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Abstract: We report solutions for expanding dipole-type optical solitary waves in 2D Kerr media with the self-focusing nonlinearity, using exact 

analytical (Hirota) and numerical methods. Such localized beams carry intrinsic vorticity and exhibit symmetric shapes for both scalar and vector 

solitary modes. When vector beams are close to the scalar limit, simulations demonstrate their stability over propagation distances exceeding 50 

diffraction lengths. In fact, the continuous expansion helps the vortical beams to avoid the instability against the splitting, collapse or decay, making 

them "convectively stable" patterns.  

PACS number: 42.81.Dp, 42.65.Sf. 

 
 
1. Introduction 
Spatial solitons are stable self-trapped beams propagating in nonlinear media, for which diffraction is exactly balanced 
by self-focusing [1]. In particular, vector solitons consist of different components with comparable intensities, which all 
contribute to the induced increase of the refractive index in the material. In optics, spatial vector solitons can be formed 
by either copropagating or counterpropagating interacting beams [2]. In the basic form, they are represented by 
shape-preserving self-localized solutions of coupled nonlinear evolution partial differential equations (PDEs) [3]. 
Spatial vector solitons in the form of two-color self-trapped copropagating beams were discussed in nonlocal Kerr 
media [4, 5] and experimentally observed in nematic liquid crystals by Alberucci et al. [6]. Vector solitons with 
counterpropagating beams were reported by Izdebskaya et al. [7]. In the general case, several beams can combine to 
produce multi-component vector solitons. Another variety of stable two-color solitary beams is supported by the 

three-wave mixing in quadratically nonlinear ( ( )2χ ) media [8]. One- and two-dimensional (1D and 2D) spatial ( )2χ  

solitons (alias "simultons") were created experimentally [9] and studied in detail theoretically, see e.g. reviews [10]. 
Their spatiotemporal counterparts have been investigated as well [11]. 

  The existence of dipole-mode vector solitons (or “dipoles”, for simplicity) was predicted theoretically [12, 13] and 
verified experimentally [14]. This kind of optical solitons originates from the trapping of a dipole HG01-type mode in 
the waveguide induced by a copropagating fundamental spatial soliton. It was shown that, while several other 
topologically arranged structures may be created in this setting, only the dipole solitary mode is expected to give rise to 
a family of dynamically robust vector solitons [15, 16]. Stationary 2D dipole-mode solitons were observed in optical 
media with thermal nonlinearity [17]. It was shown that the stability of dipole solitons in nonlocal nonlinear waveguides 
crucially depends on the waveguide shape [18], and that elliptically shaped dipole solitons are expected in media with 
an anisotropic quasi-local nonlinearity [19]. In all of the aforementioned studies, solitons were obtained either 
numerically or by means of variational or other approximations. However, no exact solutions were found for dipole 
vector solitons to date.  

  In this paper, we report the first (to the best of our knowledge) exact 2D analytical solutions for dipole-mode scalar 
and vector solitary waves in local Kerr medium. Such solutions, constructed using the separation of variables and the 
Hirota bilinear method, are nonstationary and gradually expanding in propagation, similarly to necklace-shaped soliton 
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patterns [20]. It is well known that stationary solitons in 2D Kerr media are always unstable against collapse or decay, 
due to the critical character of the local cubic self-attractive nonlinearity in the 2D setting. Moreover, 2D ring-shaped 
solitons with embedded vorticity are subject to a still stronger instability against splitting of the ring under the action of 
azimuthal perturbations [21, 22]. Nonetheless, we demonstrate hereby that a part of the expanding solitary waves (those 
close enough to the scalar limit) remain stable over a long evolution. In fact, the continuing expansion helps avoiding 
splitting, collapse, or decay. In that sense, they may be called convectively stable patterns, following the analogy with 
the commonly known concept of convective instability. An analytical explanation of this effective stability is given 
below, alongside the numerical simulations. 
  The paper is organized as follows. In Sec. 2 we describe the model governing the dynamics of dipole beams with two 
mutually incoherent components copropagating in a local Kerr medium. We discuss the lowest-order dipole solitary 
waves with two components in Sec. 3, where we study their properties numerically. We address the stability of dipole 
vector beams in Sec. 4, and draw conclusions in Sec. 5. 
 
2. The model and the solution method 
  To model the dynamics of scalar and vector beams consisting of N  mutually incoherent components copropagating 
in a Kerr medium, we use coupled (2+1)D nonlinear Schrödinger equations for the slowly varying envelopes 

( )ϕ,,rzun  ( Nn ,,2,1 L= ), where r  and ϕ  are the polar coordinates in the transverse plane. The dimensionless 

form of the equations is [23] 
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    To find solutions to Eq. (1), we look for the optical field in the form of 
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where 0≥m  is an integer, see Refs. [24, 25]. Obvious solutions to Eq. (3a) are ( ) ( ) ( )ϕϕϕφ mBmA nnn sincos += ，

(hence, m  may be considered as a topological charge), with complex coefficients nA  and nB  obeying conditions 
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choose the corresponding coefficients as follows: 

11 =A ，  iqB =1 ，          （4a） 

02 =A ，   2
2 1 qB −= ，          （4b） 

where parameter [ ]1,0∈q  determines the modulation depth of the beam. In the limit of 0=q , Eqs. (4) represent the 
incoherent superposition of two modes, whereas for 1=q  they correspond to the scalar solitary wave. For a dipole 

solitary mode with topological charge 1=m , Eq. (3b) can be written as: 
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   Next, we aim at obtaining some analytical solutions to Eq. (5), represented in the Hirota bilinear form. To this end, 

we make use of the following transformation: ( )
( )zrf

zrgrV
,
,

= , where ( )zrg ,  is a complex function and ( )zrf ,  is a 

real one. Substituting these into Eq. (5) we obtain the bilinear forms as: 
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solutions, we expand functions ( )zrg ,  and ( )zrf ,  as power series of a parameter ε : 
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Substituting ( )zrg ,  and ( )zrf ,  into the bilinear equations (6) and collecting terms pertaining to the same powers 
of ε , we obtain the following system of linear PDEs:                                                          

1ε :     0]1[ 11 =⋅gH ,                                                                      (7a) 

2ε :     ∗=⋅+⋅ 11
2

222 2]11[ ggrffH ,                                                        (7b) 

3ε :     0]1[ 3211 =⋅+⋅ gfgH ,                                                              (7c) 

4ε :     ( )∗∗ +=⋅+⋅ 1331
2

3212 2]1[ ggggrgfgH .                                               (7d) 

   ………… 
Now, in order to get the first-order nonstationary soliton solution, we assume that ( )zrg ,  is truncated to ( )zrg ,1  , 

and ( )zrf ,  truncated to ( )zrf ,2 , i.e., ( ) 0, =zrg j  for 3,5,j = L  and  ( ) 0, =zrfk  for 4,6,k = L . Thus, 



 4
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21 , where ( )rerfi  is the imaginary error function ( ) iirerfi / , C  and D  are 

complex constants such that 0≠+ ∗CC . Next, we set 1=ε  and obtain the first-order soliton solution of Eq. (5): 
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−=Ω  and ( )∗+−=Ω CC2ln40 . Note that the argument of sech in Eq. (8) is automatically real.  

    In a similar fashion, we obtain the second and the Lth-order [28] nonstationary soliton solutions of Eq. (5) (see 
Appendix). Finally, making use of Eqs. (2) and (8), we arrive at the exact first-order solution of Eq. (1) for the dipole 
solitary mode: 
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It is straightforward to see that nu  vanishes at ∞→r , i.e., Eq. (9) represents a localized, although nonstationary, 

bright solitary wave solution. Indeed, the radius of the ring structure corresponding to Eqs. (8) and (9) expands as 
~R z , while its squared amplitude decays as 

( )
max

2A ~ 2−z .                                   (10) 

 
3. Discussion 

In this section we display and discuss solutions given in Eq. (9) for scalar and vector dipole modes. In most cases, we 
fix constants C  and D , namely, 0=D  and 2=C  for the first-order solitary mode, and 021 == DD , 21 =C , 

42 =C  for the second-order one. 
  For 1=q  in Eqs. (4), we obtain a scalar ring-shaped beam for 1=m . A typical example of such a vortex ring is 

shown in Fig. 1, along with the axisymmetric radial intensity distribution of solitary waves of various orders. The 
intensity is zero at the center, as it should be for vortex patterns. In the course of the evolution, this nonstationary vortex 
ring expands and gets attenuated in the radial direction. The number of layers (white annuli in the figure) in this scalar 
solitary wave is determined by its order L . The scalar soliton is represented as an incoherent superposition of two 
dipole solitary modes with 1=m  and 1=q . Accordingly, the dipole components can be written as 02 =u  and 

ϕiVeuu == 1 ; hence u  actually displays a simple isotropic vortex shape. 
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Fig. 1. Intensity distributions (nonzero in white annuli, zero in black areas) of the axially symmetric scalar mode, at 50,30,0=z , from left to  

right. Top and bottom rows display first- and second-order solitary modes, as given by Eq. (9). 

 
 Moreover, Fig. 2 displays a set of nonstationary radial intensity profiles, obtained from Eq. (8) for solitary waves of 

first and second orders. Increasing z , the intensity remains zero in 0=r  and ∞=r  (as it should be for vortical 
solitons, even nonstationary ones), while the structure expands in the radial direction and its peak gradually decays, in 
accordance with Eq. (10) . 
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FIG. 2 (Color online) Nonstationary radial intensity distributions ( )rV  at several values of the propagation distance, 50,30,0=z , as found  

from Eq. (8). Panels (a) and (b) display the first- and the second-order solitary-wave solutions.  

  

  Self-trapped localized structures with a large number of azimuthal lobes ("petals") may exhibit a strong effective 
stabilization even in self-focusing Kerr media [29, 30]. Fig. 3 and Fig. 4 display the propagation dynamics of the first- 
and second-order dipole vector modes, which exhibit similar patterns. These examples are obtained for 0=q  in Eqs. 

(4). In these solitary modes, the dipole structure is formed due to the interaction between the two components. Note 
that the intensity remains equal to zero at the center, as the solitary waves carry the intrinsic vorticity. As for scalar 
solitons, the structure expands in the radial direction. Note that the second-order dipole vector solitary waves form two 
layers, with the inner one more strongly modulated than its outer counterpart. As visible in Fig. 4, during evolution the 
peak intensity of the outer layer increases as compared with the inner one.  
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FIG. 3 (Color online) Evolution of the first-order dipole vector solitary waves with 0=q , shown for 50,30,0=z  from top to bottom. The total  

intensity of the solitary waves (the third column) is 
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FIG. 4 (Color online) Same as Fig. 3, but for the second-order dipole vector solitary waves with 0=q . 

 
The shape of the dipole vector modes is different for 1→q  in Eqs. (4). With the increase in q , the components of 

the dipole vector solitary wave change their structure from the spiky pattern to the modulated vortex ring. The same 
trend can also be observed as 1→q  in higher-order solitary modes. An example of the third-order dipole vector 
solitary wave in displayed in Fig. 5 for 8.0=q ， 0321 === DDD , and 231 == CC , 42 =C . 
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FIG. 5 (Color online) Same as Fig. 4, but for the third-order dipole vector solitary wave with 8.0=q . 

 
4. Stability of dipole vector solitary waves 
  The stability of the dipole vector modes was tested by direct simulations of Eq. (1). The simulations also confirmed 
the validity of analytical solutions (9), by comparing them to their numerical counterparts. Figure 6 shows the 
comparison between analytical and numerical solutions of Eq. (1), the latter obtained by means of the split-step 
beam-propagation method (see, e.g., Ref. [31], for a recent application of this method in a similar setting; the 
beam-propagation method based on the fast Fourier transform was introduced in Ref. [32]; in another context, the 
Fourier transform for the spatial dependence was introduced in Ref. [33] in combination with the leap-frog scheme for 
advancement in time). To this end, we solved Eq. (1) with initial conditions given by the exact solution (9) in 0=z  
and larger values of q . It is seen that the analytical solution is consistent with the numerical results. Here, we keep the 
same parameters as in Fig. 3, but increase the modulation depth to 95.0=q , which allows us to obtain a remarkably 
stable state [we remind that setting 1=q  in Eq. (4) corresponds to the transition to the scalar solitary mode]. The 
general conclusion is that the stability of the dipole vector modes is strongly affected by q  and improves for 1→q . 

   The effective ("convective") stabilization of the expanding ring-shaped structure may be explained in a qualitative 
way. To this end, we notice that a straightforward analysis of the dimension of different terms in the underlying equation 

(1), with ( )f I I= , predicts that the growth rate of the strongest instability of the vortex ring in a local Kerr medium 

against splitting by azimuthal perturbations [21] scales as γ ~ ( )max
2A  with the squared maximum amplitude of the 

nonlinear structure [22]. This estimate pertains to the quasi-stationary soliton (i.e., the one slowly expanding in a 

self-similar fashion), whose width scales as ( ) 1

max
A

−
, which obviously complies with the conservation of the total 

power of the soliton. In a more accurate form, the above estimate is presented by the linear dependence of the growth 

rate of the stationary scalar vortex soliton on the soliton's propagation constant ( )κ , at small values of κ , as per Fig. 

7 of Ref. [22] (a similar estimate was also given in Ref. [34]). Then, considering that the squared amplitude of the 
radially expanding ring decays with z  according to Eq. (10), we conclude that the accumulated splitting perturbation 

grows as ( ) ⎥⎦
⎤

⎢⎣
⎡ ′′⋅ ∫ −z 2zconstexp zd . Because the integral in this expression converges for ∞→z , the growth of the 

perturbation is bounded, and does not necessarily lead to the destruction of the structure. As for the instability against 
the collapse or decay, rather than the splitting, it is weaker than the splitting, as it grows with z  not exponentially, but 
according to a power law [21]. 
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 (a)                                                (b)  

FIG. 6 (Color online) Comparison of the analytical solution (9), panel (a), with numerical simulations, at 50=z , panel (b). The parameters are as  

in Fig. 3, except for 95.0=q . As in Figs. 3-5, the intensity of the vector solitary wave is 
2

2
2

1 uuI +=′ . A tiny mismatch between the two  

plots is a result of the finite accuracy of the numerical simulations, which are quite sensitive to details of the numerical scheme, in this case. 
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5. Conclusions 
 We have generalized the class of self-trapped beam solutions of the nonlinear Schrödinger equation in the form of 

scalar vortices and vortical vector solitary waves, with necklace-type structure. We have demonstrated that such 
nonstationary (expanding) solitary modes may be effectively stable, proposing a qualitative explanation of the 
"convective" stabilization. The solutions of the coupled 2D Schrödinger equations with a self-focusing Kerr 
nonlinearity were obtained in both analytical and numerical forms (using the Hirota method for the former). The 
numerical analysis confirmed the existence of an extended family of dipole vector spatial solitary waves. 
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Appendix 
Similar to Eq. (8), the second-order solitary-wave solutions to Eq. (5) can be obtained from Eq. (7) by setting 1=ε :  
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( )2,1=l . More generally, we can obtain the Lth-order solitary-wave solutions of Eq. (5), as defined in Ref. [28], in the 

form of 
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' ,exp, μμχμ
μ

,              (D1) 
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( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Γ+= ∑ ∑∑

= <=

∗
N

k

N

jk
jkkk jkzrg

2

1

2

1,0

,exp'', μμχμ
μ

,              (D2) 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Γ+= ∑ ∑∑

= <=

N

k

N

jk
jkkk jkzrf

2

1

2

1,0

,exp''', μμχμ
μ

,              (D3) 

with 

( ) ( )zbrza kkk += 2χ , ( )
izC

za
k

k 2
1
+

−= , ( ) ( )za
CC

z

CCCC

iDb k

kkkkkk

kk ln22arctan
8

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

+
−=

∗∗∗
for 

Nk 2,2,1 L= , and ∗
+ = kNk χχ , ∗

+ = kNk aa , ∗
+ = kNk bb ; ( ) ( ) ( )zazajk jk 22ln2, +−=Γ , for Nk L,2,1= , and 

NNj 2,,1L+= , or NNk 2,,1L+= , and Nj ,,2,1 L= ;                

( ) ( ) ( )zazajk jk 22ln2, −=Γ , for Nk L,2,1= ,  and Nj ,,2,1 L= , or NNk 2,,1L+= , and NNj 2,,1L+= .                

Here kC  and kD  are complex constants ( Nk 2,,2,1 L= ), ∑
<

N

jk

2

stands for the summation over all possible 

combinations of N2  elements taken with jk < , while ∑
= 1,0

'
μ

, ∑
= 1,0

''
μ

, ∑
= 1,0

'''
μ

 denote the summation over all 

possible combinations of 1,0=kμ  ( Nk 2,,2,1 L= ), satisfying the following relationships: 

∑∑
=

+
=

=
N

k
Nk

N

k
k

11
'' μμ ,   ∑∑

=
+

=

+=
N

k
Nk

N

k
k

11
''1'' μμ ,   ∑∑

==
+ +=

N

k
k

N

k
Nk

11

'''1''' μμ . 
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