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A recent experiment has provided the first tentative evidence for itinerant ferromagnetism in an
ultracold atomic gas. However, the interpretation of the results is complicated by significant atom
losses. We argue that during the loss process the system gradually heats up but remains in local
equilibrium. To quantify the consequences of atom loss on the putative ferromagnetic transition
we adopt an extended Hertz-Millis theory. The losses damp quantum fluctuations thus increasing
the critical interaction strength needed to induce ferromagnetism, and revert the transition from
being first to second order. This effect may resolve a discrepancy between the experiment and
previous theoretical predictions. We further illuminate the impact of loss by studying the collective
spin excitations in the ferromagnet. Even in the fully polarized state, where loss is completely
suppressed, spin waves acquire a decay rate proportional to the three-body loss coefficient.

PACS numbers: 03.75.Ss, 71.10.Ca, 67.85.-d

I. INTRODUCTION

The Stoner transition from a paramagnetic metal to a
ferromagnet is one of the earliest known and seemingly
simple examples of a quantum phase transition. Yet re-
cent theoretical work [1–5] has revealed a great deal of
complexity and suggests that quantum fluctuations play
a vital role in determining the behavior near to the quan-
tum critical point. Specifically, fluctuations drive the fer-
romagnetic transition first order at low temperature and
may lead to the formation of novel phases [2, 5]. Whether
these effects can explain puzzling experimental observa-
tions in materials such as ZrZn2 and Sr3Ru2O7 [7], or if
coupling to phonons or other auxiliary degrees of freedom
is involved remains an open question. Ultracold Fermi
gases tuned by a Feshbach resonance now offer a con-
crete platform from which to answer such questions [4]
and enhance our understanding of quantum critical phe-
nomena in itinerant ferromagnets [8, 9]. A recent exper-
iment [10] has provided the first evidence that could be
consistent with a ferromagnetic state [4, 6, 11, 12], but
cannot definitively prove that some other strongly cor-
related phase [13] was not formed. A major obstacle to
the identification of a ferromagnetic phase in an ultra-
cold atomic gas is the loss of atoms due to three-body
interactions [6, 10, 14].

In this paper we demonstrate how the consequences of
loss extend far beyond a simple fall in atom number. We
highlight the quantum effects of the loss, showing that
they induce fundamental changes in the phase diagram.
Motivation for such an analysis comes in part from stud-
ies of one-dimensional Bose gases, where it was shown
that the mere potential for significant two-body loss can
give rise, all by itself, to Tonks-Girardeau correlations
in the gas [15]. In the itinerant fermion system, we dis-
cover that three-body losses damp quantum fluctuations,
which are vital in the establishment of the equilibrium
phase diagram [1, 2, 4, 5]. Consequently the phase tran-
sition reverts from first to second order. Moreover, the

critical interaction strength required to stabilize the fer-
romagnetic state increases significantly, from kFa ≈ 1.2
in the equilibrium theories [6, 11] to kFa ≈ 2.4, thus
resolving a discrepancy with the experimental signature
at kFa ≈ 2.2. We further predict that spin-waves of the
ferromagnetic phase acquire a finite lifetime in the pres-
ence of loss and propose a new experimental protocol to
observe this effect.

Before proceeding let us outline the structure of the
paper. In section II we derive an effective action for the
Fermi gas in the repulsive branch of the resonance, taking
into account the effect of loss. This is done by integrating
both over molecules formed virtually in two-body colli-
sions and over molecules and fast particles formed from
three-body collisions. The latter give rise to an imaginary
three-body term in the action, which we show generates
imaginary single particle and two-body terms in the ac-
tion upon renormalization to low energies. In section
III we adapt the generalized RPA formalism, previously
used to analyze the itinerant ferromagnetic transition [9],
to include the new terms due to loss. The phase dia-
gram, obtained from the Ginzburg-Landau free energy
thus derived, is presented in section IV. In this section
we also discuss the impact of loss on the collective spin
excitations of the ferromagnet and propose experimen-
tal protocols to measure their dispersion and lifetime. In
section VI we justify the effective-equilibrium approach
used in the previous sections. By solving kinetic equa-
tions of the Fermi gas, we show that the combination of
loss and relaxation gives rise to an effective equilibrium
distribution with slowly varying temperature and chem-
ical potential. For a wide parameter regime, the heating
rate is sufficiently slow to be considered adiabatic with
respect to the quantum corrections discussed in section
III. We conclude in section VII with a summary and
outlook.
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II. RENORMALIZATION OF INTERACTIONS

Our goal is to calculate the quantum partition func-
tion with a fermionic coherent state path integral Z =∫
D(ψ, ψ̄) exp

(
−S[ψ, ψ̄]

)
. A common difficulty in ad-

dressing the Stoner transition is that it occurs at an inter-
mediate coupling regime, with no small parameter to con-
trol a fluctuation expansion. The standard approach is to
tackle the problem from the weak coupling or dilute limit,
with the expectation, that at least qualitative features
of the analysis persist near to the transition point [1–
4, 9]. This expectation is indeed supported by Quantum
Monte-Carlo studies of a lossless model [5, 16, 17]. Here
we adopt the same strategy, assuming the dilute limit in
deriving the effective interactions including the effects of
loss. In particular, the dominant loss mechanism in the
dilute limit is the so called three-body loss [6, 10, 14].

A common starting point for addressing the Stoner in-
stability in ultracold atomic gases is the effective action
for a two component Fermi gas with a repulsive contact
interactions

S=
∫ β

0

dτdr

[∑
σ

ψ̄σ (∂τ+εk−µ)ψσ+gψ̄↑ψ̄↓ψ↓ψ↑

]
. (1)

Here β = 1/kBT is the inverse temperature and we have
also set ~ = m = 1. The two component atoms are repre-
sented by the Grassman fields ψ̄, ψ and are characterized
by the single particle dispersion εk = k2/2. The inter-
action is represented here by a repulsive s-wave contact
potential gδ3(r). It is important to note however that
the microscopic interaction is in fact attractive, and in
the regime of interest it supports a two-body bound state
(Feshbach molecule). This degree of freedom is missing
in the action (1). The bound state has been integrated
out to give the effective repulsive interaction, as the two
body T-matrix for scattering at positive energies. In (1)
the T -matrix is approximated by its zero energy limit
which is energy independent, or in other words an effec-
tive contact interaction. This will have to be regularized
properly to avoid ultra-violet divergences. It is also im-
portant to note, that since the bound molecular state has
been integrated out to obtain (1), the effect of loss the
effect of loss into the molecular state is not included in
this formalism.

Let us now derive the effective action taking the atom
loss into account. In the cold atom gas at low densities
(kFa � 1, where kF is the Fermi wave vector and a is
the s-wave scattering length), the loss occurs following a
three-body collision in which two atoms bind to a Fes-
hbach molecule and the third atom removes the excess
energy. To introduce the effect of loss into the effective
action we have to integrate out the bound state, while in-
cluding the three-body processes in addition to the two
body T -matrix in Fig. 1(a). The appropriate Feynman
diagrams for the 3-body T -matrix are shown in Fig. 1(b)
and (c). The resulting contribution of 3-body interac-

(a)

(b)

(c)

FIG. 1: (Color online) Three Feshbach molecule formation
processes; (a) a second order process that can form only vir-
tual unstable molecules, which can be stabilized by a third
atom in processes (b) and (c). The single line corresponds to
fermions, and double lines to Feshbach molecules.

tions to the action is

iλ′
∫

drdRψ̄↑(R+r)ψ̄↓(R+r)[ψ̄↑(R)ψ↑(R)+ψ̄↓(R)ψ↓(R)]

× ψ↓(R + r)ψ↑(R + r)f(r) , (2)

where λ′ is real and f(r) spans the range ∼ a over
which the putative Feshbach molecule can interact with
a third atom to carom its excess energy. We adopt
the normalization for the Feshbach molecule potential of∫

drf(r) = 1.
Note that we obtain an imaginary 3-body interaction.

This is because both the bound state and the outgoing
fast particle, which are integrated over, are on-shell and
describe a physical decay process. That we obtained an
imaginary term in the action should not come as a sur-
prise, as it merely betrays the fact that the system is ini-
tialized in an unstable state and is therefore out of equi-
librium. We shall nevertheless continue with the analysis
of the effective action within the Matsubara formalism
assuming that the system can be considered as being in
quasi-equilibrium. Later, in Sec. VI we shall provide ar-
guments which justify this hypothesis.

To further simplify the interaction we consider the di-
lute (weak interaction) limit kFa � 1. In this regime
the molecule is small compared to the average particle
separation and we can therefore make a gradient expan-
sion in the fields of Eq. (2). It is also natural to turn to
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a momentum space representation. Next, we note that
single particle terms and two-body interactions are gen-
erated upon integrating out high energy Fermions per-
turbatively in λ

iλ
2

[
ρ̄↑ρ̄↓

∑
σ,k

k2ψ̄σkψσk+

ρ̄↑
V

∑
k,k′,q

k · k′ψ̄↑kψ̄↓k′+qψ↓k+qψ↑k′+

ρ̄↓
V

∑
k,k′,q

k · k′ψ̄↑k+qψ̄↓k′ψ↓kψ↑k′+q

]
, (3)

where ρ̄σ is the average density of species σ, V is the
system volume, and λ = 3a2λ′/10. We shall retain only
these terms in the action, which are much more relevant
at low energies than the original original three-body in-
teraction [18].

III. FERROMAGNETISM

We are now in a position to study the consequences
of atom loss within the standard formalism established
to treat fluctuations in itinerant ferromagnets [9], taking
into account the effective interactions (3) generated by
the three-body loss.

Before proceeding we generalize the formalism by in-
troducing an atom source term of the form −iγ

∑
σ ψ̄σψσ

into the action. For the most part we shall set γ = 0,
which describes the physical system at hand. However
there is conceptual appeal to consider a source with γ > 0
that can counterpoise the atom loss and thus lead to a
true steady-state, in which the notion of a phase transi-
tion can be better defined. The source term also provides
a template of how to apply the formalism to other phys-
ical systems such as polaritons in which laser pumping
cancels particle loss. Within this formalism, the action
is now

S=
∫ β

0

dτdk

[∑
σ

ψ̄σk
(
∂τ + εk + iλρ̄↑ρ̄↓k2 − µ− iγ

)
ψσk

+
∫

dk′dq [g + iλρ̄↑k · k′] ψ̄↑kψ̄↓k′+qψ↓k+qψ↑k′

+
∫

dk′dq [g + iλρ̄↓k · k′] ψ̄↑k+qψ̄↓k′ψ↓kψ↑k′+q

]
. (4)

Finally we focus on the momentum dependence of the
two-body term. In Ref. [5] it was shown that the
dominant contribution due to fluctuation contributions
stemmed from electron-hole excitations at the Fermi sur-
face near to |k + k′| = 2kF, and therefore the principal
contribution to the action from fluctuation corrections
stems from k · k′ = −k2

F. Using this we recover the ac-

tion

S=
∫ β

0

dτdk

[∑
σ

ψ̄σk
(
∂τ + εk+iλρ̄↑ρ̄↓k2−µ−iγ

)
ψσk

+
∫

dk′dq [g−iλ(ρ̄↑µ↑+ρ̄↓µ↓)] ψ̄↑k+qψ̄↓k′ψ↓kψ↑k′+q

]
,

(5)

where the Fermi surface of the separate spin species is
µσ = k2

F,σ/2.
To proceed we calculate the free energy following the

prescription laid out in Ref. [9]. First we introduce a
Hubbard-Stratonovich transformation in both the den-
sity channel ρ and the magnetization channel φ to decou-
ple the quartic terms in the fermionic field. This leads
us to identify the spectrum ξk,σ = εk + iλρ̄↑ρ̄↓k2/2 −
iγ + [g− iλ(ρ̄↑µ↑ + ρ̄↓µ↓)](ρ− σφ)− µ. After integrating
out the fermionic variables we expand the fluctuations in
the bosonic fields to quadratic order and also integrate
them out. To remove the unphysical ultraviolet diver-
gence of the contact interaction we employ the standard
regularization setting g 7→ 2kFa

πν −
2
V ( 2kFa

πν )2
∑′

k3,4
(ξk1,↑+

ξk2,↓ − ξk3,↑ − ξk4,↓)
−1 [19]. The prime indicates that

the summation is subject to the momentum conserva-
tion k1 + k2 = k3 + k4 and ν is the density of states at
the Fermi surface of an equivalent non-interacting gas.
This regularization allows us to characterize the strength
of the interaction through the dimensionless parameter
kFa, where kF denotes the Fermi wave vector and a is the
s-wave scattering length. The analysis yields a perturba-
tion expansion in terms of the dimensionless interaction
strength kFa and the loss parameter λ. We now set the
fields to their as yet undetermined saddle point values
ρ = (ρ̄↑+ ρ̄↓)/2 and φ = (ρ̄↑− ρ̄↓)/2 to yield the complex
free energy

F =
∑
σ

∫
dk(εk + iλρ̄↑ρ̄↓k2/2− iγ)n(ξk,σ)

+
[

2kFa

πν
− iλ(ρ̄↑µ↑ + ρ̄↓µ↓)

]∑
k

n(ξk,↑)
∑
k

n(ξk,↓)

− 2
[

2kFa

πν
− iλ(ρ̄↑µ↑ + ρ̄↓µ↓)

]2
Υ , (6)

where the quantum fluctuations are encoded in the term

Υ =
∑

k1,2,3,4

′ n(ξk1,↑)n(ξk2,↓) [n(ξk3,↑) + n(ξk3,↓)]
ξk1,↑ + ξk2,↓ − ξk3,↑ − ξk4,↓

, (7)

and now ξk,σ = εk + iλρ̄↑ρ̄↓k2/2 − iγ + [2kFa/πν −
iλ(ρ̄↑µ↑ + ρ̄↓µ↓)]ρ̄σ − µ.

To analyze this complex free energy F , we shall sepa-
rate it into its real and imaginary parts. In Sec. IV we
will study the phase diagram inferred from considering
only the real part of the free energy. The imaginary part
betrays the fact the system is not in true equilibrium.
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Constant loss of particles leads to slow heating and de-
pletion of the system, whose effects cannot be studied
within our imaginary time formalism. In section Sec. VI
we shall use kinetic equations to show that the net effect
of these terms is to drive an effective equilibrium state
with slowly rising temperature.

To facilitate the splitting of the free energy, we now
separate the spectrum ξk,σ = ξ0k,σ + i∆k,σ into its real
part ξ0k,σ = εk + 2kFaρ̄σ/πν − µ and imaginary part
∆k,σ = λρ̄↑ρ̄↓k

2/2 − γ − λ(ρ̄↑µ↑ + ρ̄↓µ↓)ρ̄σ. We notice
that the imaginary part ∆k,σ is perturbatively small in
λ and γ. Consistent with the perturbation expansion
in the interaction strength, we use the low temperature
expression n(ξ0k,σ + i∆k,σ) ≈ n(ξ0k,σ) − i∆k,σδ(ξ0k,σ) +
∆2

k,σδ
′(ξ0k,σ)/2 to expand the Fermi-Dirac distributions

in Eq. (6) and Eq. (7) out to quadratic order in ∆k,σ.
We see that contributions to the free energy that are
quadratic in ∆k,σ are real and so will contribute to the
real part of the free energy whereas the linear order terms
are imaginary.

The real part of the free energy is F = F0+Λ(λ), where
the standard theory of a lossless system is encoded in the
term

F0 =
∑
σ,k

εkn(ξ0k,σ) +
2kFa

πν
ρ̄↑ρ̄↓ − 2

(
2kFa

πν

)2

Υ0 . (8)

An identical expression was derived in the homogeneous
case in Ref. [1, 4, 9] using second order perturbation the-
ory. The renormalization of the interaction strength due
to atom loss enters through

Λ = 2λ2(ρ̄↑µ↑ + ρ̄↓µ↓)2
(

Υ0 −
∑
σ

ρ̄2
−σµσν

′
σ

)
+ λ(ρ̄↑µ↑ + ρ̄↓µ↓)

∑
σ

(γ − λρ̄↑ρ̄↓µσ)ρ̄−σ(νσ − 2µσν′σ)

+
∑
σ

(γ − λρ̄↑ρ̄↓µσ)2
[νσ

2
− µσν′σ

]
, (9)

where νσ denotes the density of states at the Fermi energy
of species σ, and ν′σ is the differential of the density of
states at the Fermi surface. Only those terms containing

Υ0 =
∑

k1,2,3,4

′ n(ξ0k1,↑)n(ξ0k2,↓)
[
n(ξ0k3,↑) + n(ξ0k3,↓)

]
ξ0k1,↑ + ξ0k2,↓ − ξ

0
k3,↑ − ξ

0
k4,↓

, (10)

are embedded with quantum many-body effects real-
ized through fluctuation corrections. The remainder are
mean-field terms derived from expanding the kinetic en-
ergy and Stoner interaction terms.

We now turn to obtain the imaginary part of the free
energy. This is

λ

(
ρ̄↑ρ̄↓

∑
σ

µ2
σνσ −

∑
σ

ρ̄σµσ
∑
σ′

ρ̄σ′µ−σ′ν−σ′

)

− γ

(∑
σ

ρ̄σ + µσνσ

)
. (11)

The actual experiment is most naturally described by
setting γ = 0, and in this case we have an imaginary term
in the free energy that drives actual loss from the system.
We shall complement the γ = 0 approach with one that
compensates for the three-body loss with a linear gain
term γ > 0. Strictly speaking, the phase boundary is
defined only in this case which describes a steady state.
Having no net loss demands that there is no imaginary
component to the free energy, which fixes the atom source
term to

γeq = λ

∑
σ ρ̄σµσ

∑
σ′ ρ̄σ′µ−σ′ν−σ′ − ρ̄↑ρ̄↓

∑
σ µ

2
σνσ∑

σ ρ̄σ + µσνσ
.

(12)

Here νσ denotes the density of states at the Fermi energy
of species σ. We note that the atom loss is zero when the
system is fully polarized and then in any case γ = 0.

IV. PHASE DIAGRAM

Having derived an expression for the free energy we
now turn to study its phase diagram. To determine the
phase diagram we use the real part of the free energy,
focusing on the boundary of the fully polarized state.
Later, in Sec. VI we will return to address the loss dy-
namics implied by the imaginary part of the free energy
and determine in which situations it can be safely ne-
glected.

We first consider the mean-field approximation ob-
tained by neglecting the fluctuation corrections Υ0 in the
free energy. As seen in Fig. 2(a,c), within the mean-field
approximation atom loss stabilizes the fully polarized
phase, which consequentially can be seen at weaker inter-
action strengths, and the transition remains second or-
der. When we consider the collective modes in Sec. V we
will see that there is a maximum loss rate λ = 25/33/5πν
beyond which the fully polarized state cannot be formed,
bounding the fully polarized region.

When fluctuations are taken into account in
Fig. 2(b,d), we see two important changes. First, with-
out loss (λ = 0) the fluctuations reduce the critical
interaction strength needed to enter the ferromagnetic
phase (kFa ≈ 1.05) as compared to the mean-field the-
ory (kFa

∗ = 25/33/5 ≈ 1.9), and also drive the tran-
sition to be first order. This has been pointed out be-
fore in Refs. [4, 5, 9]. Second, with loss, the interac-
tion strength required to enter the ferromagnetic phase
increases. Moreover, for sufficiently high loss the tran-
sition reverts from being first order back to second or-
der. These are consequences of the dissipative effect of
loss on the quantum fluctuations, which can be exposed
by returning to Eq. (8) and Eq. (9), and noting that
the total contribution to the free energy from the quan-
tum fluctuations, that is all terms proportional to Υ0,
is 2Υ0[λ2(ρ̄↑µ↑ + ρ̄↓µ↓)2 − (2kFa/πν)2]. We see that in-
creasing loss acts in opposition to increasing interaction
strength so loss removes the first order transition and
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FIG. 2: (Color online) The required interaction strength at (left) T = 0 and (right) T = 0.14εF to reach the shaded full
polarization with changing loss rate λ in (a,c) the mean-field case and (b,d) when fluctuation corrections are considered. The
experimental [20] atom loss variation is shown by the red points and accompanying trajectory. In (a,c) the regions where
collective modes are underdamped and overdamped are highlighted, and the ferromagnetic transition is always second order.
The ferromagnetic state is not stable beyond λ = 25/33/5πν (see Sec. V). In (b,d) the phase boundary is shown in the absence
of atom source (γ = 0) and with an atom source that compensates for loss (γ = γeq). The first order fully polarized boundary
is plotted with the dotted line, and the second order boundary is shown by the solid line.

raises the interaction strength that the transition is seen
at.

Having understood the main features of the phase di-
agram in the presence of loss we now focus on how it
varies when we consider two additional parameters: an
atom source and temperature. In the presence of an atom
source that compensates the loss (γ = γeq) the system
displays the same qualitative behavior, though the tran-
sition takes place at a reduced interaction strength. All
the effects are in essence unchanged by the compensat-
ing source term, because they stem from an inherently
quantum mechanism underlying the renormalization of
the interaction strength, rather than a purely classical
fall in the atom number. The consistency of the pre-
dicted boundaries for γ = 0 and γ = γeq also verifies
the robustness of our approach. Secondly, we will show
in Sec. VI that loss blurs the Fermi surface so raises the
effective temperature of the system. We focus on the
special temperature 0.14εF, which we show in Sec. VI
corresponds to the loss driven temperature rise for the
particular experimental parameters. Finite temperature
has only a small effect on the phase diagram, and chiefly
reduces the range over which the transition is first or-
der rather than second order. This is because we are
approaching the tricritical point at T ≈ 0.2εF [4], where

the transition reverts to being second order even in the
absence of loss.

V. EXPERIMENTAL OBSERVATION

Having studied the phase diagram Fig. 2, we now turn
to consider how it could be probed experimentally, and
the impact of loss on properties of the ferromagnetic
phase. In the strongly interacting regime we use experi-
mental results [20] to determine how the loss rate varies
with interaction strength, and interpolate the trajectory
that the atom gas follows through the phase diagram.
The system undergoes a second order transition into the
fully polarized phase at kFa ≈ 2.4, which compares favor-
ably with the experimental observation that the atomic
gas became fully polarized at kFa ≈ 2.2 [10]. The
observation of a significantly raised critical interaction
strength, compared to the equilibrium theory (kFa ≈ 1.0)
[6, 11], is therefore strongly suggestive of the important
role that the damping of quantum fluctuations has to
play.

Collective modes in the ferromagnet. We now consider
the impact of loss on the collective spin excitations of
the ferromagnet. We focus on the fully polarized regime,
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where we have only transverse collective modes driven
by the inverse propagator 1 + 2kFa

πν

∑
ω,pG↑(ω + Ω,p +

q)G↓(ω,p) [9]. Equating this to zero yields collective
mode frequencies with both a real and an imaginary part.
The real part, which gives the collective mode dispersion
is

Ω =
q2

2

(
1− kFa

∗

kFa

1
1 + λ̃2/(kFa)2

)
, (13)

where λ̃ = λ(ρ̄↑µ↑ + ρ̄↓µ↓) and kFa
∗ = 25/33/5 denotes

the interaction strength of the mean-field Stoner insta-
bility to full polarization. Disregarding losses, the col-
lective modes dispersion is identical to that found by
Callaway [21]. The quadratic spin dispersion is equal
to that of a single minority spin species particle prop-
agating through a sea of majority spin particles. The
dispersion rises with increasing interaction strength kFa
as the system becomes stiffer against spin rotation. Atom
loss introduces an additional energy penalty for fluctua-
tions, and consequentially the dispersion also rises with
the loss rate parameter λ̃. To fully expose the influence
that atom loss has over the dispersion it is useful to fo-
cus on the instability to a partially polarized phase which
develops at

kFa =
kFa

∗

2
+

√
(kFa∗)2

4
− λ̃2 . (14)

Without three-body loss, the fully polarized phase be-
comes unstable at kFa = kFa

∗ in accordance with the
prediction of the mean-field Stoner model. At mean-
field level fluctuations destroy the ferromagnetic state, so
Eq. (14) matches the boundary Fig. 2(a,c) which demon-
strates how increased loss reduces the required interac-
tion strength. Working at the mean-field level, there is a
maximum loss rate, λ̃ = kFa

∗/2, beyond which the fully
polarized state cannot be formed.

In addition to renormalizing the dispersion, the pres-
ence of a loss interaction also leads to the decay of the
spin excitations. As the spin wave propagates the atom
spins develop a component in the opposite spin direction
and so incurs atom loss, which in turn damps the spin
wave. The characteristic inverse timescale of damping,
or width, of a transverse mode can be found from the
imaginary component of its frequency,

Γ =
q2

2
kFa

∗λ̃

(kFa)2
1

1 + λ̃2/(kFa)2
. (15)

We see that due to atom loss the spin-waves become res-
onances that are characterized by a momentum indepen-
dent quality factor

Q ≡ Ω
Γ

=
1

kFa∗

(
(kFa)2

λ̃
+ λ̃

)
− kFa

λ̃
. (16)

In Fig. 2(a,c) we highlight the region Q < 1, where spin
excitations completely lose their integrity.

In experiment, these collective modes can be ex-
cited and probed by spin-dependent Bragg spectroscopy.
A variable wavelength optical lattice potential couples
asymmetrically to the spin degrees of freedom, and
thereby excites transverse magnetic fluctuations. The
collective mode response could be studied through dy-
namical fluctuations of the cloud spatial distribution as
a function of wavelength, laser amplitude, and detuning.

An experimental handle that could modify the atom
loss rate would gift investigators with the ability to fully
explore the consequences of atom loss. This can be
achieved for example using an additional bosonic [22] or
different fermion [23] species that would act as a third
body. The loss rate will be proportional to the density of
this third species, which can be conveniently controlled.

VI. LOSS DRIVEN HEATING &
QUASIEQUILIBRIUM CRITERION

In the previous sections we studied the phase diagram
by considering the real part of the free energy Eq. (11),
while neglecting the imaginary part. This is based on
an assumption that at each instant the system can be
described by an effective equilibrium. In this section we
shall study the validity of this assumption.

Besides causing a net decrease in particle number, loss
events also tend to drive the system out of equilibrium by
producing “holes” in the Fermi distribution. At the same
time, two-particle collisions act to relax the distribution
and restore equilibrium. We shall use the Boltzmann ki-
netic equation to study the interplay of these effects. We
will show that the time dependent distribution function
is just the equilibrium Fermi-Dirac distribution, but with
a temperature that is slowly increasing with time and a
decreasing chemical potential. In the next stage we check
under what conditions the time dependence thus induced
is sufficiently slow as not to mask the interesting fluctu-
ation effects found in the previous sections.

The kinetic equation for the lossy Fermi liquid is given
by

dnk,σ

dt
=
(
∂nk,σ

∂t

)
coll

+
(
∂nk,σ

∂t

)
loss

. (17)

The terms on the right-hand side acting on the distribu-
tion function nk,σ correspond to the relaxation rate of
atoms and the three-body loss. In the steady state the
collisional relaxation rate is(

∂nk,σ

∂t

)
coll

= −nk,σ

τ e
k

+
1− nk,σ

τh
k

, (18)

where the inverse lifetime of the quasiparticles is 1/τ e
k =

4(ε− εF)2(kFa)2(1−N eq
k,σ)/~εF and quasiholes is 1/τh

k =
4(ε− εF)2(kFa)2N eq

k,σ/~εF, with the thermal equilibrium
Fermi-Dirac distribution N eq

k,σ. Combined these give the
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net collisional relaxation rate(
∂nk,σ

∂t

)
coll

=
4(ε− εF)2(kFa)2

~εF

(
N eq

k,σ−nk,σ

)
. (19)

Having setup the relaxation process that aims to restore
the equilibrium Fermi distribution we now turn to the
three-body loss process that causes particles to be re-
moved. In the weak coupling regime kFa� 1 loss occurs
at a rate of [14](

∂nk,σ

∂t

)
loss

= −2Γ0(kFa)6n̄2nk,σ , (20)

where n̄ =
∑

k nk is the average density of one species
of the particles. With the rate of the two dynamical
processes established we are now in a position to write
down the kinetic equation for the whole system

dnk,σ

dt
=

4(ε−εF)2(kFa)2

~εF

(
N eq

k,σ−nk,σ

)
−2Γ0(kFa)6n̄2nk,σ.

(21)

There are two time-scales in the system: the loss rate
of atoms and the collisional relaxation rate. Fortunately
they are typically well separated scales. At least at weak
coupling, and apparently also in the experiment, the col-
lisional relaxation rate is significantly quicker than the
loss rate. Hence the collisional term forces the distri-
bution nk,σ to be equal to the Fermi-Dirac distribution
N eq

k,σ, albeit with time dependent parameters µ and T . If
the system is perturbed from the Fermi-Dirac distribu-
tion such that nk,σ = N eq

k,σ+ηk,σ, then that perturbation
decays exponentially with time with the usual decay rate
of a Fermi liquid quasi-particle τ−1 ∝ (kFa)2(ε−εF)2/εF.

The time dependence of the chemical potential and the
temperature can be found from the equation dnk,σ/dt =
−2Γ0(kFa)6n̄2nk,σ obtained when we substitute the
Fermi-Dirac ansatz for the distribution. If we sum over
momenta we recover the integrated form

∂n̄

∂µ

dµ
dt

+
∂n̄

∂T

dT
dt

= −Γ0(kFa)6n̄3 . (22)

At low temperature, the term dn̄/dT ∝ T can be
neglected. We can then solve the remaining equa-
tion to find that the chemical potential falls as µ =
µ0/

3
√

1 + 4Γ0(kFa)6n̄2t. Now, to obtain the time depen-
dent temperature we return to the kinetic equation, mul-
tiply by the kinetic energy, and again sum over momenta
to get

∂Ē

∂µ

dµ
dt

+
∂Ē

∂T

dT
dt

= −Γ0(kFa)6n̄2Ē , (23)

where Ē =
∑

k,σ εk,σnk. Substituting in our solution for
the chemical potential, we find that temperature rises as

T =

√
T 2

0 −
2µ2

0

15π2k2
B

[
(1+4Γ0(kFa)6n̄2t)−2/3−1

]
. (24)

10�210�1100101102
0 0.5 1 1.5 2 2.5

~ t
kFa

ExperimentAdiabati

FIG. 3: Satisfaction of the adiabaticity criterion. The shaded
area marks the region in the space of interaction strength and
time in which the adiabacity criterion is satisfied if the system
starts the evolution at T = T0 = 0. The experimental param-
eters where ferromagnetism is first expected is highlighted by
the black point.

In the long time limit, for the relevant experimental pa-
rameters, we find a predicted rise in the effective tem-
perature of ∼ 0.14εF and fall in chemical potential to
µ = 0.92µ0. By comparing Fig. 2(a,b) at T = 0 to
Fig. 2(c,d) at T = 0.14εF we can see that the rise in ef-
fective temperature only slightly renormalizes the phase
boundaries. However, in the vicinity of the tricritical
point, where the transition reverts from first to second
order, loss can turn the Stoner transition second order
just due to heating, even without the quantum effects of
the three-body loss. The fall in chemical potential results
in a negligible reduction in the interaction strength to
0.97kFa and only a small impact on the observed phase
boundaries. The main effect of loss is the damping of
quantum fluctuations treated in the previous sections.

Having understood the consequences of the loss driven
heating of the system we now turn to check if the sys-
tem can be considered to be quasistatic. Specifically we
would like to check if the time dependence is indeed slow
compared to the loss induced corrections to the free en-
ergy (9) that lead to the phase diagrams shown in Fig. 2.
Adiabaticity then requires that 1

T
dT
dt < Λ. It is helpful to

turn to a dimensionless timescale, t̃ = 4Γ0(kFa)6n̄2t and
temperature T̃ = T

√
15π2k2

B/2µ
2
0, and to define χ =

2(ρ̄↑µ↑ + ρ̄↓µ↓)2(Υ0 −
∑
σ ρ̄

2
−σµσν

′
σ)/(ρ̄↑ρ̄↓

∑
σ µ

2
σνσ −∑

σ ρ̄σµσ
∑
σ′ ρ̄σ′µ−σ′ν−σ′)2. The adiabaticity condition

then translates to

(1 + t̃)3/2

3
√
T̃ 2

0 + 1− (1 + t̃)−2/3

< χ(kFa)6 . (25)

We show the set of parameters that satisfy adiabacity in
Fig. 3. The criterion is not satisfied at weak interactions
kFa � 1 because even here the temperature rises at a
finite rate, while it is satisfied over an increasing time
window at interaction strengths kFa & 0.3. We note
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that at the phase boundary the (kFa)6 loss law used in
this analysis still holds, and we have also verified that
the adiabaticity criterion still applies at kFa = 2.3 with
the experimentally determined loss rate [20]. Therefore,
our formalism is expected to capture the consequences of
damping on the ferromagnetic transition.

VII. CONCLUSIONS AND OUTLOOK

In this paper we considered the problem of three-body
loss, inherent to a Fermi gas with effective repulsive in-
teractions. We argued, using kinetic equations, that
in a large parameter regime the lossy Fermi liquid can
be treated as an effective-equilibrium system. In this
case the quantum effects of loss can be derived within a
simple imaginary time formalism. We have shown that
these quantum effects can have a significant impact on
the nature of the ferromagnetic transition. Loss damps
quantum-fluctuations and thereby leads to an increase
in the critical interaction strength to a value consistent
with the experimental findings. Furthermore, in presence
of loss the transition reverts from being first to second
order. We have highlighted signatures of this mechanism
in the collective mode spectrum.

More generally, we have shown that upon integrating
out the collision products, the loss interaction gives rise
to imaginary coupling terms in the effective action, in ad-
dition to the repulsive contact interactions. These terms
could have an interesting impact on the nature of the

Fermi liquid in this regime. An intriguing question for
future investigation is how the presence of small loss af-
fects the elementary excitations of the Fermi liquid? Are
new modes or instabilities generated in presence of the
new terms? Finally, the novel phenomenology that has
been developed here opens the possibility to explore how
loss affects other systems. The formalism could be di-
rectly applied to a wide range of problems across con-
densed matter physics. A particularly topical example
where our formalism may well make a useful contribu-
tion are polariton condensates [24]. These systems are
inherently out of equilibrium due to the finite lifetime of
the polaritons which is typically treated as a two-body
loss term. Our analysis may also shed light on the conse-
quences of the strong loss in p-wave fermion superfluids
and the pairing transition in a superfluid Bose gas [25].
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