the t (x t3? ) =wQeve, (€5)

bound¢. This is e’@‘“‘y analogous to the techniques eStab\'/vhich is clearly positive. The actual sums of squares poly-

rThomiaISSO can be obtained frond) by diagonalizingQ =
UTDU whereU is unitary andD is a diagonal matrix. Since

We would like to emphasize that whereas semidefinite proy, only has positive entriesd > 0), we obtain thats, —

P dj(Uv);(Uv)j is indeed a sum of squares.

Itturns out that for case 3, we can already find such a matrix
Q at level¢ = 0 of the SDP, that ist;,t2 € R are simply
scalars. To see how this works explicitly, let us first rearit
the polynomials above in terms of matrices. Let

violation of Bell inequalities [15, 30, 31].

gramming, as for example performed in Matlab, is a numeri
cal technique, if a bount} is obtained at level of the SDP
hierarchy then it is in principle possible to extractamalyt-
ical proof thatt, is an upper-bound on the corresponding ex-
pression: from the numerics. That is, we do not rely on any
heuristic optimization methods that are not guaranteeddo p

vide a rigorous bound. -9 % % 0
1000
My := 7 000 |° (C6)
4
1. Case3 0O 000
. o . 10 0 0
For completeness, we provide a brief informal sketch of this 00 0 0
method for case 3; details can be found in [34, 35], or in the M, = 00 -1 0 , (C7)
dual view of the SDP, as explained in this survey [24]. Fifst o 00 0 -1
all, substituting
2 =(a+1)2+1=0a>+2a+2, (C1) g 018(1)
22 =1-a? s (C2) M, = 00 00 ) (C8)
. . 1 0 01
our goal of showing that = 0.368 is an upper bound to
f(a,1) can be restated as showing that é 8 8 8
T := . C9
we have t >+ 3z -2 0000 (€9)
whenever 22 = a? + 2a + 1 0000
2 =1-a Clearly, for
—1<a<1.
vi=1zza)l, (C10)
For simplicity, we will without loss of generality ignoree¢h o pova
last constraint. Now note that if we were able to find polyno- 1
mials¢; andts in variablesr, z, anda such that oI Mov =z + 52 -2, (C11)
1 T —1_52_ .2
pi=1t— (x+—z—2> —tl(a2—|—2a+2—x2) (C3) viMpv=1-aq Z5 (C12)
2 oMo =a?+2a+2—22. (C13)

—ty(1 —a® - 2%) =5,

From the numerical solutions obtained by Matlab with Se-

wheres, is a polynomial inz, = anda which is a sum of DuMi [37] and YALMIP [26], we can guess an analytical so-

squares, then for any variables satisfying the desired corlution given by

straintst — (z 4+ 3z — 2) > 0 sinces, is always positive. t; = 0.51 (C14)
Our goal can thus be rephrased as searching for suitable poly ty = 0.24 (C15)
nomialst; andt, such that we can rewrite the resulting poly- '

nomial as a sum of squares. Very intuitively, levedf the t =0.368 (C16)
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for which we can easily verify that containing,/-. We then search for suitable polynomials ltke
andt, above. Unlike for the simple case 3, the desired bounds
Qo =8 — My —t1 My —t2Ms >0, (C17)  are notobtained at levél= 0 of the hierarchy. However, they
) ) are already found at levél = 1, and an analytical solution
which concludes our claim. can again be extracted. Yet, since at le/et 1 we observe

polynomials of degree up t® in both the original and the

auxiliary variables (in totab for case 2, an@ for case 1) the

resulting problem is already rather large (involving nzgs

of size82 x 82 for case 1). We do not include these matrices
The bounds for cases 1 and 2 are obtained analogously. Theere, but the Matlab scripts that can be used to extract the

only difference is that we have to deal with more Variab|eSanalytical values are available upon request.

Again, we firstintroduce auxiliary variables to eliminagehs

2. Casesland?2



