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Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for
the quantum simulations and manipulations of many quantum phases. However, so far, how to
detect these quantum phases effectively remains an outstanding challenge. Here, we show that
the optical Bragg scattering of cold atoms loaded on optical lattices can be used to detect many
quantum phases which include not only the conventional superfluid and Mott insulating phases,
but also other important phases such as various kinds of density waves (CDW), valence bond solids
(VBS), CDW supersolids and VBS supersolids.

Various kinds of strongly correlated quantum phases
of matter may have wide applications in quantum infor-
mation processing, storage and communications [1]. It
was widely believed and also partially established that
due to the tremendous tunability of all the parameters
in this system, ultracold atoms loaded on optical lat-
tices (OL) can provide an unprecedented experimental
systems for the quantum simulations and manipulations
of these quantum phases and quantum phase transitions
between these phases. For example, Mott and superfluid
phases [2] may have been successfully simulated and ma-
nipulated by ultra-cold atoms loaded in a cubic optical
lattice [3]. However, there are still at least two outstand-
ing problems remaining. The first is how to realize many
important quantum phases [1]. The second is that as-
suming the favorable conditions to realize these quantum
phases are indeed achieved in experiments, how to detect
them without ambiguity. In this paper, we will focus on
the second question. So far the experimental way to de-
tect these quantum phases is mainly through the time of
flight (TOF) measurement [1, 3] which simply opens the
trap and turn off the optical lattice and let the trapped
atoms expand and interfere, then take the image. The
atom Bragg spectroscopy is based on stimulated mat-
ter waves scattering by two incident laser pulses [4, 5]
through the TOF measurements. The momentum [4]
transfer Bragg spectroscopy was used to detect the Bo-
goliubov mode inside an BEC condensate. The energy
transfer [5] Bragg spectroscopy was used to detect the
Mott gap in a Mott state in an optical lattice. Opti-
cal Bragg scattering (Fig.1) has been used previously to
study periodic lattice structures of cold atoms loaded on
optical lattices [6]. It was also proposed as an effective
method for the thermometry of fermions in an optical
lattice [7] and to detect putative anti-ferromagnetic (AF)
ground state of fermions in OL [8]. There are very recent
optical Bragg scattering experimental data from a Mott
state, a BEC and AF state [9]. The atom Bragg spec-
troscopy and Optical Bragg scattering are two different,
but complementary experimental methods.

In this paper, we will develop a systematic theory of
using the optical Bragg scattering ( Fig.1) to detect the

nature of quantum phases of interacting bosons loaded in
optical lattices. We show that the optical Bragg scatter-
ing not only couples to the density order parameter, but
also the valence bond order parameter due to the hop-
ping of the bosons on the lattice. At integer fillings, when

~q matches a reciprocal lattice vector ~K of the underlying
OL, there is an increase in the optical scattering cross
section as the system evolves from the Mott to the SF
state due to the increase of hopping in the SF state. At
1/2 filling, in the CDW state, when ~q matches the CDW

ordering wavevector ~Qn and ~K, there is a diffraction peak
proportional to the CDW order parameter squared and
the density squared respectively (Fig.3a), the ratio of the
two peaks is a good measure of the CDW order param-
eter. In the VBS state, when ~q matches the VBS or-

dering wavevector ~QK , there is a much smaller, but de-
tectable diffraction peak proportional to the VBS order

parameter squared, when it matches ~K, there is also a
diffraction peak proportional to the uniform density in
the VBS state (Fig.3b). All the diffraction peaks scale as
the square of the numbers of atoms inside the trap. All
these characteristics can determine uniquely CDW and
VBS state at 1/2 filling and the corresponding CDW su-
persolid and VBS supersolid slightly away from the 1/2
filling. In the following, we just take 2d optical lattices
as examples. The 1d and 3d cases can be similarly dis-
cussed.

The Extended Boson Hubbard Model (EBHM) with
various kinds of interactions, on all kinds of lattices and
at different filling factors is described by the following
Hamiltonian [2, 10–17]:

HBH = −t
∑
〈ij〉

(b†i bj + h.c.) − µ
∑

i

ni +
U

2

∑
i

ni(ni − 1)

+ V1

∑
<ij>

ninj + V2

∑
〈ik〉

nink + · · · (1)

where ni = b†ibi is the boson density, t is the nearest
neighbor hopping which can be tuned by the depth of the
optical lattice potential, the U, V1, V2 are onsite, nearest
neighbor (nn) and next nearest neighbor (nnn) interac-
tions respectively, the · · · may include further neighbor
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FIG. 1: Optical Bragg scattering of cold atoms moving in 2

dimensional optical lattices. The ~q = ~k1−~k2 and ω = ω1−ω2

are momentum and energy transfer from the laser beams to
the cold atoms respectively. The A stands for a aperture, the
PM stands for a Photomultiplier. The off resonant scattering
processes lead to the on-site term (a) and the off-site term (b)
in Eqn.3.

(a) (b) (c) (d)

FIG. 2: The charge density wave (CDW) phase in a square

lattice at n0 = 1/2 with ordering wavevector ~Qn = (π, π). (b)
valence bond solid (VBS) phases with ordering wavevector
~QK = (π, 0) where the kinetic energy 〈Kij〉 = 〈b†i bj + h.c.〉
takes a non-zero constant K in the two sites connected with
a dimer, but 0 in the two sites without a dimer. (c) Stripe

CDW order at ~Qn = (π, 0) and (d) Plaquette VBS order at
~Qn = (π, 0), (0, π). [2, 10–17].

interactions and possible ring-exchange interactions. The
filling factor n = Na/N where Na is the number of atoms
and N is the number of lattice sites. The on-site inter-
action U can be tuned by the Feshbach resonance [2].
Various kinds of optical lattices such as honeycomb, tri-
angular [18], body-centered-cubic [18], Kagome lattices
[19] can be realized by suitably choosing the geometry
of the laser beams forming the optical lattices. There
are many possible ways to generate longer range interac-
tion V1, V2, .... of ultra-cold atoms loaded in optical lat-
tices. Being magnetically or electrically polarized, the
52Cr atoms [20] or polar molecules [21] 40K +87 Rb (
or 39K +87 Rb ) interact with each other via long-rang
anisotropic dipole-dipole interactions. Loading the 52Cr
or the polar molecules on a 2d optical lattice with the
dipole moments perpendicular to the trapping plane can
be mapped to Eqn.1 with long-range repulsive interac-
tions ∼ p2/r3 where p is the dipole moment. The CDW
supersolid phases studied by QMC [11] and described in
[15] by the dual vortex method was numerically found to
be stable in large parameter regimes in this system [22].
The generation of the ring exchange interaction has been
discussed in [24]. Some of the important phases with
long range interactions are listed in Fig.2. Recently, the
quantum entanglement properties of the VB state was
addressed in [25].

The interaction between the two laser beams in Fig.1

with the two level bosonic atoms is:

Hint =

∫
d2~rΨ†(~r)[

~p2

2ma
+ VOL(~r) +

~ωa

2
σz

+
Ω

2

∑
l

(e−iωltσ+ul(~r) + h.c.)]Ψ(~r) (2)

where Ψ(~r) = (ψe, ψg) is the two component boson an-
nihilation operator, the incident and scattered lights in
Fig.1a and the two incident lights in Fig.1b have frequen-

cies ωl and mode functions ul(~r) = ei~kl·~r+iφl . The Rabi
frequencies Ω are much weaker than the laser beams ( not
shown in Fig.1 ) which form the optical lattices. When
it is far off the resonance, the laser light-atom detunings
∆l = ωl − ωa where ωa is the two level energy differ-
ence are much larger than the Rabi frequency Ω and the
energy transfer ω = ω1 − ω2 ( See Fig.1a and 1b ), so
∆1 ∼ ∆2 = ∆. After adiabatically eliminating the up-
per level e of the two level atoms, expanding the ground
state atom field operator ψg(~r) =

∑
i biw(~r−~ri) in Eqn.2

where w(~r − ~ri) is the localized Wannier functions of
the lowest Bloch band corresponding to VOL(~r) and bi
is the annihilation operator of an atom at the site i in
the Eqn.1, then we get the effective interaction between
the off-resonant laser beams and the ground level g:

Hint = ~
Ω2

∆
e−iωt[

N∑
i

Ji,ini +

N∑
<ij>

Ji,jb
†
ibj ] (3)

where the interacting matrix element is Ji,j =
∫
d~rw(~r−

~ri)u
∗
1(~r)u2(~r)w(~r − ~rj) = Jj,i. The first term in Eqn.3

is the on-site term D̂ =
∑N

i Ji,ini ( See Fig.1a ). The
second term is the off-site term ( See Fig.1b ). Because
the Wannier wavefunction w(~r) can be taken as real in
the lowest Bloch band, the off-site term can be written

as K̂ =
∑N

<ij> Ji,jb
†
ibj =

∑N
<ij> Ji,j(b

†
ibj +h.c.) which is

nothing but the off-site coupling to the nearest neighbor

kinetic energy of the bosons Kij = b†ibj + h.c..
It is easy to show that:

D̂(~q) = f0(~q)
N∑

i=1

e−i~q·~rini = Nf0(~q)n(~q) (4)

where ~q = ~k1 − ~k2, f0(~q) =
∫
d~re−i~q·~rw2(~r) and n(~q) =

1
N

∑N
i=1 e

−i~q·~rini =
∑

~k b
†
~k
b~k+~q is the Fourier transform

of the density operator at the momentum ~q. Note that

n(~q) = n(~q + ~K). The wavevector is confined to L−1 <
q < a−1 where the trap size L ∼ 100µm and the lattice
constant a ∼ 0.5µm in Fig.1. In fact, more information
is encoded in the off-site kinetic coupling in Eqn.3. In a
square lattice, the bonds are either oriented along the x̂
axis ~rj − ~ri = x̂ or along the ŷ axis ~rj − ~ri = ŷ, we have:

K̂� = N [fx(~q)Kx(~q) + fy(~q)Ky(~q)] (5)

where Kα(~q) = 1
N

∑N
i=1 e

−i~q·~riKi,i+α =

eiqα/2
∑

~k cos kαb
†
~k
b~k+~q are the Fourier transform of the
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kinetic energy operator Kij = b†ibj + h.c. along α = x, y
bonds at the momentum ~q and the ”form” factors fα(~q) =
f(~q, ~ri − ~rj = α) =

∫
d~re−i~q·~rw(~r)w(~r + ~ri − ~rj). Note

that Kα(~q) = Kα(~q + ~K). Following the harmonic ap-
proximation used in [2], we can estimate that f0(π, 0) ∼
e−

1

4
(V0/Er)−1/2

, fx(π, 0) ∼ ie−
1

4
(V0/Er)−1/2−π2

4
(V0/Er)1/2

,

so |fx(π, 0)/f0(π, 0)| ∼ e−
π2

4

√
V0/Er where V0 and

Er = ~
2k2/2m are the strength of the optical lattice

potential and the recoil energy respectively [2]. The
f0(π, 0) is close to 1 when V0/Er > 4. It is instructive to
relate this ratio to that of the hopping t over the onsite
interaction U in the Eqn.1: |fx(π, 0)/f0(π, 0)| ∼ t

U
as

a
where as is the zero field scattering length and
a = λ/2 = π/k is the lattice constant, using the typical
values t/U ∼ 10−1, as/a ∼ 10−2, one can estimate
|fα/f0| ∼ 10−3. Note that the harmonic approximation
works well only in a very deep optical lattice V0 ≫ Er,
so the above value underestimates the ratio, so we
expect |fα/f0| ≥ 10−3.

The differential scattering cross section of the light
from the cold atom systems in the Fig.1 can be calcu-
lated by using the standard linear response theory:

dσ

dΩdE
= S(~q, ω) ∼ (

Ω2

∆
)2N2[|f0(~q)|2Sn(~q, ω)

+
∑

α=x̂,ŷ

|fα(~q)|2SKα(~q, ω)] (6)

where ~q = ~k1 − ~k0, ω = ω1 − ω2, the Sn(~q, ω) =
〈n(−~q,−ω)n(~q, ω)〉 is the dynamic density-density re-
sponse function whose Lehmann representation was
listed in [4]. The SKα(~q, ω) = 〈Kα(−~q,−ω)Kα(~q, ω)〉
is the bond-bond response function whose Lehmann rep-
resentation can be got from that of the Sn(~q, ω) sim-
ply by replacing the density operator n(~q) by the bond
operator Kα(~q). The integrated scattering cross sec-
tion over the final energy dσ

dΩ =
∫
dE dσ

dΩdE is propor-

tional to the equal-time response function dσ
dΩ = S(~q) ∼

(Ω2

∆ )2N2[|f0(~q)|2Sn(~q) +
∑

α=x̂,ŷ |fα(~q)|2SKα(~q)].
We first look at the superfluid to Mott transition at

integer filling factor n. When ~q is equal to the short-

est reciprocal lattice vector ~K = (2π, 0), in the Mott

state, dσM

dΩ ∼ |fM
0 (2π, 0)|2N2n2, in the superfluid state,

dσSF

dΩ ∼ |fSF
0 (2π, 0)|2N2n2 + 2|fSF

x (2π, 0)|2N2B2 where
B is the average kinetic energy on a bond in the super-
fluid side. Because |fSF

0 (2π, 0)|2 ∼ |fM
0 (2π, 0)|2 ∼ 1 and

B is appreciable in the superfluid side, we expect a dra-
matic increase of the scattering cross section

dσSF

dΩ
− dσM

dΩ
= 2|fSF

x (2π, 0)|2N2B2 (7)

across the Mott to the SF transition due to the pref-
actor N2. This prediction could be tested immediately.
Surprisingly, there is no such optical Bragg scattering
experiment in the superfluid yet.

In the CDW with ~Qn = (π, π) in Fig.2a, due to the lack
of VBS order on both sides, the second term in Eqn.6 can
be neglected, so that

dσ

dΩdE
|CDW ∼ (

Ω2

∆
)2N2|f0(~q)|2SN(~q, ω) (8)

which should show a peak at ~q = ~Qn ( Fig.3a ) whose
amplitude scales as the square of the number of atoms
inside the trap ∼ |f0(π, π)|2N2m2 where m = nA − nB

is the CDW order parameter [15]. When ~q = ~K,

then SCDW ( ~K) ∼ |f0(2π, 0)|2N2n2 where f0(2π, 0) ∼
f2
0 (π, π) ( Fig.3a ). So the ratio of the two peaks in

Fig.3a is ∼ m2/n2 if one neglects the very small difference
of the two form factors. Slightly away from 1/2 filling,
the CDW in Fig.2a may turn into the CDW supersolid (
CDW-SS ) phase through a second order phase transition
[15]. Then we have 〈n(~q)〉 = mδ~q, ~Qn

+ nδ~q,0 where n =

nA + nB = 1/2 + δn. The superfluid density ρs ∼ δn =
n − 1/2. The scattering cross section inside the CDW-

SS: SCDW−SS( ~Qn) ∼ |f0(π, π)|2N2m2 stays more or less

the same as that inside the CDW, but SCDW−SS( ~K) ∼
|f0(2π, 0)|2N2n2 + 2|fx(2π, 0)|2N2(δn)2B2 will increase.
The B is the average bond strength due to very small
superfluid component ρs ∼ δn = n−1/2 flowing through
the whole lattice. So the right peak in Fig.3a will in-
crease due to the increase of the total density and the
superfluid component inside the CDW-SS phase.

Now we discuss the VBS state with ~QK = (π, 0) in
Fig.2b. Due to the uniform distribution of the density

in the VBS, when ~q = ~K, the second term in Eqn.6
can be neglected, so there is a diffraction peak ( Fig.3b
) whose amplitude scales as the square of the num-
ber of atoms inside the trap ∼ |f0(2π, 0)|2N2n2 where
f0(2π, 0) ∼ f4

0 (π, 0) and n = 1/2 is the uniform density

in the VBS state. However, when one tunes ~q near ~QK ,
the first term in Eqn.6 can be neglected, then

dσ

dΩdE
|V BS ∼ (

Ω2

∆
)2N2

∑
α=x̂,ŷ

|fα(~q)|2SKα(~q, ω) (9)

which should show a peak at ~q = ~QK signifying the

VBS ordering at ~QK whose amplitude scales also as
the square of the number of atoms inside the trap ∼
|fx(π, 0)|2N2K2 where K = Kx − Ky is the VBS or-
der parameter [15]. So the ratio of the VBS peak at

~q = ~QK over the uniform density peak at ~q = ~K is
∼ K2/n2|fx(π, 0)/f0(2π, 0)|2 ≥ 10−5. However, the
smallness of |fx|2 is compensated by the large number
of atoms N ∼ 106, |fx|2N2 = (|fx|2N) ×N ∼ N ∼ 106.
Therefore, the Bragg scattering cross section from the

VBS order is ≥ 10−5 smaller than that at ~q = ~K at
the same incident energy Iin ( Fig.3b ), but still ∼ 106

above the background, so very much visible in the cur-
rent optical Bragg scattering experiments. Slightly away
from 1/2 filling, the VBS may turn into VB Supersolid
(VB-SS) through a second order transition [15]. We have
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FIG. 3: The optical scattering cross section in (a) CDW, the

ratio of the peak at ~Qn over that at ~K is ∼ m2/n2 ∼ 1. (b)

VBS state, the ratio of the peak at ~QK over that at ~K is
∼ |fx/f0|

2K2/n2 ≥ 10−5, but still should be visible in the
current optical Bragg scattering experiments.

〈Kx(~q)〉 = Bδ~q,0 +Kδ~q, ~QK
and 〈n(~q)〉 = (δn + 1/2)δ~q,0.

The superfluid density ρs ∼ δn = n − 1/2. The

scattering cross section inside VB-SS: SV B−SS( ~QK) ∼
|fx(π, 0)|2N2K2 stays more or less the same as that in-

side the VBS, but SV B−SS( ~K) ∼ |f0(2π, 0)|2N2n2 +
|fx(2π, 0)|2N2(δn)2B2

x + |fy(2π, 0)|2N2(δn)2B2
y where

n = 1/2 + δn and the Bx, By are the average bond
strengths along x and y due to very small superfluid com-
ponent ρs ∼ δn = n − 1/2 flowing through the whole
lattice. So the right peak in Fig.3b will increase due to

the increase of the total density and the superfluid com-
ponent inside the VB-SS phase. Very similarly, one can

discuss the VBS order at ~q = ~QK = (0, π). For the pla-
quette VBS order in Fig.2d, then one should be able to
see the SK(~q) peaks at both (π, 0) and (0, π). So the
dimer VBS and the plaquette VBS can also be distin-
guished by the optical Bragg scattering.

In this paper, we only focused on the optical Bragg
scattering detections of the various ground states in a
square lattice. The detections of the excitation spectra,
the generalization to frustrated lattices, the effects of fi-
nite temperature and a harmonic trap will be discussed
in a future publication.
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