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We study ultra-cold neutral fermion superfluids in the presence of fictitious magnetic fields, as well
as charged fermion superfluids in the presence of real magnetic fields. Charged fermion superfluids
undergo a phase transition from type-I to type-II superfluidity, where the magnetic properties of
the superfluid change from being a perfect diamagnet without vortices to a partial diamagnet with
the emergence of the Abrikosov vortex lattice. The transition from type-I to type-II superfluidity
is tuned by changing the scattering parameter (interaction) for fixed density. We also find that
neutral fermion superfluids such as 6Li and 40K are extreme type-II superfluids, and that they
are more robust to the penetration of a fictitious magnetic field in the BCS-BEC crossover region
near unitarity, where the critical fictitious magnetic field reaches a maximum as a function of the
scattering parameter (interaction).

PACS numbers: 03.75.Ss, 03.75.Hh, 05.30.Fk

A key experiment in the verification that neutral
Fermi superfluids can evolve from the Bardeen-Cooper-
Schrieffer (BCS) to the Bose-Einstein condensation
(BEC) regime was the observation of quantized vortices
throughout the BCS-BEC evolution upon rotation of the
atomic cloud [1]. This observation had a very dramatic
impact beyond the atomic physics community, because it
showed that superfluidity of Cooper pairs and of tightly
bound bosonic molecules for s-wave pairing are the man-
ifestation of the same type of physics. The key tool that
permitted such realization is the tunability of the inter-
action between fermions through the use of Feshbach res-
onances. The same kind of tunability does not exist in
3He, the standard condensed matter neutral superfluid,
or in superconductors. The situation is even worse in
neutron and proton superfluids, which are thought to ex-
ist in the core of neutron stars.

Very recently, a new technique has been developed that
permitted the production of fictitious magnetic fields
which can couple to neutral bosonic atoms [2, 3]. These
fictitious magnetic fields are produced through an all op-
tical Raman process, couple to a fictitious charge, but
produce real effects like the creation of vortices in the
superfluid state of bosons. In principle, the same tech-
nique can be applied to ultra-cold fermions, which cou-
pled with the control over interaction using Feshbach res-
onances allows the exploration of superfluidity not only
as a function of interaction, but also as a function of
fictitious magnetic field. It is in anticipation of similar
experiments involving ultracold fermions that we address
in this manuscript the effects of fictitious magnetic fields
on fermion superfluids as a function of interaction.

Unlike neutral superfluids, standard condensed mat-
ter charged superfluids (superconductors) can be of two
types [4]. Many superconductors are now known to be
type-II (including heavy fermions, organics, and high-Tc
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FIG. 1: Universal phase diagram of the dimensionless fermion
density nr3

q versus scattering parameter 1/(kF as), where rq =
q2/(mc2

0) is the classical radius of a fermion with mass m and
charge q, c0 is the speed of light, kF is the Fermi momentum
and as is the scattering length. The dotted line separates
regions of type-I and type-II superfluidity.

cuprates), where the application of an external magnetic
field beyond the lower critical field Hc1

leads to a non-
uniform superfluid phase, which appears in the form of
the Abrikosov vortex lattice, until a second critical field
Hc2

is reached, when the system becomes normal. Other
charged superfluids are known to be type-I and do not
allow the magnetic field to penetrate the sample. These
systems are perfect diamagnets until the critical field Hc

is reached, where the charged superfluid becomes normal.
The parameter that characterizes the type of charged su-
perfluid is the Ginzburg-Landau parameter κ = λ/ξ cor-
responding to the ratio between the penetration depth
λ of the magnetic field into the sample and the coher-
ence length ξ of the charged superfluid, such that type-I
superfluids have κ < 1/

√
2 and type-II have κ > 1/

√
2.

In this manuscript, we study neutral fermion super-
fluids in the presence of fictitious magnetic fields and
charged fermion superfluids in the presence of real mag-
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netic fields as a function of interaction (scattering pa-
rameter). We show that throughout the crossover region
between BCS and BEC superfluidity both 6Li and 40K
are extreme type-II superfluids, and for charged super-
fluids we find a phase transition from type-I to type-II
superfluidity for fermions of density n = k3

F /(3π
2) inter-

acting via a contact potential characterized by the inter-
action parameter 1/(kFas). As shown in Fig. 1, the phase
boundary in the density n versus interaction parameter
1/(kFas) occurs when the critical value κc = 1/

√
2 is

crossed. In the literature of charged superfluids the tran-
sition from type-I to type-II was thought possible when
induced by disorder and was described microscopically
only in the BCS limit [5–8]. In contrast, here we show
that, microscopically, a clean (no disorder) charged su-
perfluid can exhibit a type-I–type-II transition induced
by interactions. The phase diagram shown in Fig. 1 has
a wider applicability to include standard charged super-
fluids (like superconductors of condensed matter physics)
and even proton superfluidity in nuclei or neutral stars,
as long as the interactions can be described by a con-
tact potential with corresponding scattering length as.
In addition, we indicate that neutral (charged) superflu-
ids are more robust to the penetration of ficitious (real)
magnetic fields near unitarity, where the critical fictitious
(real) magnetic fields reach a maximum as a function of
the scattering parameter.

To describe the transition from type-I to type-II super-
fluidity as a function of the interaction parameter and the
properties of neutral (charged) superfluids in the presence
of fictitious (real) magnetic fields during the BCS-BEC
evolution [9–11] for s-wave superfluids in three dimen-
sions, we start with the Hamiltonian density

H̄(r) =
∑

σ

ψ†
σ(r)

(
− h̄

2∇2

2m
− µ

)
ψσ(r) + Û(r), (1)

where Û(r) =
∫
dr′V (r, r′)ψ†

↑(r)ψ
†
↓(r

′)ψ↓(r
′)ψ↑(r) con-

tains the attractive contact interaction potential
V (r, r′) = −gδ(r−r′), and ψ†

σ(r) is the creation operator
of fermions with massm and spin σ. Notice that g has di-
mensions of energy times volume. To make progress, we
rewrite the Hamiltonian H =

∫
drH̄(r) from real space

to momentum space

H =
∑

k,σ

ξkψ
†
k,σψk,σ − g

∑

k,k′,q

b†k,qbk′,q, (2)

where b†k,q = ψ†

k+q/2,↑ψ
†

−k+q/2,↓ creates a fermion pair

with center of mass momentum q and relative momentum
2k, ξk = ǫk − µ is the kinetic energy term with ǫk =
h̄2k2/(2m) and µ is the chemical potential.

Integration over the fermion fields [12] leads to the or-
der parameter equation

1

g
=

1

L3

∑

k

tanh [ξk/(2Tc)]

2ξk
(3)

at the critical temperature Tc, where the order parameter
vanishes. Here L3 is the sample volume. The interaction
g can be written in terms of the scattering length as lead-
ing to 1/g = −m/

(
4πh̄2as

)
+ (1/L3)

∑
k [1/(2ǫk)]. The

second self-consistency relation is the number equation

N =
∑

k,σ

f(ξk) + Tc

∑

q

∂
[
ln(L3K/Tc)

]

∂µ
(4)

where f(ξk) is the Fermi function, and

K−1 =
1

g
− 1

L3

∑

k

1 − f(ξk+q/2) − f(ξ−k+q/2)

ξk+q/2 + ξ−k+q/2 − ih̄ω
(5)

is the pair propagator, and ω is the Matsubara frequency
for bosons.

The effective action is TSeff/h̄ =
∑

q K−1(q)|∆(q)|2 +
b

2L3

∑
q1,q2,q3

∆(q1)∆
∗(q2)∆(q3)∆

∗(q1 − q2 + q3) in terms
of the order parameter ∆(q), where q = (q, iω). To
study thermodynamic properties, we take ih̄ω = 0, or
equivalently, ∆(r, τ) ≡ ∆(r), leading to the effective La-
grangian density

Leff = a|∆|2 +
∑

i,j

h̄2cij
2m

∇i∆̄∇j∆ +
b

2
|∆|4.

Using the notation Xk = tanh[ξk/(2T )] and Yk =
sech2[ξk/(2T )], the coefficients of the Lagrangian density
are a(µ, T ) = 1

g − 1
L3

∑
k

Xk

2ξk
for the constant term,

L3cij(µc, Tc) =
∑

k

[(
Xk

8ξ2k
− Yk

16ξkTc

)
δij +

XkYk

T 2
c

h̄2kikj

16mξk

]

for the coefficient of the gradient terms ∇i∆̄∇j∆, and

L3b(µc, Tc) =
∑

k

(
Xk

4ξ3

k

− Yk

8ξ2

k
Tc

)
for the coefficient of the

non-linear quartic term. Notice that cij = cδij for s-wave
superfluids.

In general, near Tc, a(µ, T ) = −a0ǫ(T ), where
a0 = Tc [∂a/∂T ]Tc

and ǫ(T ) = (1 − T/Tc). In the

BCS limit of 1/(kFas) → −∞, L3a0 = DF , where
DF = mkFL

3/(2π2h̄2) is the density of single parti-
cle states per spin channel at the Fermi energy ǫF .
Also the coefficient of the quartic term is L3b =[
7ζ(3)/(8π2T 2

c )
]
DF , while the coefficient of the gradi-

ent term is L3c =
[
7ζ(3)/(12π2T 2

c )
]
DF ǫF . Here, the

zeta function ζ(3) = 1.202, while the critical temperature
Tc =

(
8eγ−2/π

)
ǫF exp [−π/(2kF |as|)] , with eγ ≈ 1.781,

and the chemical potential µ = ǫF . However, in the
BEC limit of 1/(kFas) → +∞, L3a0 = DF ǫF /(4|µ|).
Correspondingly the coefficient of the quartic term is
L3b = (π/32)DF /(|µ|

√
ǫF |µ|), and the coefficient of the

gradient term is L3c = (π/16)DF /
√
ǫF |µ|. In this case,

Tc ≈ 0.218ǫF and µ = Eb/2, where Eb = −h̄2/(ma2
s) is

the two-particle binding energy in vacuum.
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Next, we scale the order parameter to ψ(r) =
√
c∆(r)

and introduce an external (real or fictitious) magnetic
field via the vector potential A(r), using the substitution
∇i → ∇i − 2iqAi/(h̄c0), where q is the real or fictitious
particle charge and c0 is the speed of light. The difference
in free energy density between the charged superfluid and
its normal state in the presence of magnetic fields takes
the Ginzburg-Landau form

FGL = α|ψ|2 +
β

2
|ψ|4 +

h̄2

2m

∣∣∣∣
(
−i∇− 2q

h̄c0
A

)
ψ

∣∣∣∣
2

+
|H|2
8π

where H = ∇ × A is the real or fictitious microscopic
magnetic field. The parameter α = a/c changes sign at
T = Tc, however β = b/c2 is always positive guaranteeing
the stability of the theory. It is also useful to define the
flux quantum Φq = πh̄c0/q, which will be used below.

Minimization of FGL with respect to ψ and A lead the
order parameter equation

αψ + β|ψ|2ψ +
h̄2

2m

(
−i∇− 2q

h̄c0
A

)2

ψ = 0 (6)

and to the current density

j = − h̄q

im
(ψ∗∇ψ − ψ∇ψ∗) − 4q2

mc0
|ψ|2A. (7)

Using the relation ∇×H = 4πj/c0 and taking the curl of
the current density leads to the London equation λ2∇×
(∇× H) + H = 0 where λ =

√
mc20/(16πq2|ψ|2) is the

magnetic penetration depth. Since |ψ|2 = |α|/β = |a|c/b
in weak magnetic fields, the penetration depth becomes
λ(T ) = λGL|ǫ(T )|−1/2, where λGL =

√
b/(16πrqa0c).

Here, rq = q2/(mc20) is the classical radius of a fermion
with mass m and charge q in CGS units. In terms
of the classical radius of the electron re = e2/mec

2
0 ≈

2.82 × 10−13 cm, we write rq = (q/e)2(me/m)re. Since
|ψ|2 plays the role of the superfluid density ns, we
may write |ψ|2 = |ψ0|2|ǫ(T )| = ns = ns,0|ǫ(T )|, where
ns,0 = |ψ0|2 = a0c/b is the temperature independent
prefactor. This observation allows us to write kFλGL =√

[3π/(16kF rq)] (n/ns,0). The prefactor ns,0 reflects a
zero temperature extrapolation of the superfluid density
ns, however, in a Galilean invariant system we must have
ns,0 ≈ n/2. Indeed, in the BCS limit ns,0 = n/2 such

that kFλGL =
√

3π/(8kF rq), while in the BEC limit

ns,0 = 3n/8 leads to kFλGL =
√
π/(2kF rq). The BCS

value of kFλGL is slightly smaller than its BEC value,
however throughout the BCS-BEC evolution, kFλGL

does not change substantially.
The coherence length can be extracted from Eq. (6) as

ξ(T ) = h̄/
√

2m|α(T )| leading to ξ(T ) = ξGL|ǫ(T )|−1/2

where ξGL = h̄
√
c/(2ma0). Unlike the penetration depth,

the coherence length ξGL changes substantially during
the BCS-BEC evolution. In the BCS regime, kF ξGL =√

7ζ(3)/(12π2)(ǫF /Tc) is very large, and in terms of

kFas becomes kF ξGL = A exp[π/(2kF |as|)], where A =√
7ζ(3)/(12π2)(πe2−γ/8). In the BEC regime, kF ξGL =√
π/4 (|µ|/ǫF )

1/4
is also very large, and in terms of kF as

becomes kF ξGL =
√
π/4/

√
kFas.However, kF ξGL passes

through a minimun in the intermediate regime, where
kF ξGL ≈ O(1).

As discovered by Abrikosov [4], the parameter κ =
λ(T )/ξ(T ) is of fundamental importance in the charac-
terization of the magnetic properties of charged super-
fluids. When κ < κc = 1/

√
2 the charged superfluid is

a perfect diamagnet (type-I), which does not allow the
magnetic field to penetrate. When κ > κc, the charged
superfluid allows the penetration of magnetic field in the
superfluid state in the form of vortices (type-II). Since
the temperature dependence of λ(T ) and ξ(T ) is exactly
the same, the parameter

κ =
λ(T )

ξ(T )
=
λGL

ξGL
=

√
mb

8πrqh̄
2c2

(8)

is independent of temperature. Notice that κ
√
kF rq =√

s/(16π), where s = k3
F b/(ǫF c

2) is a dimension-
less parameter which is a function of 1/(kFas) only.
In Fig. 2, we show the evolution of κ as a func-
tion of the scattering parameter 1/(kFas). In the
BCS limit, κ

√
kF rq =

√
9π3/ [14ζ(3)](Tc/ǫF ) cor-

responds to κ
√
kF rq = B exp[−π/(2kF |as|)], where

B =
√

9π3/ [14ζ(3)](8eγ−2/π). While in the BEC limit,

κ
√
kF rq =

√
2 (ǫF /|µ|)1/4 corresponds to κ

√
kF rq =√

2
√
kFas. Notice the maximum of κ in the vicinity of

unitarity and µ = 0 (1/[kFas] = 0.554).
Unfortunately, in current experiments for neutral

atoms in fictitious fields, only the product qH is con-
trolled, instead of H alone [2]. So it is useful to think
of ultra-cold superfluids like 6Li or 40K as having charge
q → 0, but with qH finite. In this sense, these neutral
superfluids are extreme type-II with κ → ∞ throughout
the BCS-BEC evolution [13].
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FIG. 2: Universal plot of the Ginzburg-Landau parameter κ
versus scattering parameter 1/(kF as), where rq is the classical
radius of a fermion with mass m and charge q.

To obtain the phase diagram shown in Fig. 1, we set
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κ = κc in Eq. (8) and extract the fermion density n as a
function of 1/(kFas), which leads to nr3q = s3/(1536π5).
In Fig. 1, κ is higher (lower) than κc below (above)
the critical line indicating a type-II (type-I) charged su-
perfluid phase. For fixed density n, a phase transi-
tion from type-I to type-II charged superfluid occurs,
as the interaction parameter 1/(kFas) increases. Elec-
tron superfluids with 1021 cm−3 ≤ n ≤ 1023 cm−3

have 2.24 × 10−27 < nr3q < 2.24 × 10−25, and the
transition between type-I and type-II occurs in the in-
terval −8 < 1/(kFas) < −4, while proton superfluids
in nuclear matter, with r3q ≈ 3.60 × 10−48 cm−3 and
1037 cm−3 ≤ n ≤ 1038 cm−3, have a type-I–type-II tran-
sition in the range −4 < 1/(kFas) < 0.

For type-I charged superfluids there is only the ther-
modynamic critical field Hc(T ) determined by the con-
dition H2

c (T )/(8π) = Fn − Fs, where Fn (Fs) is the
Helmholtz free energy for the normal (superfluid) state.
For a uniform superfluid state the energy difference is
Fn − Fs = α2/(2β) = a2/(2b) leading to Hc(T ) =
Hc,0|ǫ(T )| = |a(T )|

√
4π/b, where Hc,0 = a0

√
4π/b

is the temperature independent prefactor, which gives
an estimate of the zero temperature critical field. We
define the dimensionless thermodynamic critical field
H̃c,0 = Hc,0/HkF

, where HkF
= Φqk

2
F . Notice that

H̃c,0 = h̄ωc,0/(2πǫF ), where ωc,0 = |q|Hc,0/(mc0) is
the cyclotron frequency at Hc,0. Using the asymp-

totic expressions for a0 and b, we obtain H̃c,0 =√
kF rq

√
4/[7πζ(3)](Tc/ǫF ) in the BCS regime, which

can be rewritten as H̃c,0 =
√
kF rqC exp [−π/(2kF |as|)] ,

with C =
√

4/[7πζ(3)](8eγ−2/π). While we obtain

H̃c,0 =
√
kF rq(1/π

2)(ǫF /|µ|)1/4 in the BEC regime,

which can be rewritten as H̃c,0 =
√
kF rq(1/π

2)
√
kF as.

The field H̃c,0 reaches a maximum near unitary and
µ = 0, thus indicating that type-I superfluids are most
robust to the penetration of magnetic fields in that same
region.

For type-II superfluids there are two critical fields.
The first is called Hc1

(T ) and separates the perfect-
diamagnet Meissner phase from the non-uniform phase
exhibiting vortices. The second is called Hc2

(T ) and sep-
arates the non-uniform phase exhibiting vortices from
the normal state. Since 6Li and 40K are extreme
type-II superfluids with κ → ∞, then Hc1

(T ) → 0,
and thus we concentrate on the results for Hc2

(T ).
The calculation of Hc2

(T ) is performed by lineariz-

ing Eq. (6) −h̄2 (∇− i2πA/Φq)
2
ψ + 2mα(T )ψ = 0.

Using the Landau gauge A = Hxŷ, the momen-
tum components ky and kz are good quantum num-
bers and the solution for ψ becomes ψn,ky,kz

(x, y, z) =

e(ikyy+ikzz)un(x), which substituted in the previous
equation leads to the one-dimensional Schrödinger

equation
[
−h̄2/(2m)d2/dx2 +mω2

s(x− x0)
2/2

]
un(x) =

ǫnun(x), where x0 = Φqky/(2πH) is the equilibrium po-

sition of the harmonic potential, ωs = 2|q|H/(mc0) is
the harmonic potential frequency, and ǫn = |α(T )| −
h̄2k2

z/(2m) = h̄ωs(n + 1/2) is the eigenvalue. The
highest magnetic field at which superconductivity nu-
cleates occurs for n = 0 and kz = 0 leading to
the condition |α(T )| = h̄ωs/2. Isolating the mag-
netic field from the harmonic potential frequency leads
to Hc2

(T ) = [Φq/(2π)]2m|α(T )|/h̄2, which can be fi-
nally expressed in terms of the coherence length ξ(T )
as Hc2

(T ) = Φq/
[
2πξ2(T )

]
. Substituting ξ(T ) =

ξGL|ǫ(T )|−1/2, we write Hc2
(T ) = Hc2,0|ǫ(T )|, where

Hc2,0 = Φq/(2πξ
2
GL). Using again the reference field

HkF
= Φqk

2
F , we obtain the dimensionless upper critical

field H̃c2,0 = Hc2,0/HkF
= 1/(2πk2

F ξ
2
GL). This expression

is equivalent to the ratio h̄ωc2,0/(2πǫF ), where ωc2,0 =
qHc2,0/(mc0) is the cyclotron frequency at Hc2,0. In the

BCS limit, H̃c2,0 = [6π/7ζ(3)] (Tc/ǫF )2 , which in terms

of the scattering parameter 1/(kFas) becomes H̃c2,0 =
D exp[−π/(kF |as|)] with D = 256e2γ−4/[7πζ(3)]. In the

BEC limit, H̃c2,0 =
(
2/π2

) √
ǫF /|µ| which in terms

of the scattering parameter 1/(kFas) becomes H̃c2,0 =
(2/π2)kFas. Since kF ξGL reaches a minimum in the re-

gion near unitarity and µ = 0, it is clear that H̃c2,0 has
a maximum there, where type-II superfluids are most ro-
bust to the presence of real or fictitious magnetic fields.

Before concluding, we note that the quantum regime
h̄ωc ≥ 2πT (where Landau level quantization is impor-
tant) can be reached experimentally for 6Li and 40K while
preserving superfluidity, since they are extreme type-II
superfluids in the BCS-BEC crossover region.

In conclusion, we have analyzed the effects of real or
fictitious magnetic fields during the BCS-BEC evolution
of s-wave superfluids with direct application to ultra-
cold fermionic atoms. We have shown that a transition
from type-I to type-II charged superfluidity occurs as
the Ginzburg-Landau paramater crosses its critical value
κc = 1/

√
2 in the density versus interaction phase dia-

gram of fermions of charge q and massm. We have shown
that 6Li and 40K in fictitious magnetic fields are extreme
type-II superfluids. Finally, we have indicated that the
critical magnetic fields (real or fictitious) depend strongly
on the scattering parameter 1/(kFas) and reach a max-
imum in a region near unitarity, where superfluidity is
more robust to their penetration.

CSdM and MI would like to thank NSF (DMR-
0709584) and ARO (W911NF-09-1-0220), and Marie
Curie IRG (FP7-PEOPLE-IRG-2010-268239) and
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