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We report electromagnetically induced transparency using quantized fields in optomechanical
systems. The weak probe field is a narrow band squeezed field. We present a homodyne detection of
EIT in the output quantum field. We find that the EIT dip exists even though the photon number
in the squeezed vacuum is at the single photon level. The EIT with quantized fields can be seen
even at temperatures of the order of 100 mK paving the way for using optomechanical systems as
memory elements.

PACS numbers: 42.50.Gy, 42.50.Wk, 03.65.Ta

I. INTRODUCTION

The interaction of a nano mechanical system via the
radiation pressure [1, 2] is like a three wave interaction
in nonlinear optics [3]. This interaction can lead to pro-
cesses like upconversion for example a photon of fre-
quency ωc can be converted into a photon of frequency
ωp = ωc + ωm where ωm is the frequency of the mechan-
ical oscillator. Such upconversion processes have been
useful in cooling the nano mechanical systems [4–7]. In
a previous paper [8] we showed how such upconversion
processes can lead to electromagnetically induced trans-
parency in optomechanical systems. The EIT in such
systems turned out to share many of the features of EIT
in atomic vapors. The EIT in optomechanical systems
has been seen experimentally [9–11]. Traditionally al-
most all EIT experiments in atomic systems and other
systems have been done with coherent pump and probe
fields [12–14]. Akamatsu et al [15] did the very first ex-
periment on EIT using the squeezed light in atomic va-
pors. They essentially reported that squeezing of the
probe is not graded much by the quantum noise of the
medium under EIT conditions. Following this a num-
ber of other experiments [16, 17] on EIT using quantized
fields were reported. The EIT with quantized fields is
very significant in storage of fields at single photon level
[18–21].

In this paper we examine EIT in optomechanical sys-
tems using the quantized fields. In optomechanical sys-
tems the noise is added both by the resonator’s noise as
well as the noise of the mechanical system. We would
find conditions when perfect EIT of the quantized field
results. We would study how the temperature of the me-
chanical system can degrade the EIT. We would present
detailed results for designs of nano mechanical systems as
used in refs [9, 22]. We find that certain designs of nano
mechanical systems are good even at temperatures of the
order of 100mK. Thus such systems would be quite useful
as optical memories at single photon level. The results
that we present can be extended to reactive case [23–25].

The organization of the paper is as follows. In Sec. II,
we describe the model, derive the equations of the motion
for the system, and obtain the steady-state mean values.

In Sec. III, we show how to detect EIT with quantized
fields, we present a homodyne detection and obtain the
relevant spectrum. In Sec. IV, we discuss the impact
of the coupling field on the homodyne spectrum of the
output field, and show the existence of the EIT in the
homodyne spectrum of the quantized field at the output.
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FIG. 1: Sketch of the studied system. A coherent coupling
field at frequency ωc and a squeezed vacuum at frequency ωp

enter the cavity through the partially transmitting mirror.

II. MODEL

The model we are going to consider has been discussed
in detail before [26, 27] and is sketched in Fig. 1. The
cavity consists of a fixed mirror and a movable mirror
separated by a distance L. The fixed mirror is partial
transmitting, while the movable mirror is 100% reflect-
ing. The cavity is driven by a strong coupling field at
frequency ωc. A quantized weak probe field in a squeezed
vacuum state at frequency ωp is injected into the cavity
through the fixed mirror. The movable mirror interacts
with the cavity field through the radiation pressure. The
movable mirror is modeled as a harmonic oscillator with
mass m, frequency ωm, and decay rate γm. Moreover,
the movable mirror and its environment are in thermal
equilibrium at a low temperature T .
In such a system, the coupling between the movable

mirror and the cavity field is dispersive so that the fre-
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quency ω0(q) of the cavity field depends on the displace-
ment q of the movable mirror: ω0(q) = nπc/(L+q), where
c is the light speed in vacuum, and n is the mode number
in the cavity. For q ≪ L, we can expand ω0(q) to the

first order of q, thus we have ω0(q) ≈ ω0(0) +
∂ω0(q)

∂q
q ≈

ω0 − ω0

L
q, where we write ω0(0) as ω0.

Let c (c†) be the annihilation (creation) operators for
the cavity field, Q and P be the dimensionless operators
for the position and momentum of the movable mirror

with Q =
√

2mωm

~
q and P =

√

2
m~ωm

p. Note that the

commutation relation for Q and P is [Q,P ] = 2i. In a
frame rotating at the frequency ωc of the coupling field,
the Hamiltonian for the system is

H = ~(ω0 − ωc)c
†c− ~gc†cQ+

~ωm

4
(Q2 + P 2)

+i~ε(c† − c), (1)

In the above equation, the parameter g =
(ωc/L)

√

~/(2mωm) is the coupling strength between the
cavity field and the movable mirror, where we assume
ω0 ≃ ωc. The parameter ε is the real amplitude of the

coupling field, depending on its power ℘ by ε =
√

2κ℘
~ωc

,

where κ is the photon loss rate due to the transmission
of the fixed mirror.
The time evolution of the total system is obtained from

Hamiltonian (1) by deriving the Heisenberg equations of
motion and adding the damping and noise terms. The
basic equations are given by

Q̇ = ωmP,

Ṗ = 2gnc − ωmQ− γmP + ξ,

ċ = i(ωc − ω0 + gQ)c+ ε− κc+
√
2κcin,

ċ† = −i(ωc − ω0 + gQ)c† + ε− κc† +
√
2κc†in.

(2)

Here we have introduced the thermal Langevin force ξ
with vanishing mean value, resulting from the coupling
of the movable mirror to the environment. The Langevin
force ξ has the correlation function in the frequency do-
main:

〈ξ(ω)ξ(Ω)〉 = 4πγm
ω

ωm

[

1 + coth

(

~ω

2KBT

)]

δ(ω +Ω),

(3)

where KB is the Boltzmann constant. Throughout this
paper the following Fourier relations are used

f(t) =
1

2π

∫ +∞

−∞

f(ω)e−iωtdω,

f †(t) =
1

2π

∫ +∞

−∞

f †(−ω)e−iωtdω, (4)

where f †(−ω) = [f(−ω)]†. The cin represents the input
quantum field which is centered around the frequency

ωp = ωc + ωm with a finite bandwidth Γ. The quantized
field has the following nonvanishing correlation functions,

〈cin(ω)cin(Ω)〉 = 2π
MΓ2

Γ2 + (ω − ωm)2
δ(ω +Ω− 2ωm),

〈cin(ω)c†in(−Ω)〉 = 2π

[

NΓ2

Γ2 + (ω − ωm)2
+ 1

]

δ(ω +Ω),

(5)

where N is the photon number in the squeezed vac-
uum, and M =

√

N(N + 1). The antinormally ordered
term has a broad band contribution coming from vac-
uum noise. Note that by setting M = 0, we would
obtain standard phase independent quantum field with

mean number of photons NΓ2

Γ2+(ω−ωm)2 around the fre-
quency ω = ωm.
The mean values at steady state can be obtained from

Eq. (2) by setting all time derivatives to zero. These are
found to be

Ps = 0, Qs =
2g|cs|2
ωm

, cs =
ε

κ+ i∆
, (6)

where

∆ = ω0 − ωc − gQs (7)

is the effective cavity detuning.

III. THE OUTPUT FIELD AND ITS

MEASUREMENT
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FIG. 2: Sketch of the measurement of the output field. The
output field c̃out(t) is mixed with a strong local field cLo(t)
centered around the probe frequency ωp at a beam splitter,
where c̃out(t) is defined as the sum of the output field cout(t)
from the cavity and the input quantized field cin(t). BS: 50/50
beam splitter, PD: photodetector, SA: spectrum analyzer.

The output field is a quantum field, it contains many
Fourier components. Since the quantized input field is
centered around ωp = ωc+ωm, the interesting component
of the output field is near the probe frequency ωp. So we
mix the output field c̃out(t) with a strong local field cLo(t)
centered around the probe frequency ωp at a 50/50 beam
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splitter, as shown in Fig. 2. In a frame rotating at the
frequency ωc, cLo(t) = cLoe

−iδ0t, where δ0 = ωp − ωc.
The difference between the output signals from the two
photodetectors is sent to the spectrum analyzer, and the
output signal from the spectrum analyzer depends on the
phase of cLo. If cLo is real, the homodyne spectrum X(ω)
of the output field measured by the spectrum analyzer is
given by

〈[c∗Lo(t)c̃out(t) + c.c.][c∗Lo(t
′)c̃out(t

′) + c.c.]〉

=
c2Lo

2π

∫

dωe−iω(t−t′)X(ω). (8)

Thus in our investigations of EIT with quantized fields,
X(ω) is the quantity of interest.
In order to study the EIT effect in the homodyne spec-

trum X(ω) of the output field, we will calculate the fluc-
tuations of the output field. The steady state part would
not contribute as it is at the frequency of the coupling
field. We assume the photon number in the cavity is
large enough so that each operator can be written as a
linear sum of the steady-state mean value and a small
fluctuation, which yields

Q = Qs + δQ, P = Ps + δP, c = cs + δc, (9)

where δQ, δP , and δc are the small fluctuations around
the steady state. By substituting Eq. (9) into Eq.
(2), one can arrive at the linearized equations for the
fluctuation operators. Further we transform the lin-
earized equations into the frequency domain by Eq. (4)
and solve it, we can obtain the fluctuations δc(ω) of
the cavity field. Then using the input-output relation
cout(ω) =

√
2κc(ω)− cin(ω), we can find the fluctuations

δcout(ω) of the output field. For the purpose of Fig. (2)
we define the output field as c̃out(ω) = cout(ω) + cin(ω),
then we find the result

δc̃out(ω) = V (ω)ξ(ω)+E(ω)cin(ω)+F (ω)c†in(−ω), (10)

in which

V (ω) =

√
2κgcsωmi

d(ω)
[κ− i(ω +∆)],

E(ω) =
2κ

d(ω)
{2ig2|cs|2ωm + (ω2

m − ω2 − iγmω)

×[κ− i(ω +∆)]},

F (ω) =
4κ

d(ω)
ωmg2c2si, (11)

where

d(ω) = −4ωm∆g2|cs|2+(ω2
m−ω2−iγmω)[(κ−iω)2+∆2].

(12)
The first term on the right-hand side of Eq. (10) refers
to the contribution of the thermal noise of the movable
mirror, and the other two terms represent the contribu-
tion of the squeezed vacuum. To illustrate the mean-
ing of the last two terms, let the squeezed vacuum be
a single mode i.e. cin(t) = Ce−i(ωp−ωc)t, then cin(ω) =

2πCδ(ω − ωp + ωc) and c†in(−ω) = 2πC†δ(ω + ωp − ωc).
Thus the fluctuations of the output field δc̃out(t) =
1
2π

∫ +∞

−∞
V (ω)ξ(ω)e−iωtdω + CE(ωp − ωc)e

−i(ωp−ωc)t +

C†F (ωc − ωp)e
−i(ωc−ωp)t. Therefore, E(ωp − ωc) is the

component at the probe frequency ωp [which in rotating
frame is ωp − ωc], and F (ωc − ωp) is the component at
the new frequency 2ωc − ωp [which in rotating frame is
ωc − ωp], due to the nonlinear interaction between the
movable mirror and the cavity field.

By the aid of the correlation functions of the noise
operators cin(ω) and ξ(ω), and neglecting fast oscillat-
ing terms at frequency ±2ωm, we obtain the homodyne
spectrum X(ω) of the output field as measured by the
set up of Fig. 2

X(ω) = E(ω + ωm)E(−ω + ωm)
MΓ2

Γ2 + ω2
+ |E(ω + ωm)|2 NΓ2

Γ2 + ω2

+E∗(−ω + ωm)E∗(ω + ωm)
MΓ2

Γ2 + ω2
+ |E(−ω + ωm)|2 NΓ2

Γ2 + ω2

+|E(ω + ωm)|2 + |F (−ω + ωm)|2

+|V (ω + ωm)|22γm
ω + ωm

ωm

{

1 + coth

[

~(ω + ωm)

2kBT

]}

+|V (−ω + ωm)|22γm
ω − ωm

ωm

{

1 + coth

[

~(ω − ωm)

2kBT

]}

, (13)

where the first four terms in Eq. (13) originate from the
squeezed vacuum, the next two terms not involving N

and M are the contributions of the spontaneous emission
of the input vacuum noise; the last two terms in Eq. (13)
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result from the thermal noise of the movable mirror.

IV. EIT IN THE HOMODYNE SPECTRUM OF

THE OUTPUT QUANTIZED FIELD

After having derived the homodyne spectrum of the
output field, we next examine it numerically to explore

the EIT phenomenon in the homodyne spectrum of the
output field. Since the original equations (2) are nonlin-
ear, these can have instabilities. Thus in the following,
we work in the stable regime of the system. We first
examine the frequency at which we expect transparency.
This is ω = 0. For N ≈ M ,

X(0) = N [E(ωm) + E∗(ωm)]2 + |E(ωm)|2 + |F (ωm)|2 + 4|V (ωm)|2γm coth

[

~ωm

2kBT

]

. (14)

We use the parameters from the experimental paper [9]
focusing on the EIT in the optomechanical system: the
wavelength of the coupling field λ = 2πc/ωc = 775 nm,

the coupling constant g = 2π×12 GHz/nm
√

~/(2mωm),
the mass of the movable mirror m = 20 ng, the frequency
of the movable mirror ωm = 2π×51.8 MHz, the cavity de-
cay rate κ = 2π×15 MHz, κ/ωm = 0.289, the mechanical
damping rate γm = 2π × 41 kHz, the mechanical quality
factor Q′ = ωm/γm = 1263. In addition, we choose the
linewidth of the squeezed vacuum Γ = 2κ, and consider
the resonant case ∆ = ωm.

For N = 10 and M =
√

N(N + 1) ≈ 10, ℘ = 20 mW,
T = 20 mK, the first term in Eq. (14) which is the con-
tribution of the squeezed vacuum is about 6.5×10−4, the
sum of the second and third terms in Eq. (14) which are
the contribution of the input vacuum noise is about 0.16,
the last term arising from the thermal noise of the mov-
able mirror is about 0.14. The contribution of the input
quantum field in principle can be obtained by doing the
experiment with and without the quantized field and by
subtracting the data i.e. by studying X(0)−X(0)|N=0.
The squeezed field part in a sense exhibits perfect EIT.
If M = 0, i.e. the input quantized field is phase insensi-
tive, then such a field leads to a term 2N |E(ωm)|2 which
is equal to 1.6 for the above mentioned parameters and
hence there is no perfect EIT. The squeezed field changes
2N |E(ωm)|2 to N [E(ωm) + E∗(ωm)]2 and for the above
parameters the number changes from 1.6 to 6.5× 10−4.

For N = 5, M =
√

N(N + 1) and 0, T = 20 mK, we
plot the homodyne spectrum X(ω) of the output field as
a function of the normalized frequency ω/ωm in the ab-
sence (dotted curve) and presence (solid, dotdashed, and
dashed curves) of the coupling field in Fig. 3. First let us
look at the case that the input quantum field is phase de-
pendent (M =

√

N(N + 1)). In the absence of the cou-
pling field, one can note that the homodyne spectrum of
the output field has a Lorentzian line shape. However, in
the presence of the coupling field at different power levels,
the solid curve (℘ = 10 mW and M =

√

N(N + 1)) and

the dotdashed curve (℘ = 20 mW andM =
√

N(N + 1))
exhibit the EIT dip, which is the result of the destruc-
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FIG. 3: (Color online) Plots of the homodyne spectrum X(ω)
as a function of ω/ωm for N = 5 in the absence (dotted curve)
and the presence (solid, dotdashed, and dashed curves) of the
coupling field for the temperature of the environment T = 20
mK. The solid curve is for ℘ = 10 mW and M =

√

N(N + 1),

the dotdashed curve is for ℘ = 20 mW and M =
√

N(N + 1),
the dashed curve is for ℘ = 20 mW and M = 0.

tive interference between the squeezed vacuum and the
scattering quantum field at the probe frequency ωp gen-
erated by the interaction of the coupling field with the
movable mirror. For ℘ = 20 mW and M =

√

N(N + 1),
the minimum value of X(ω) is about 0.22. Moreover, the
linewidth of the dip for ℘ = 20 mW is larger than that
for ℘ = 10 mW due to power broadening. Generally the
EIT dip has a contribution to its width which is propor-
tional to the power of the coupling field. We indeed find
that the width for ℘ = 20 mW is 0.26ωm, which is about
twice the width for ℘ = 10 mW. If the input quantum
field is phase independent (M = 0) [the dashed curve],
we can see that the maximum value of X(ω) for ℘ = 20
mW and M = 0 is about half that for ℘ = 20 mW and
M =

√

N(N + 1).

Next we increase the temperature to 100 mK. The fig-
ure 4 displays the homodyne spectrum X(ω) of the out-
put field against the normalized frequency ω/ωm in the
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absence (dotted curves) and presence (solid curves) of

the coupling field for N = 1, 5 and M =
√

N(N + 1).
In the presence of the coupling field (℘ = 10 mW), it is
seen that the EIT dip still appears in the homodyne spec-
trum of the output field for N = 1 and 5. Note that the
two dips almost have the same minimum values (about
1.43) and the same linewidth (about 0.15ωm). Hence the
temperature of the environment is not detrimental to the
EIT behavior.
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FIG. 4: (Color online) Plots of the homodyne spectrum X(ω)
as a function of ω/ωm for different values of the parameter N

and M =
√

N(N + 1) in the absence (dotted curves) and the
presence (solid curves) of the coupling field with power ℘ = 10
mW and the temperature of the environment T = 100 mK.
The upper two curves are for N = 5, the lower two curves are
for N = 1.

The effects discussed above occur under wide range of
parameters. We demonstrate this by using the experi-
mental parameters [22]: λ = 2πc/ωc = 1064 nm, L = 25

mm, g ≈ 2π × 11.28 MHz/nm
√

~/(2mωm), m = 145 ng,
ωm = 2π × 947 kHz, κ = 2π × 215 kHz, κ/ωm = 0.227,
γm = 2π × 141 Hz, Q′ = ωm/γm = 6700. The values for
parameters T , ℘, N ,M , Γ, and ∆ are the same as those in
Fig. 4. Shown in Fig. 5 is the homodyne spectrum X(ω)
of the output field as the normalized frequency ω/ωm is
varied for T = 100 mK and ℘ = 0, 10 mW. Note that the
EIT exists for N = 1 and 5 in the presence of the cou-
pling field. The linewidth of the dip for N = 5 is about
0.2ωm, and as expected gets broadened due to power. We

have further studied the effect of temperature and we find
that there is rather weak dependence of the EIT curves
on temperature. Therefore, current optomechanical de-
signs can be used to realize quantum optical memory at
single photon level. This can be demonstrated using the
numerical simulations and following the standard pro-
cedure as in Refs. [19–21]. One has to modulate the
squeezed vacuum field cin so that it is a pulse field and
use say a super Gaussian for the coupling field. The su-
per Gaussian enables one to conveniently switch on and
off the coupling field [28].
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FIG. 5: (Color online) Same as in Fig. 4 but now the param-
eters used are from Ref. [22].

V. CONCLUSIONS

In conclusion, we have demonstrated EIT using quan-
tum fields in optomechanical systems under a wide range
of conditions. For squeezed quantum fields we obtained
perfect EIT. The EIT gets degraded in phase insensi-
tive quantum fields. We have shown that even temper-
ature is not critical for observations of EIT. The results
get be generalized to optomechanical systems working
on the reactive coupling [23–25]. Our work suggest that
optomechanical systems could be used as elements for
quantum memory, explicit demonstration would be given
elsewhere.
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Aspelmeyer, and A. Zeilinger, Nature (London) 444, 67

(2006).
[5] O. Arcizet, P. -F. Cohadon, T. Briant, M. Pinard, and

A. Heidmann, Nature (London) 444, 71 (2006).
[6] A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and

T.J. Kippenberg, Nature Physics 4, 415 (2008).
[7] Y. Park and H. Wang, Nature Physics 5, 489 (2009).
[8] G. S. Agarwal and S. Huang, Phys. Rev. A 81, 041803(R)

(2010).
[9] S. Weis, R. Rivière. S. Deléglise, E. Gavartin, O. Arcizet,
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