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Local non-CSS quantum error correcting code on a 3D lattice
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Institute of Quantum Information, California Institute of Technology, Pasadena CA 91125, USA

We present a family of non-CSS quantum error correcting code consisting of geometrically local stabilizer
generators on a 3D lattice. We study the hamiltonian constructed from ferromagnetic interaction of overcom-
plete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum
error correcting code whose number of encoded qubits are equal to the second Betti number of the manifold.
These models 1) have solely local interactions, 2) admit a strong-weak duality relation with an Ising model on a
dual lattice 3) have topological order in the ground state, some of which survive at finite temperature, 4) behave
as classical memory at finite temperature.

I. INTRODUCTION

One of the motivations for studying quantum error correct-
ing code on lattice is to protect quantum information with-
out active correction. Many models on 2D lattices have been
proposed and analyzed [1–7] but no-go theorem rules out
all finite-range finite-strength hamiltonian system in 2D as a
self-correcting quantum memory.[8, 9] This does not apply to
higher dimensions. For instance, it was shown that 4D toric
code is a self-correcting quantum memory.[10, 11] Bombin et
al. showed that there is also a 6D model that exhibits similar
behavior.[12] Whether such thermally protected model exists
in 3D remains as an open problem. 3D toric code can store
classical information at finite temperature but it fails to do so
for quantum information.[13] Toplogical color code in 3D, al-
beit lacking a rigorous proof, is believed to show a similar
behavior: there exists a string-like logical operator which is
thermally unstable.[14] 3D model proposed by Nussinov and
Ortiz shows similar behavior.[15, 16] Another model was pro-
posed by Chamon and analyzed recently by Bravyi et al. This
model may be able to protect quantum information, but not in
a thermodynamic sense.[17, 18]

It is worth noting that all the listed 3D models except Cha-
mon’s model share a similar property: the quantum error
correcting code defining the ground state of the system is a
Calderbank-Shor-Steane(CSS) code[19, 20], meaning that it
can be decomposed into two classical codes. CSS code is a
special kind of quantum error correcting code that can be de-
scribed by stabilizer formalism.[21] These quantum error cor-
recting codes can be ‘stabilized’ by a set of stabilizer group
generators, meaning they are simultaneous +1 eigenstate of
the group elements. If there exists a set of generators which
can be written as either a product of Xs or product of Zs, these
are called as CSS code. From this definition, one can see that
majority of the proposed models for quantum memories fall
into this category.[1, 2, 12–16] When studying the stability of
these models, one can show that one of the codes can protect
classical information from thermal fluctuation while the other
one cannot. This means that there is a manifest difference be-
tween how the models treat the bit flip error and the phase flip
error. Chamon’s model treats X , Y , and Z error in an identical
manner but it lacks stability in thermal sense.[17, 18] Since
we expect a singular behavior at the phase boundary between
an ‘ordered state’ and ‘disordered state’ for thermally stable
quantum memory, absence of finite-temperature phase transi-

tion seems troublesome unless there is an argument that can
evade this logic. Motivated by these ideas, we present a new
spin- 1

2 model with finite temperature phase transition whose
ground state is a non-CSS quantum error correcting code. Our
model exhibits a topological order, but only the classical part
survives in finite temperature.

The outline of the paper is as follows. We set the stage by
introducing the hamiltonian in Section II. In Section III, we
study the quantum code that defines the ground state of the
hamiltonian. We calculate the number of qubits and find the
logical operators. In Section IV, we study the low-energy ex-
citation of the hamiltonian that consists of particles and closed
strings. We construct a duality relation with classical Ising
model in Section V to show the finite temperature phase tran-
sition.

II. MODEL

We place qubits on a vertices of a 4-valent 3D lattice. Using
the notation Xi ≡ σx

i , Yi ≡ σ
y
i , Zi ≡ σ

z
i stabilizer generators are

Bx
p = Πi∈pXi (2.1)

By
p = Πi∈pYi (2.2)

Bz
p = Πi∈pZi, (2.3)

where p is the plaquette and {i ∈ p} denotes a set of ver-
tices on plaquette p. We shall partition a set of plaquettes
into Px,Py,Pz, which corresponds to a set of nontrivial sup-
ports for Bx

p,B
y
p,Bz

p. We shall call elements of these sets as
X−,Y−,Z−plaquettes.

Our model is inspired by the construction of topological
color code in 3D.[14] For this quantum code, qubits reside on
the vertices of the lattice, and the lattice is locally 4-valent.
The stabilizer generators are either a product of Xs or product
of Zs, and they correspond to the unit cells of different dimen-
sions; in one example, generators are either in cubic form or
plaquette form. Our approach differs in a sense that we only
allow plaquette operators as stabilizer generators.

Local description of our model can be seen in FIG.1(a). At
each vertex, there are 6 plaquette operators that have nontriv-
ial support on it. Each plaquette operators meet with a same
kind of plaquette operator on each vertices and meet with 4
other plaquette operators on 2 vertices. Thus the assignment
in FIG.1(a) guarantees commutativity between the stabilizer
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(a) Vertex Figure (b) Unit Cell

FIG. 1: (Color online)Vertex figure and unit cell of our model. Qubits
reside on the vertices. One can see that Bx

px
meets with another Bx

px

at one vertex whereas it meets with By
py and Bz

pz
at two vertices.

operators. We must point out that not every lattice structure al-
lows vertex figure like FIG.1(a). There are only 4 translation-
ally invariant convex tessellations that have tetrahedral ver-
tex figure: bitruncated qubic honeycomb, cantitruncated cubic
honeycomb, omnitruncated cubic honeycomb, and cantitrun-
cated alternated cubic honeycomb.[22] Only the first three ad-
mits an arrangement of plaquette operators similar to FIG.1(a)
at every vertex. In this paper, we mainly study the bitrun-
cated qubic honeycomb model for its simplicity but analo-
gous results shall be discussed in full generality if possible.
Unit cell is shown in FIG.1(b) and tessellation is shown in
FIG.2. Bitruncated qubic honeycomb is a space-filling tes-
sellation made up of truncated octahedra. It has 14 faces, 36
edges, and 24 vertices. There are 6 square faces and 8 hexag-
onal faces. Without loss of generality, one can set the 6 square
faces to be Y plaquette operator, 4 of the hexagonal faces to
be X plaquette operator and 4 remaining hexagonal faces to be
Z plaquette operators.Hamiltonian is a sum over the plaquette
operators.

H =−J( ∑
px∈Px

Bx
px + ∑

py∈Py

By
py + ∑

pz∈Pz

Bz
pz). (2.4)

FIG. 2: (Color online)Arrangement of stabilizer generators. Transla-
tion of unit cells form a tessellation.

III. QUANTUM CODE

Purpose of this section is to study the quantum code gen-
erated by a set of group generators {Bx

px ,B
y
py ,B

z
pz}. We start

with introducing the notation and definition that shall be used
throughout the analysis. Rest of the section is mainly divided
into two parts. In Section III B, we count the number of en-
coded qubits. In Section III C, we completely specify a set of
logical operators for each qubits.

A. Preliminary Results

Given a CW-complex, Euler characteristic χ can be defined
as an alternating sum of kns, where kn denotes a number of
cells of dimension n.

χ =
d

∑
i=0

ki(−1)i (3.1)

For instance, if we consider a 2-dimensional manifold, k0 is a
number of vertices, k1 a number of edges, and k2 a number of
faces. One of the main idea that we used in this paper is that χ

can be also written as an alternating sum of betti number bis.

χ =
d

∑
i=0

bi(−1)i (3.2)

bi is the rank of the n-th singular homotopy group, but for odd-
dimensional closed orientable manifold it is not necessary to
calculate each individual bis. This is due to Poincaré duality:
although it has various different forms, for the purpose of our
paper, we can use the one originally introduced by Poincaré
himself.

Theorem 1 (Poincaré, 1895) bk = bd−k for a closed ori-
entable d-dimensional manifold.

From this theorem, one can easily deduce that χ = 0 for odd
dimensional closed orientable manifold.

B. Number of Encoded Qubits

Number of encoded qubits can be computed from the size
of the stabilizer group and the number of physical qubits.
Since the plaquette operators are not independent to each
other, we must count the number of independent relations. In
such pursuit, geometrical interpretation of our model becomes
useful. We would first like to point out that multiplying all the
plaquette operators on a unit cell reduces to identity. One can
see this from FIG.1(b). Since any contractible closed surface
on the lattice can be represented as a union of unit cells, one
can see that multiplication of plaquette operators on any con-
tractible closed surface reduces to identity. Therefore we have
C−1 independent relations which generate smooth deforma-
tion, where C is the number of unit cells. We must subtract
1 because multiplying all but one cell results in a relation for
that very cell.



3

Let us consider a periodic boundary condition on all 3 di-
rections. There exists noncontractible surface that reduces to
identity as one can see in FIG.3(a), FIG.3(b). Since there are 3
topologically distinct noncontractible surfaces, we have 3 in-
dependent relations, resulting in C+ 2 independent relations.
Finally, multiplying all X-like operators adds one independent
relation. One can check that multiplication of Y s and multipli-
cation of Zs are implied by the previously mentioned relations.

(a) Top View (b) Side View

FIG. 3: (Color online)Representation of nontrivial constraints be-
tween the stabilizer operators. One can see that multiplication of all
the plaquette operators on a noncontractible closed surface reduces
to identity. At each vertex, there are either 1) exactly one X, one Y,
and one Z or 2) two Xs and two Zs.

Accounting for these relations, number of encoded qubits is
V −F +C+3 = 3, where V is the number of vertices, F is the
number of faces, and C is the number of unit cells. First two
correspond to the number of qubits and number of plaquette
operators. The remaining terms represent a number of inde-
pendent relations between plaquette operators. We shall show
that in fact the number of encoded qubits only depend on the
second Betti number, b2.

Lemma 1 For stabilizer group {Bx
px ,B

y
py ,B

z
pz}, number of en-

coded qubits is b2.

Proof : Let us consider the dual lattice. This can be con-
structed by replacing k-dimensional object into a (d − k)-
dimensional object. For instance, vertices of the dual lattice
resides on the center of the unit cells of the original lattice.
Faces on the dual lattice can be constructed by connecting
the edges so that the resulting surface is perpendicular to the
edges in the original lattice. Euler characteristic χ is trivially
0 due to Poincaré Duality. The unit cells of the resulting dual
lattice is an irregular tetrahedron. Let us denote kis to be num-
ber of i-dimensional cells on the dual lattice. One can see that
V , the total number of vertices in the original lattice becomes
k3, a number of unit cells in the dual lattice. Similarly, F is
identical to k1 and C is identical to k0. Note that k2 = k3, for
each cell contains 4 faces and each faces meet with two tetra-
hedral cells. Therefore, we have

V − (F−C) = k3− k1 + k0 (3.3)
=−k3 + k2− k1 + k0 = 0 (3.4)

Hence

k =V − (F− (C−1+1+b2)) (3.5)
= b2, (3.6)

where b2 is the second Betti number of the manifold. One can
also use this intuition to prove that the group generated by the
plaquette operators does not contain −I.

Lemma 2 〈Bx
px ,B

y
py ,B

z
pz〉 does not contain −I.

Proof: Consider a product of plaquette operators that is pro-
portional to the identity operator. Any such configuration can
be generated by product of all X-plaquette operators, product
of all Y -plaquette operators, product of all Z-plaquette oper-
ators, product of plaquettes along a closed surface. The first
three are trivially +I. For unit cells, we have 24 vertices at
which X ,Y, and Z meets. Since all the generators commute
with each other, we can arrange the product to be in the fol-
lowing canonical form.

Πpx Bx
px ΠpyBy

py ΠpzB
z
pz . (3.7)

Since XY Z = i, the product of plaquette operators on a unit
cell is 1. Similarly, product of plaquette operators on a non-
contractible surface described in FIG.3(a), FIG.3(b), we have
4n vertices where X ,Y, and Z meets. Hence we arrive at the
same conclusion. Since any product of plaquette operators
that results in a trivial operator can be constructed by these
constraints, the group does not contain −I.

C. Logical Operators

There are two logical operators that are reminiscent to the
surface and string operator of 3D toric code. These are drawn
in FIG.4. One can see the surface operator on the top of the
lattice system which is a product of Bz

pys on one layer of Y -
plaquettes. The complementary logical operator to this is the
string operator that has a sequence of Y ZY XY ZY XY ZY X · · ·
along the line perpendicular to the surface operator. This
string winds around the torus and completes a noncontractible
loop. These two operators anticommute with each other and
both of them commute with the stabilizer generators. We can
similarly define two sets of complementary operators in other
directions. One can easily check the expected commutation
and anticommutation relations.

IV. LOW ENERGY EXCITATION

Quasiparticles excitations in 2D typically arise as anyons.
For instance, in Kitaev’s toric code, two quasiparticles are cre-
ated in pair, and when fused together, they vanish.[1] There
are two kind of particles analogous to electric and magnetic
charge, and when one particle winds around another one, the
system attains a nontrivial global phase. In 3D, trajectory of
winding around another particle can be deformed into a trivial
contour. Hence one needs higher dimensional object to attain
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FIG. 4: (Color online)There is one surface operator and one string
operator for each qubits. Surface operator corresponds to the product
of ZZZZ on Y -plaquettes. String operator is the line perpendicular to
this surface, showing a sequence Y ZY XY ZY X · · · .

a similar topological action. In 3D there are closed string-
like excitations and particle-like excitations.[2, 13] When the
particle winds around the string so that the trajectory and the
string together forms a knot, the system attains a nontrivial
global phase.

Our model presents a similar picture. Particle-like excita-
tions are created in pair. If we truncate a string-like logical op-
erator, excitations form at the end points. When the particle-
antiparticle pair is created, they can diffuse without any extra
energy cost. Closed string-like excitations can be similarly
thought as a truncated surface-like logical operator. Near the
boundary of the surface, there are excitations and hence the
energy cost grows linearly with the size of the surface. When
a particle penetrates the closed string, we find that

FIG. 5: (Color online)Representation of particle penetrating through
a string-like excitation. Truncated surface operator is a product of
Z-plaquettes in white. Trajectory of the particle is a nontrivial sup-
port of the colored plaquette operators, which coincides with the Z-
surface.

|ψInitial〉= SP |Φ〉 (4.1)
|ψFinal〉=USP |Φ〉=−|ψInitial〉 , (4.2)

where S is a closed-string excitation, P is a particle excitation,
and U is a trajectory of the particle. Thus system gains eiπ

phase factor. This is illustrated in FIG.5. One can see that as
a particle penetrates through the surface operator and returns
to the original position, it coincides with the surface operator
at one vertex, thus giving the anticommutation relation.

Low energy excitation in terms of elementary objects pro-
vides us an intuitive picture for the thermal stability. Particles
can be created out of vacuum in pair and propagate freely.
They can diffuse and wind around the torus to induce logical
error. Closed strings, on the other hand, need energy that is
proportional to its perimeter. Given a closed string-like ex-
citation as in FIG.5, the stabilizer generators anticommuting
with the surface operator only reside near the boundary of the
surface. Z-plaquettes trivially commute with the surface op-
erator. X-plaquettes commute with the surface operator since
they meet at two vertices. However, there are Y -plaquettes
meeting at exactly one vertex at the boundary. Hence we ex-
pect our system to be a stable classical memory.

V. DUALITY

Typical strong-weak duality relation relates a strong cou-
pling limit of one model to a weak coupling limit of another
model: we use a slightly different strategy here. We first show
that our model can be mapped into an Ising gauge theory, from
which we can use the Wegner-type duality relation with Ising
model. Mapping from our model to Ising gauge theory is not
exact for finite sized lattice, but this difference vanishes in the
thermodynamic limit. Starting from the partition function of
our model,

Z = tr(exp(−βH)) (5.1)
= tr(ΠSi∈S(coshβJ+Si sinhβJ)), (5.2)

where Si ∈ {Bx
px ,B

y
py ,B

z
pz},

Z = (coshβJ)ntr(Πi(1+αSi)) (5.3)

= (coshβJ)ntr(
1

∑
{ki}=0

Πiα
kiSki

i ). (5.4)

Since the Pauli operators are traceless, the nonvanish-
ing terms correspond to the nontrivial constraints presented
in Section III B. Note that there were two kind of con-
straints: constraints coming from the closed 2-manifold and
constraints coming from space-filling products of X , Y s, or
Zs. Using this, we can write down the partition function in the
following form.
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Z = (2coshβJ)n(∑
c

α
Ac +(1+α

nx)(1+α
ny)(1+α

nz)−1+C.T.) (5.5)

∑c is a sum over a configuration of closed 2-manifolds. Ac
is the number of plaquettes for each configurations. C.T. cor-
responds to the cross terms between closed 2-manifolds and
space-filling product of Xs, Y s, or Zs. nx,y,z corresponds to
the number of X ,Y,Z−plaquette operators. The main idea is
that the partition function is dominated by the first term in the
thermodynamic limit. We show this in Appendix A.

Lemma 3 Z−C.T.−(αnx +αny +αnz) = ZIG(βJ), where ZIG
is a partition function of Ising gauge theory on the same lattice
with temperature β and coupling constant J.

Proof : Consider a mapping Bx
px → ZZZZZZ, By

py → ZZZZ,
Bz

pz → ZZZZZZ, where Z · · ·Z are products of Z on the edges
of each plaquettes. The resulting model is an Ising gauge the-
ory on a bitrucated cubic honeycomb. Partition function is

ZIG = tr(exp(−βH)) (5.6)
= (coshβJ)ntr(1+ tanhβJSi), (5.7)

where Sis are either ZZZZZZ or ZZZZ depending on the pla-
quette. Since Pauli operators are traceless, only a product of
plaquette operators that are union of closed surface survives.
Therefore, we conclude

ZIG(βJ) = Z−C.T.− (αnx +α
ny +α

nz). (5.8)

Using the duality relation between Ising gauge theory and
Ising model, we can map our model into an Ising model. We
show the duality relation in Appendix B.

Theorem 2 Our model with coupling constant βJ is dual to
the classical Ising model on a dual lattice with a dual coupling
constant β̃J =− 1

2 ln tanhβJ.

Since the Ising model undergoes a finite temperature phase
transition, so does our model. This is analogous to the be-
havior of 3D toric code under temperature change. As in our
model, one can show that 3D toric code has critical temper-
ature by using the duality relation with Ising model. Below
the critical temperature, there is a symmetry breaking with re-
spect to a surface-like logical operator. Symmetry associated
to the string-like logical operator is broken only at the ground
state.

One glaring difference though, is that 3D toric code can be
decomposed into two classical hamiltonians without spoiling
the phase transition: the hamiltonian responsible for correct-
ing the bit flip error is identical to Ising gauge theory, which
has finite temperature phase transition. On the other hand,
the hamiltonian responsible for correcting the phase flip error
does not have a phase transition. Hence one can intuitively un-
derstand that 3D toric code can only correct bit flip errors but
not phase flip errors under thermal equilibrium. Our model

does not allow such decomposition. Once we get rid of any of
Bx

px ,B
y
py , or Bz

pz , the partition function does not exhibit a phase
transition any more. This shows that non-CSS code with finite
temperature phase transition in 3D does not necessarily pro-
vide a self-correcting quantum memory.

VI. CONCLUSION

In this paper, we studied an exactly solvable 3D spin model
and studied its topological order. The ground state of the sys-
tem defines a non-CSS quantum error correcting code. At fi-
nite temperature, this system is expected to behave as a stable
classical memory, but not as a stable quantum memory. This
is mainly due to the fact that there exists a string-like logical
operator. In light of studying the possibility of self-correcting
quantum memory, this reconfirms the general properties that
have been found in 3D stabilizer codes so far: for each en-
coded qubit, there exists one surface-like logical operator and
one string-like logical operator. It seems that we cannot avoid
such outcome unless the shape of the logical operator changes
as the system size changes, as in Chamon’s model.[17, 18]
This in fact was recently argued to be the general feature of
stabilizer codes whose number of encoded qubits remain in-
variant under system size change. [23]

It is worth noting that the thermal stability analysis of our
model is not rigorous at this stage, even though the energy bar-
rier increasing as the perimeter of the surface is a compelling
evidence that this must be true. It would be desirable to make a
rigorous estimate of thermal relaxation rate using the method
introduced by Chesi et al.[24] We expect the string-like logi-
cal operator to be thermally fragile and the surface-like logical
operator to be stable. As in 3D toric code,[13] we also expect
the topological entropy of our model to show a singular behav-
ior near the critical point. These singular behavior arise due
to the existence of finite temperature phase transition, which
we can show rigorously by the strong-weak duality relation
between our quantum model to a classical Ising model on the
dual lattice.
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Appendix A: Bound for the cross terms.

Corss term can be written as

C.T.= ∑
c

α
Ac ∑

i∈{x,y,z}
α

ni−2nc
i , (A1)

where nx,ny,nz are total number of X ,Y,Z−plaquettes and
nc

x,n
c
y,n

c
z are number of X ,Y,Z−plaquettes for configuration

c.

Lemma 4 There exists 0 < ε1,2 < 1 such that

Ac +ni−2nc
i ≥ ε1Ac + ε2ni (A2)

for ∀c, i.

Proof : Consider i = x. Left hand side of the inequality is

nc
y +nc

z−nc
x +nx ≥ nc

y +nc
z− (1− ε)nc

x +(1− ε)nx (A3)

≥ (
ε

2
)Ac +(1− ε)nx (A4)

On the second line, we used the fact that the minimum is
achieved in the case where nc

y = 0, implying nc
z = nc

x =
1
2 Ac.

Same logic can be applied to i = z. For i = y,

nc
x +nc

z−nc
x +ny ≥ nc

x +nc
z− (1− ε)nc

y +(1− ε)ny (A5)

≥ (
2
5
− 3

5
(1− ε))Ac +(1− ε)ny. (A6)

Similarly, here we used the fact that the minimum is achieved
in the case where one of nc

x or nc
z is 0. Then we have a 2 : 3 ra-

tio between the X−(Z−)plaquettes and Y−plaquettes. There-
fore, for ε > 1

3 , we have such (ε1,ε2).

Lemma 5

lim
vol→∞

Z(βJ)
ZIG(βJ)

→ 1. (A7)

, where ZIG(βJ) is a partition function for Ising gauge theory
with temperature β and coupling constant J. vol is the volume
of the lattice.

Proof :
We use

∑
c

α
ε1Ac =

(2coshβJ′)n

(2coshβJ′)n ∑
c

α
′Ac (A8)

= (
1

2coshβJ′
)nZIG(βJ′), (A9)

where

tanhβJ′ = (tanhβJ)ε1 . (A10)

Thus the cross terms can be bound by

ZIG(βJ′)(
coshβJ
coshβJ′

)n
α

δiε2n, . (A11)

where δi =
ni
n ,where n is the total number of plaquettes. This

becomes

ZIG(βJ′)((
1− t2

1− t
2

ε1

)
1
2 t

ε2
δε1 )n, (A12)

where t = tanhβJ′. One can show that ( 1−t2

1−t
2

ε1
)

1
2 t

ε2
ε1δ < 1 for

βJ > 0. Since the renormalized coupling constant J′ is larger
than J, we can see that these correction terms become negli-
gible in thermodyamic limit. Therefore,

| lim
vol→∞

Z(βJ)−ZIG(βJ)
ZIG(βJ)

| ≤ |ZIG(βJ′)
ZIG(βJ)

λ
n +O(αn)|, (A13)

where J′ > J and 0< λ< 1. In n→∞ limit, we get the desired
result.

Appendix B: Duality between Ising gauge theory and Ising
model

Lemma 6 Ising gauge theory on bitruncated cubic honey-
comb is dual to Ising model on the dual lattice.

Proof:

Z = (coshβJ)ntr(Πi(1+ tanhβJSi)) (B1)

= (coshβJ)ntr(
1

∑
{ki}=0

Πiα
kiSki

i ) (B2)

= (2coshβJ)n
1

∑
{ki}=0

Πiα
kiΠeδ2(∑

j
k j;e), (B3)

where Πe is a product over all the edges and ∑ j k j;e is a
sum over k js that have nontrivial support on edge e. There
are three such k js. One can use k j;e = 1

2 (1− ZZ), where
ZZ is a product of Zs on qubits that reside on the vertices
of the dual lattice. For 8 spin configurations (Z1,Z2,Z3) =
(−1,−1,−1), (1,1,1), (1,−1,−1), (−1,1,−1), (−1,−1,1),
(1,1,−1), (−1,1,1), (1,−1,1), one can see that all of these
configurations satisfy the delta function. Furthermore, we
have 2 combinations for (k1,k2,k3) = (0,0,0), 2 combinations
for (0,1,1), (1,0,1), and (1,1,0). Plugging this in, we get

Z = (coshβJ)n
1

∑
{Zi}=0

Πiα
1− 1

2 Zi+n̂i Zi−n̂i , (B4)

where Zi±n̂i is the Z operator on the dual sites of plaquette i.
n̂i is the unit normal vector to the plaquette. Therefore, up to a
constant, partition function is identical to the partition of Ising
model with β̃J =− 1

2 ln tanhβJ.
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