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We have carried out calculations of the triple-differential cross section for one-photon double
ionization of molecular hydrogen for a central photon energy of 75 eV, using a fully ab initio,
nonperturbative approach to solve the time-dependent Schrödinger equation in prolate spheroidal
coordinates. The spatial coordinates ξ and η are discretized in a finite-element discrete-variable
representation. The wave packet of the laser-driven two-electron system is propagated in time
through an effective short iterative Lanczos method to simulate the double ionization of the hy-
drogen molecule. For both symmetric and asymmetric energy sharing, the present results agree
to a satisfactory level with most earlier predictions for the absolute magnitude and the shape of
the angular distributions. A notable exception, however, concerns the predictions of the recent
time-independent calculations based on the exterior complex scaling method in prolate spheroidal
coordinates [Phys. Rev. A 82, 023423 (2010)]. Extensive tests of the numerical implementation
were performed, including the effect of truncating the Neumann expansion for the dielectronic in-
teraction on the description of the initial bound state and the predicted cross sections. We observe
that the dominant escape mode of the two photoelectrons dramatically depends upon the energy
sharing. In the parallel geometry, when the ejected electrons are collected along the direction of the
laser polarization axis, back-to-back escape is the dominant channel for strongly asymmetric energy
sharing, while it is completely forbidden if the two electrons share the excess energy equally.

PACS numbers: 33.80.-b, 33.80.Wz, 31.15.A-
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I. INTRODUCTION

A measurement of the complete breakup of the atomic helium target by xuv radiation was achieved over 10
years ago [1]. Since then, rapid developments in strong xuv light sources and momentum imaging techniques have
made it possible to record all the reaction fragments, nuclei and electrons, in double photoionization of the simplest
two-electron hydrogen/deuterium molecule by one-photon absorption [2–5], and most recently also for two-photon
absorption [6]. For the double ionization of H2 by single-photon absorption, only randomly oriented molecules were
investigated in earlier experiments (e.g. [7]). Using “fixed-in-space” molecules, more recent experimental efforts
include the measurements of energy- and angle-resolved differential cross sections by Weber et al. for either equal
energy sharing [2, 3] or asymmetric energy sharing [4], and by Gisselbrecht et al. [5] for equal energy sharing at a
photon energy of 76 eV. These experimental studies were at least partially stimulated by the goal of understanding the
similarities and differences between the hydrogen molecule and its atomic counterpart helium. However, all recorded
fully differential cross sections to date suffer from some experimental uncertainties regarding the alignment angle of
the molecule with respect to the polarization vector of the laser and the emission angles of the photoelectrons.

From a theoretical point of view, the hydrogen molecule exhibits a significant complexity compared to helium and,
therefore, provides an enormous challenge to a fully ab initio description inherent in a multi-center, multi-electron
system. The single-center convergent close-coupling method was used to model the double ionization of H2 by Kheifets
and Bray [8, 9]. Later McCurdy, Rescigno, Mart́ın and their collaborators [10–12] implemented a formulation based
on time-independent exterior complex scaling (ECS) in spherical coordinates, with the origin of the coordinate system
placed at the center of the molecule, to treat the double photoionization at a photon energy of 75 eV. The radial
coordinates of the two electrons are measured from the center, and the radial parts of the wave function were either
expanded in B-splines or using a finite-element discrete-variable representation (FE-DVR).

The time-dependent close-coupling (TDCC) method [13], again in spherical coordinates, was also extended to cal-
culate the triple-differential cross section (TDCS) for double photoionization of the H2 molecule. While the agreement
between the published TDCSs from the ECS [11, 12] and TDCC [13] calculations is basically acceptable, noticeable
discrepancies remained for a few particular geometries. In the parallel geometry, for instance, where the molecular axis
ζ is chosen along the laser polarization vector ǫ, the coplanar TDCS predictions from the ECS and TDCC calculations
differ by up to 40 percent when one of the electrons (we will refer to it as the “fixed electron” below) is observed
along the direction perpendicular to the ǫ-axis. In some other cases, there exists a noticeable “wing” structure in the
published TDCC predictions for equal energy sharing. Additional TDCC calculations [14] suggest that the agreement
can be systematically improved, albeit the above-mentioned discrepancy still exists at a somewhat reduced level.

Another independent approach [15] to this problem is the very recent time-independent ECS treatment, formulated
– as in the current work – in prolate spheroidal coordinates. Quite surprisingly, the results of that calculation differed
from both the earlier ECS and also the TDCC predictions, both obtained in spherical coordinates. Specifically,
the ECS prolate spheroidal calculations showed differences from the earlier spherical coordinate calculation for the
TDCSs, at a level of about 20% depending on the details of the energy sharing. As will be demonstrated below,
we have gone to considerable lengths in an attempt to resolve these discrepancies. However, significant differences
between the present results and those of the ECS [15] still remain.

Both the ECS [11, 12] and the TDCC [13] calculations made some attempt to deal with the experimental uncer-
tainties in the scattering angles. Given the experimental uncertainties and the differences in the previous calculations,
however, it appeared worthwhile to investigate the computational effort required to obtain accurate TDCSs before
averaging over any experimental acceptance angles. Consequently, the present calculation represents an indepen-
dent implementation of the time-dependent FE-DVR approach in prolate spheroidal coordinates. As in the other
approaches mentioned above, the internuclear separation (R) was held fixed at its equilibrium distance of 1.4 bohr.
The two-center prolate system, with the foci located on the nuclei, provides a suitable description for the two-center
characteristics of the H2 molecule. The formulation of the Schrödinger equation in prolate spheroidal coordinates
for diatomic molecules is not new. The pioneering work of Bates, Öpik, and Poots [16] for the H+

2 ion, which is
exactly separable in prolate spheroidal coordinates, already revealed the appealing features of the prolate system.
In particular, the electron-nuclear interaction is rendered benign in this coordinate system. A partial list of recent
applications of prolate spheroidal coordinates to diatomic molecules can be found in [17–21].

As has been demonstrated in a number of recent publications, a grid-based approach provides a very appropriate
description of laser-driven atomic and molecular physics when combined with an efficient time-propagation method
such as the short iterative Lanczos (SIL) method [22, 23]. In the present work, we employ the FE-DVR/SIL approach
in prolate spheroidal coordinates to study the correlated response of a two-electron molecule in the double ionization
process.

The remainder of this manuscript is organized as follows. After presenting the Hamiltonian of the hydrogen molecule
in Section II and providing some details about the discretization of the system in an FE-DVR basis in Sec. III, the
solution of the two-center Poisson equation is presented in Sec. IV. This is followed by a description of the procedure
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for extracting the cross sections of interest in Sec. V. A brief summary of the computational details is given in Sec. VI.
The results are presented and discussed in Sec. VII, before we finish with a summary in Sec. VIII.

II. THE SCHRÖDINGER EQUATION IN PROLATE SPHEROIDAL COORDINATES

The prolate spheroidal coordinates with the two foci separated by a distance R are defined by

ξ =
r1 + r2

R
, η =

r1 − r2

R
, (1)

and the azimuthal angle ϕ. Here r1 and r2 are the distances measured from the two nuclei, respectively. These
coordinates are specified in the ranges ξ ∈ [1, +∞), η ∈ [−1, +1], and ϕ ∈ [0, 2π]. The volume element is dV =
(R/2)3(ξ2 − η2)dξdηdϕ. According to the asymptotic behaviors as r1, r2 → +∞, ξ and η approach 2r/R and cos θ,
respectively, where r and θ are the standard spherical coordinates. Consequently, ξ is the “quasi-radial” coordinate,
while η is “quasi-angular”. The Hamiltonian of a single electron, Hq, (q = 1, 2 for the two electrons in H2 below), is
written as

Hq = − 2

R2(ξ2
q − η2

q )

[

∂

∂ξq
(ξ2

q − 1)
∂

∂ξq
+

∂

∂ηq
(1 − η2

q)
∂

∂ηq
(2)

+
1

(ξ2
q − 1)

∂2

∂ϕ2
q

+
1

(1 − η2
q )

∂2

∂ϕ2
q

]

− 4ξq

R(ξ2
q − η2

q)
.

We solve the time-dependent Schrödinger equation (TDSE) of the laser-driven H2 molecule (with two electrons) in
the dipole length gauge:

i
∂

∂t
Ψ(1, 2, t) =

[

H1 + H2 +
1

r12
+ E(t) · (r1 + r2)

]

Ψ(1, 2, t). (3)

Here rq is the coordinate of the q-th electron measured relative to the center of the molecule and r12 = |r1 − r2|
is the interelectronic distance. Without loss of generality, we choose the molecular axis along the z axis, and the
plane formed by the molecular axis and the polarization vector as the xz plane. Generally, we can decompose the
polarization vector into its two components, ǫ = cos θNez +sin θNex, where θN is the angle between the ς and ǫ axes,
and ez and ex are the unit vectors along the z and x axes, respectively. The dipole interaction is therefore given as

E(t) · (r1 + r2) =E(t)
[

(z1 + z2) cos θN

+(x1 + x2) sin θN

]

, (4)

where the rectangular coordinates x and z and the prolate spheroidal coordinates are related through

x =
R

2

√

(ξ2 − 1)(1 − η2) cosϕ, z =
R

2
ξη. (5)

We expand the wave function for the H2 molecule in the body-frame as

Ψ(1, 2, t) =
∑

m1m2

Πm1m2
(ξ1, η1, ξ2, η2, t)

×Φm1m2
(ϕ1, ϕ2). (6)

Here Φm1m2
(ϕ1, ϕ2) = ei(m1ϕ1+m2ϕ2)/(2π) is the angular function, where m1 and m2 denote the magnetic quantum

numbers of the two electrons along the molecular axis.
Next, Πm1m2

(ξ1, η1, ξ2, η2, t) is expanded in a product of normalized “radial” {fi(ξ)} and “angular” {gk(η)} DVR
bases:

Πm1m2
(ξ1, η1, ξ2, η2, t) =

∑

ijkℓ

fi(ξ1)fj(ξ2)gk(η1)gℓ(η2)C
m1m2

ijkℓ (t). (7)
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Note that the basis is not symmetrized with respect to the coordinates of the two electrons. Since we always begin the
calculation with a properly symmetrized initial state, however, that symmetry will be preserved in the calculation.

To discretize this partial differential equation, we employ the FE-DVR approach for both the ξ and η variables [21,
24]. If we normalize the DVR bases according to

∫

dξfi(ξ)fi′ (ξ) = δii′ and

∫

dηgk(η)gk′ (η) = δkk′ , (8)

respectively, the overall (ξ, η) DVR basis is not normalized with respect to the volume element in the prolate coordinate
system. This is corrected by defining the two-electron basis

bm1m2

ijkℓ (1, 2) =
( 2

R

)3 1
√

(ξ2
i − η2

k)(ξ2
j − η2

ℓ )
(9)

× fi(ξ1)fj(ξ2)gk(η1)gℓ(η2)Φm1m2
(ϕ1, ϕ2),

which satisfies the desired normalization
∫∫

dV1dV2b
m1m2∗
ijkℓ (1, 2)b

m′
1
m′

2

i′j′k′ℓ′(1, 2) =

δii′δjj′δkk′δℓℓ′δm1m′
1
δm2m′

2
, (10)

to expand Πm1m2
(ξ1, η1, ξ2, η2, t). Specifically, we have

Ψ(1, 2, t) =
∑

m1m2

∑

ijkℓ

bm1m2

ijkℓ (1, 2)Xm1m2

ijkℓ (t). (11)

Introducing the normalized (ξ, η) DVR basis eliminates the complexities of matrix operations related to the overlap
matrix at each time, and hence makes the standard SIL algorithm directly applicable to study the temporal response
of the molecule to laser pulses.

III. THE FE-DVR BASIS

In our current implementation of the FE-DVR approach for the time-dependent wave function in prolate spheroidal
coordinates, we have chosen to work directly in the FE-DVR basis. This differs from what is usually done for atoms
in spherical coordinates, where spherical harmonics are used for the angular variables and an FE-DVR for the radial
coordinates. Consequently, the boundary conditions in prolate spheroidal coordinates require some more discussion.
Analyzing the asymptotics reveals that in the region near the boundaries of ξ = 1 and η = ±1, which correspond
to the molecular axis, the single-electron wave function behaves like (ξ2 − 1)|m|/2(1 − η2)|m|/2. This indicates that
the physical wave function is finite for |m| = 0, whereas it goes to zero in the region close to the molecular axis
for |m| 6= 0. More importantly, the behavior of the wave function for odd |m| contains a square-root factor, giving
a decidedly nonpolynomial behavior to the wave function that is impossible to capture in a straightforward fashion
using a DVR basis.

The former problem is readily treated by using a Gauss-Radau quadrature in the first DVR element for ξ, where
only the right-most point is constrained to lie on the boundary between the first and second finite element. The
volume element ensures that the integrand is well behaved near the end points and makes it unnecessary to invoke a
separate quadrature for different m values. For all the other elements, a Gauss-Lobatto quadrature is employed. This
allows us to make the FE-DVR basis continuous everywhere and to satisfy the |m|-dependent boundary condition.

To overcome the nonanalytic behavior of the basis for odd m, Bachau and collaborators [17] explicitly factored out
the (ξ2 − 1)|m|/2(1 − η2)|m|/2 part before the wave function was expanded in terms of B-splines in the discretization
approach. We have adopted a similar idea in our FE-DVR treatment of the two-center problem to achieve much faster
convergence, as was also done in Ref. [21]. For the case of even |m|, no changes need to be made to define the DVR
basis, i.e., the normalized basis is written as

fi(ξ) =
1

√

ωi
ξ

∏

k 6=i

ξ − ξk

ξi − ξk
and gi(η) =

1
√

ωi
η

∏

k 6=i

η − ηk

ηi − ηk
. (12)
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For odd |m|, however, we define the DVR basis as

fi(ξ) =
1

√

ωi
ξ

(ξ2 − 1)1/2

(ξ2
i − 1)1/2

∏

k 6=i

ξ − ξk

ξi − ξk
(13)

and

gi(η) =
1

√

ωi
η

(1 − η2)1/2

(1 − η2
i )1/2

∏

k 6=i

η − ηk

ηi − ηk
. (14)

Here ωi
ξ and ωi

η are the weight factors related to the DVR bases fi(ξ) and gi(η), respectively. The goal of using a unique

set of mesh points, which are |m|-independent, to discretize the (ξ, η) coordinates has now been achieved in this scheme.
The same technique was employed in recent calculations of one- and two-photon double ionization of H2 [15, 24]. In
principle, it is also possible to introduce the factors (ξ2 − 1)|m|/2(1 − η2)|m|/2 into the DVR bases to circumvent the
difficulties related to the nonanalytic behavior near the boundary. However, this results in an |m|-dependence of the
DVR bases and quadrature points. This, in turn, leads to a number of unnecessary complications in the practical
implementation of the computational methodology. One might argue that an |m|-dependent discretization procedure
could be useful for a system in which the magnetic quantum number m is conserved. An example is the H+

2 ion in
external magnetic fields along the molecular axis [25]. However, that is not the situation in the current calculation.

IV. THE ELECTRON-ELECTRON COULOMB INTERACTION IN PROLATE SPHEROIDAL

COORDINATES

Similar to the expansion of the electron-electron interaction in terms of spherical coordinates, a counterpart exists
in prolate spheroidal coordinates [26] through the Neumann expansion

1

r12
=

1

a

∞
∑

l=0

l
∑

m=−l

(−1)|m|(2l + 1)

(

(l − |m|)!
(l + |m|)!

)2

(15)

×P
|m|
l (ξ<)Q

|m|
l (ξ>)P

|m|
l (η1)P

|m|
l (η2)e

im(ϕ1−ϕ2),

where a ≡ R/2. The two nuclei are located at ±R/2 along the z axis and ξ>(<) = max(min)(ξ1, ξ2). Both the regular

P
|m|
l (ξ) and irregular Q

|m|
l (ξ) Legendre functions [27], which are defined in the region (1, +∞), are involved in the

expansion as the “radial” part, while the “angular” part is only related to P
|m|
l (η). Note that we chose to work in

terms of an un-normalized “angular” basis rather than the usual spherical harmonics. The matrix elements of 1/r12

in a traditional basis, for example, a B-spline or Slater-type basis, can be computed through the well-known Mehler-
Ruedenberg transformation [19, 28]. Due to the discontinuous derivative along the line of ξ1 = ξ2 in the Neumann
expansion, the straightforward computation of the matrix element of 1/r12, using the value of this interaction potential
at the mesh points, is very slowly convergent. We seek a more robust representation of the 1/r12 matrix which retains
both the underlying Gauss quadrature and the DVR property of all potentials being exactly diagonal with respect to
the highly localized DVR basis.

In the following, we use the simplified notation |ijkℓm1m2〉 = |fi(ξ1)fj(ξ2)gk(η1)gℓ(η2)Φm1m2
(ϕ1, ϕ2)〉 to denote

the basis. Essentially, we need the integral

〈

ijkℓm1m2

∣

∣

∣
P

|m|
l (ξ<)Q

|m|
l (ξ>)P

|m|
l (η1)P

|m|
l (η2) (16)

× eim(ϕ1−ϕ2)
∣

∣

∣
i′k′j′ℓ′m′

1m
′
2

〉

.

After integrating over ϕ1 and ϕ2, the matrix element of 1/r12 can be written as

〈

ijkℓm1m2|
1

r12
|i′j′k′ℓ′m′

1m
′
2

〉

(17)

=
1

a

∞
∑

l=|m|

(−1)|m|(2l + 1)

(

(l − |m|)!
(l + |m|)!

)2

Ii′j′k′ℓ
ijkℓ (l),
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where the selection rule m = m1 −m′
1 = m′

2 −m2 has been used. Hence m is uniquely determined for a given pair of
angular partial waves. Above we introduced the reduced (ξ, η) integral

Ii′j′k′ℓ′

ijkℓ (l) (18)

=
〈

ijkℓ
∣

∣P
|m|
l (ξ<)Q

|m|
l (ξ>)P

|m|
l (η1)P

|m|
l (η2)

∣

∣i′j′k′ℓ′
〉

.

Since |m| is fixed in the above equation, we omitted it in Ii′j′k′ℓ′

ijkℓ (l) and will do so in the related quantities below as

well. It is now worthwhile to define the two electron densities [29]:

ρA(ξ, η) = fi(ξ)gk(η)fi′(ξ)gk′ (η),

ρB(ξ, η) = fj(ξ)gℓ(η)fj′ (ξ)gℓ′(η).
(19)

After truncating the radial integral to the edge of the box, ξmax, this yields

Ii′j′k′ℓ′

ijkℓ (l) =

∫∫

dVξdVξ′ρB(ξ, η)P
|m|
l (ξ<)Q

|m|
l (ξ>)

× P
|m|
l (η)P

|m|
l (η′)ρA(ξ′, η′)

=

∫ ξmax

1

dVξP
|m|
l (η)ρB(ξ, η)Ul(ξ).

(20)

Here a convention for the volume element was made in such a way that, for any function F (ξ, η), we define dVξF (ξ, η) ≡
dξa3

∫ +1

−1 (ξ2 − η2)F (ξ, η)dη to simplify the notation. Most importantly, the function Ul(ξ) is defined by

Ul(ξ) =Q
|m|
l (ξ)

∫ ξ

1

dVξ′ρA(ξ′, η′)P
|m|
l (ξ′)P

|m|
l (η′) (21)

+P
|m|
l (ξ)

∫ ξmax

ξ

dVξ′ρA(ξ′, η′)Q
|m|
l (ξ′)P

|m|
l (η′).

Instead of evaluating the above integrals directly, we solve the differential equation satisfied by Ul(ξ). As will
become apparent later, this equation can be shown to be the “radial” Poisson equation in the prolate spheroidal

coordinate system. The differential equations satisfied by the Legendre functions P
|m|
l (ξ) and Q

|m|
l (ξ) suggests that

we introduce the operator

∇2
ξ =

d

dξ
(ξ2 − 1)

d

dξ
− l(l + 1) − m2

ξ2 − 1
(22)

for given quantum numbers l and m. This is the one-dimensional Laplacian operator in the ξ coordinate.
After some algebra, we obtain

d

dξ
Ul(ξ) =

dQ
|m|
l (ξ)

dξ

∫ ξ

1

dVtρA(t, τ)P
|m|
l (t)P

|m|
l (τ) (23)

+
dP

|m|
l (ξ)

dξ

∫ ξmax

ξ

dVtρA(t, τ)Q
|m|
l (t)P

|m|
l (τ).

and

d2

dξ2
Ul(ξ) =

d2Q
|m|
l (ξ)

dξ2

∫ ξ

1

dVtρA(t, τ)P
|m|
l (t)P

|m|
l (τ)

+
d2P

|m|
l (ξ)

dξ2

∫ ξ

1

dVtρA(t, τ)Q
|m|
l (t)P

|m|
l (τ)+

+W (P
|m|
l (ξ), Q

|m|
l (ξ))a3

∫ +1

−1

dτ(ξ2−η2)ρA(ξ, τ)P
|m|
l (τ).

(24)

Here the Wronskian of the Legendre functions P
|m|
l (ξ) and Q

|m|
l (ξ) is given by

W (P
|m|
l (ξ), Q

|m|
l (ξ)) =

(−1)|m|

(1 − ξ2)

(l + |m|)!
(l − |m|)! . (25)
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Consequently, we obtain

∇2
ξUl(ξ) = ̺(ξ). (26)

This is the second-order inhomogeneous Poisson equation satisfied by Ul(ξ) with the “source” term given by

̺(ξ) =(−1)|m|+1 (l + |m|)!
(l − |m|)!a

3 (27)

×
∫ +1

−1

dη′(ξ2 − η′2)ρA(ξ, η′)P
|m|
l (η′).

After carrying out the integral over η′ via Gauss quadrature, we recast the source term as

̺(ξ) =δkk′ (−1)|m|+1 (l + |m|)!
(l − |m|)!a

3fi(ξ)fi′(ξ)

×(ξ2 − η2
k)P

|m|
l (ηk).

(28)

As one might expect, the inhomogeneous equation reduces to the homogeneous one if k 6= k′. The solution to the
Poisson equations (26) and (28) can be uniquely determined by enforcing the boundary conditions

Ul(1) = P
|m|
l (1)

∫ ξmax

1

dVξ′ρA(ξ′, η′)Q
|m|
l (ξ′)P

|m|
l (η′) (29)

at ξ = 1 and

Ul(ξmax) = Q
|m|
l (ξmax)

∫ ξmax

1

dVξ′ρA(ξ′, η)P
|m|
l (ξ′)P

|m|
l (η′) (30)

at ξ = ξmax, respectively.
There are two important points to realize, namely: First, on the right-hand boundary, the function Ul(ξ) assumes

a nonzero value, which is given by Eq. (30), for all possible |m| values. Its asymptotic behavior relies on the function

Q
|m|
l (ξ) at large ξ, which behaves like 1/ξl+1

max. This indicates that it is nonzero generally, although it could be small
at the large ξmax values used in practical calculations. Second, on the left-hand boundary, the situation depends on
the value of |m|. Ul(ξ) takes a nonzero value if |m| = 0, while it becomes zero if |m| 6= 0.

Following the philosophy employed to handle the spherical case [29], we first seek a solution, U0
l (ξ), to the Poisson

equations (26)-(30) that satisfies the zero-value boundary condition at ξmax by using exactly the same ξ mesh points
as those for the wave functions. In other words, we have ∇2

ξU0
l (ξ) = ̺(ξ) with U0

l (1) = Ul(1) and U0
l (ξmax) = 0.

After substituting the DVR expansion U (0)
l (ξ) =

∑

µ cµfµ(ξ) of the solution into the differential equation, we obtain

a system of linear equations for the unknown coefficients {cµ}:

∑

µ′

cµ′T
|m|
µµ′ =(−1)|m| (l + |m|)!

(l − |m|)!
1

√

ωi
ξ

a3δµiδii′δkk′

×(ξ2
i − η2

k)P
|m|
l (ηk).

(31)

The matrix T is defined by its elements

T
|m|
µµ′ = −

∫ ξmax

1

dξfµ(ξ)

[

(ξ2 − 1)
d2

dξ2
+ 2ξ

d

dξ
(32)

−l(l + 1) − m2

ξ2 − 1

]

fµ′(ξ).

Therefore, the coefficient cµ can formally be written as

cµ =
[T |m|]−1

µi
√

ωi
ξ

(−1)|m| (l+|m|)!
(l−|m|)!a

3δii′δkk′(ξ2
i − η2

k)P
|m|
l (ηk), (33)
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where [T |m|]−1 denotes the inverse of the matrix T |m|. In this case U0
l (ξ) fulfills the left-hand boundary condition

U0
l (1) = 0, and so does Ul(1). Recall, however, that its right-hand boundary condition differs from those of Ul(ξmax).

This suggests that the final answer to the function Ul(ξ) can be constructed as Ul(ξ) = U0
l (ξ) + Fl(ξ), i.e., we add the

difference function Fl(ξ) to U0
l (ξ). The function Fl(ξ) is also a solution to the homogeneous Poisson equation, subject

to the boundary condition Fl(1) = 0 and Fl(ξmax) = Ul(ξmax). After writing it as a linear combination of P
|m|
l (ξ) and

Q
|m|
l (ξ), and imposing the boundary conditions, Fl(ξ) takes the form

Fl(ξ) =δii′δkk′a3(ξ2
i − η2

k)P
|m|
l (ξi)P

|m|
l (ηk)

×Q
|m|
l (ξmax)

P
|m|
l (ξmax)

P
|m|
l (ξ).

(34)

We finally arrive at

Ul(ξ) =
(−1)|m|

√

ωi
ξ

(l + |m|)!
(l − |m|)!a

3δii′δkk′ (ξ2
i − η2

k)P
|m|
l (ηk)

×
∑

µ

[T |m|]−1
µi fµ(ξ) + δii′δkk′(ξ2

i − η2
k)P

|m|
l (ξi)

×P
|m|
l (ηk)

Q
|m|
l (ξmax)

P
|m|
l (ξmax)

P
|m|
l (ξ).

(35)

At this point, the DVR version of the solution Ul(ξ) is ready for all possible values of |m|, either |m| 6= 0 or |m| = 0.
Substituting Eq. (35) into Eq. (20) allows us to obtain the kernel integral,

Ii′j′k′ℓ′

ijkℓ (l) = δii′δjj′δkk′δℓℓ′a
6(ξ2

i − η2
k)(ξ2

j − η2
ℓ )P

|m|
l (ηℓ)

×
[

(−1)|m|

√

ωi
ξω

j
ξ

(l + |m|)!
(l − |m|)! [T

|m|]−1
ji P

|m|
l (ηk)+

+P
|m|
l (ξi)P

|m|
l (ξj)P

|m|
l (ηk)

Q
|m|
l (ξmax)

P
|m|
l (ξmax)

]

.

(36)

The matrix element of 1/r12 can finally be written as

〈

ijkℓm1m2

∣

∣

1

r12

∣

∣i′j′k′ℓ′m′
1m

′
2

〉

=δii′δjj′δkk′δℓℓ′a
5(ξ2

i − η2
k)(ξ2

j − η2
ℓ )

lmax
∑

l>|m|

(2l + 1)
(l − |m|)!
(l + |m|)!P

|m|
l (ηk)P

|m|
l (ηℓ)

×
[

1
√

ωi
ξω

j
ξ

[T |m|]−1
ji + (−1)|m| (l − |m|)!

(l + |m|)!P
|m|
l (ξi)P

|m|
l (ξj)

Q
|m|
l (ξmax)

P
|m|
l (ξmax)

]

,

(37)

where we truncated the l summation in the Neumann expansion to lmax. The above equation can be converted to
the normalized (ξ, η) bases with the help of Eq. (9). This results in a diagonal representation of the matrix elements
of the electron-electron Coulomb interaction and thus considerably simplifies the FE-DVR discretization procedure.
The above treatment of the 1/r12 matrix was successfully applied to the two-photon double ionization of H2 [24]. The
implementation of this representation will be illustrated below.

V. TIME EVOLUTION AND EXTRACTION OF CROSS SECTIONS

The time-dependent laser-driven electronic wave packet in the hydrogen molecule is obtained by solving the TDSE
on the (ξ, η) grid. Launched from the previously determined ground state, the time evolution of the system is
achieved by using our recently developed SIL method [30, 31]. The ground state is determined by relaxing the system
in imaginary time from an initial guess of the wave function on the grid points. At each time step we only need to
generate the values of the discretized wave function on the selected grid points. If desired, the information at arbitrary
points within the spatial box can be obtained from the interpolation procedure in terms of the DVR bases.
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A few remarks seem appropriate regarding the efficient implementation of the SIL algorithm. The highest energy,
Emax, which essentially depends on the smallest separation between the (ξ, η) mesh points and also on the maximum
values of |m1| and |m2|, determines the largest time step ∆t for the propagation in real time. Typically, Emax is
about 6, 000 atomic units (a.u.) in our calculations. Although the chances of electrons populating states with such
high energies are practically negligible for short time scales of the laser-molecule interaction, we generally require
∆t . 2π/Emax in order to resolve the most rapid oscillations in the time evolution. This means that at least a
few time steps are needed during one period of 2π/Emax. We refer readers to Refs. [30–32] for further details and
discussions behind the SIL method.

In order to ensure that the double-ionization wave packet is sufficiently far away from the nuclei, and also that
the two photoelectrons are well separated, we allow the system to evolve for a few more cycles in the field-free
Hamiltonian, i.e., after the laser pulse has died off. This is the wave packet we use to extract the physical information.
The ionization probabilities and the corresponding cross sections are extracted by projecting the time-dependent wave
packet onto uncorrelated two-electron continuum states satisfying the standard incoming boundary conditions. The
latter states of H2 are constructed from the one-electron continuum state of the H+

2 ion described in the following
subsection.

A. Continuum states of H+

2

The field-free wave function Φ(ξ, η, ϕ) of the one-electron molecular ion is completely separable in prolate spheroidal
coordinates. For a given, and conserved, magnetic quantum number m, the wave function takes the form Φ(ξ, η, ϕ) =

Tm(ξ)Ξm(η)Φm(ϕ), where the azimuthal dependence, is given by Φm(ϕ) ≡ eimϕ/
√

2π. The “radial” part Tmq(ξ) and
the “angular” part Ξmq(η) of the wave function satisfy the equations

[

∂

∂ξ
(ξ2−1)

∂

∂ξ
− m2

(ξ2−1)
+ 2Rξ + c2ξ2 − Amq

]

Tmq(ξ) = 0 (38)

and
[

∂

∂η
(1 − η2)

∂

∂η
− m2

(1 − η2)
− c2η2 + Amq

]

Ξmq(η) = 0, (39)

respectively. Here c = kR/2 for the continuum state whose momentum vector has the magnitude k. In addition, we
need to introduce another quantum number q, which denotes the number of nodes of Ξm(η) in the region η ∈ [−1, +1],
to label the states, and finally the separation constant Amq.

When the angular function Ξm(η)Φm(ϕ) is discretized in terms of the relevant DVR bases, a few “spurious” solutions
might be encountered. This is caused by the residual errors associated with the Gauss quadratures. Consequently, we
expand the angular function, or “spheroidal harmonics” function Yℓm(η, ϕ) ≡ Ξmq(η)Φmq(ϕ) with ℓ = |m|+ q instead
in terms of spherical harmonics. These functions are normalized according to

∫ +1

−1

dη

∫ 2π

0

dϕY∗
ℓm(η, ϕ)Yℓ′m′(η, ϕ) = δmm′δℓℓ′ . (40)

After obtaining the separation constant Amq by solving Eq. (39), the “radial” function Tmq(ξ) is again expanded in
terms of the DVR bases. The last DVR point at ξ = ξmax needs to be kept for the continuum state. Asymptotically,
the radial function behaves like

Tmq(ξ) →
1

ξR

√

8

π
sin

[

cξ +
R

c
ln(2cξ) − ℓπ

2
+ ∆mq(k)

]

(41)

as ξ → +∞. Here ∆mq(k) is the two-center Coulomb phase shift. The normalization factor on either the energy or
the momentum scale and the Coulomb phase shift can be determined by matching the numerical solution of Tmq(ξ)
according to its asymptotic behavior given in Eq. (41).

The plane wave in prolate spheroidal coordinates can be written as [33]

eik·r = 4π
∑

ℓm

iℓYℓm(ηr, ϕr)Y∗
ℓm(ηk, ϕk)R

(k)
ℓm(ξ), (42)

where R
(k)
ℓm(ξ) → 1/(cξ) sin

[

cξ − ℓπ/2
]

in the asymptotic region. Note that ηk and ηr are related to the directions of

k and r in spherical coordinates through ηk,r = cos θk,r. The partial-wave expansion of the plane wave eik·r reminds
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us that the two-center Coulomb wave satisfying the incoming boundary condition can be expanded as

Φ
(−)
k

(r) =
1

k

+∞
∑

m=−∞

∑

ℓ>|m|

iℓe−i∆mq(k)

× Y∗
ℓm(k)Yℓm(ηr, ϕr)T

(k)
mq (ξ). (43)

This function is normalized in momentum space according to 〈Φ(−)
k

|Φ(−)
k′ 〉 = δ(k − k′), provided the asymptotic

solution in Eq. (41) is satisfied.
Uncorrelated two-electron continuum states with total spin angular momentum S (S = 0 in our case) can generally

be constructed as follows:

Φ
(−)
k1k2

(r1, r2) = (44)

1√
2

[

Φ
(−)
k1

(r1)Φ
(−)
k2

(r2) + (−1)SΦ
(−)
k2

(r1)Φ
(−)
k1

(r2)
]

.

With the help of Eq. (43), its partial-wave representation can be written as

Φ
(−)
k1k2

(r1, r2) =
( 2

R

)3 1√
2

1

k1k2

∑

ℓ1m1ℓ2m2

iℓ1+ℓ2

×
∑

ijkℓ

bm1m2

ijkℓ (1, 2)
√

(ξ2
i − η2

k)(ξ2
j − η2

ℓ ) (45)

×
[

e−i
(

∆|m1|ℓ1
(k1)+∆|m|2ℓ2

(k2)
)

Y∗
ℓ1m1

(k1)Y∗
ℓ2m2

(k2)

Cℓ1m1ℓ2m2

ijkℓ (k1, k2) + (−1)S(k1 ↔ k2)

]

.

Here we introduced

Cℓ1m1ℓ2m2

ijkℓ (k1, k2) = (46)

T̃
(k1)
ℓ1|m1|

(ξi)T̃
(k2)
ℓ2|m2|

(ξj)Ξ̃
(k1)
ℓ1|m1|

(ηk)Ξ̃
(k2)
ℓ2|m2|

(ηℓ),

by representing the radial and angular parts on the (ξ, η) grid points:

T
(k)
ℓm (ξ) =

∑

i

fi(ξ)T̃
(k)
ℓm (ξi), (47)

Ξ
(k)
ℓm(η) =

∑

µ

gµ(η)Ξ̃
(k)
ℓm(ηµ). (48)

Here the exchange symmetry

Cℓ2m2ℓ1m1

jiℓk (k2, k1) = Cℓ1m1ℓ2m2

ijkℓ (k1, k2) (49)

is satisfied.

B. Extraction of double-ionization cross sections

It has been demonstrated [24, 30, 34] that using uncorrelated two-electron continuum states is a good approximation
in a time-dependent propagation approach, provided the two ejected electrons are well separated from each other.
The probability amplitude of double ionization is then given by

〈Φ(−)
k1k2

|Ψ(t)〉 = (50)

1

k1k2

∑

m1ℓ1m2ℓ2

(−i)ℓ1+ℓ2ei
(

∆|m1|ℓ1
(k1)+∆|m|2ℓ2

(k2)
)

× Yℓ1m1
(k1)Yℓ1m2

(k2)Fℓ1m1ℓ2m2
(k1, k2),
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where

Fℓ1m1ℓ2m2
(k1, k2) = (51)

√
2
∑

ijkℓ

Cℓ1m1ℓ2m2∗
ijkℓ (k1, k2)X

m1m2

ijkℓ (t).

Here the exchange symmetry

Fℓ2m2ℓ1m1
(k2, k1) = (−1)SFℓ1m1ℓ2m2

(k1, k2) (52)

is satisfied. We also see that the probability amplitude formulated in prolate spheroidal coordinates takes a similar
form as for the atomic case in spherical coordinates. However, a subtle difference from the atomic case is worth
pointing out. Strictly speaking, the spheroidal harmonics involved in the probability amplitude generally depend on
the magnitude of the momenta k1 and k2, in addition to their directions.

The energy sharing of the two photoelectrons can be specified by introducing the hyperangle α = tan−1(k2/k1).
This describes the double-ionization reaction with kinetic energies E1 = Eexc cos2α and E2 = Eexc sin2α for the two
ionized electrons, respectively. Here Eexc is the available excess energy above the double-ionization threshold. In the
present work, specifically, Eexc = 23.6 eV for absorption of a 75-eV photon.

For double ionization by one-photon absorption, the triple differential cross section with respect to one of the kinetic

energies and the two solid angles k̂1 and k̂2 can be extracted using the same formalism as in the corresponding He
case [30, 34], i.e.,

d3σ

dE1dk̂1dk̂2

=
1

k1k2 cos2α

ω

I0

1

T
(1)
eff

∫ kmax

0

dk′
1

∫ k′
1

0

dk′
2

× k′
1δ(k

′
2 − k′

1 tan α)

∣

∣

∣

∣

∣

∑

m1ℓ1m2ℓ2

(−i)ℓ1+ℓ2ei
(

∆|m1|ℓ1
+∆|m|2ℓ2

)

× Yℓ1m1
(k′

1, k̂1)Yℓ2m2
(k′

2, k̂2)Fℓ1m1ℓ2m2
(k′

1, k
′
2)

∣

∣

∣

∣

∣

2

. (53)

Here ω and I0 are the central photon energy and the peak intensity of the laser pulse, respectively, while T
(1)
eff denotes

the effective interaction time between the temporal electric laser field and the electrons in the one-photon absorption

process. For a laser pulse of time duration τ with a sine-squared envelope for the field amplitude, T
(1)
eff = (3/8)τ .

Note that T
(1)
eff corresponds to the special case of the generalized N -photon effective interaction time T

(N)
eff [35] for

a one-photon reaction. Generalized cross sections for two-photon double ionization of the hydrogen molecule were
extracted in the same formalism [24].

In the TDCC treatment [13], different strategies were employed to describe the linear one-photon and the nonlinear
two-photon double ionization processes of atoms and molecules. For the one-photon case, the cross sections were
obtained through the time derivative of the double-ionization probability, ∂P 2+

ion (t)/∂t. The laser field does not need
to be turned off in this case. On the other hand, a true laser pulse was used for the two-photon case and an effective
time, defined as the time integral under a flat-top pulse with a smooth turn-on and turn-off, was introduced. In
the present work, we employed a unified formulation through an effective interaction time for both one-photon and
multi-photon ionization in laser pulses.

For the one-photon double ionization initialized from the lowest X 1Σg state, the two ejected electrons can only pop-
ulate the final 1Σu and 1Πu continuum states, with the specifics depending on the relative orientation of the molecular
axis and the laser polarization vector. Consequently only partial waves with ungerade parity [i.e., (−1)ℓ1+ℓ2 = −1]
need to be included in Eq. (53).

VI. COMPUTATIONAL DETAILS

Before we discuss our physical results in the next section, we will briefly summarize some of the computational
details. The FE-DVR basis in (ξ1, ξ2) enables us to use a two-dimensional domain decomposition approach, in which
we can take advantage of the significant sparsity (fill factor of 10−9− 10−8) of the Hamiltonian matrix. Details about
the general idea of such decompositions can be found in Ref. [36].

We parallelized our code using the standard message passing interface (MPI) [37]. The structure of the FE-DVR
Hamiltonian requires that the parts of the wave function involving the “bridge” DVR bases be exchanged between
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two neighboring processors during each step of the time propagation. Each processor, individually, is only required
to perform a set of independent operations on small, dense matrices.

The size of the discretized problem depends on the number of ξ and η grid points in each dimension, and also on
that of the angular partial waves (m1, m2). While the rank of the resulting Hamiltonian matrix was already 6 × 107

for our simplest case (the parallel geometry), the sparsity of the Hamiltonian matrix results in rather small memory
requirements.

The linear-algebra operations were performed with LAPACK [38] and BLAS [39] routines optimized for our com-
putational platforms. A typical 1296-processor run took about 30 hours of wall-clock time on the NCCS Jaguar [40]
or NICS Kraken [41] machines. The details depend on the time step chosen, the duration of the laser pulse, and the
relative orientation of the laser polarization and the molecular axis.

VII. RESULTS

A. Preparation of the initial electronic X 1Σg state

For the nonsequential double-ionization process induced by one- or two-photon absorption, electronic correlation
plays a dominant role, as the two photoelectrons must share the available excess energy Eexc. Double ionization by
a single photon would not occur at all if the two-electron atom or molecule were approximated by an independent-
electron model. Therefore, the quality of the description of electron-electron correlation in a laser-driven system is
crucially important for accurate results to be obtained. The Coulomb interaction between the two electrons has to
be described in a consistent manner for both the initial bound state and the time-evolved wave packet. Before we go
any further, it is worth discussing how we prepare the initial X 1Σg state at the equilibrium distance of R = 1.4 bohr.

As seen from Eq. (37), the magnetic quantum number in the Neumann expansion of the matrix element of 1/r12

is uniquely determined by the angular bases. However, this is not the case for the index l, if we choose to discretize
the coordinate η, rather then expanding that part of the wave function into spherical harmonics. In practice, the
summation over l must be truncated at a finite value of lmax. In principle, the higher-order expansion terms always
guarantee well-converged results. However, as mentioned earlier, we approximate the relevant η-integrals by using
Gauss-Legendre quadrature. This is the price we have to pay for making the dielectronic Coulomb potential diagonal
in the DVR bases. As a consequence, we need to determine how the approximation introduced in the η-integrals for
the two-electron integrals affects the results for the cross sections of interest.

To answer this question, we first investigate the dependence of the energy obtained for the initial X 1Σg state on
the value of lmax used in the Neumann expansion. Figure 1 shows the variation of the initial-state electronic energy
of the hydrogen molecule with respect to lmax, obtained with a ξ setup of ten elements in the region of 1 < ξ 6 15.82,
five in the region 1 < ξ 6 5 and another five in 5 6 ξ 6 15.82. Each element, in turn, contains five DVR points to
further discretize the configuration space. Furthermore, we employ 9th-order DVR points for η. For a given number
of η mesh points (nη) and |m|max = |m1|max = |m2|max, we observe that the resulting energy typically exhibits a
plateau-like behavior with increasing lmax. For given nη, when lmax is relatively small, the η-integral can be computed
very accurately by using Gauss quadrature. However, when lmax is too large, the numerical errors introduced from
the Gauss quadrature cause the energy value to fluctuate. This occurs when lmax approaches 2nη and is shown by
the grey stripes in Fig. 1. In this region of lmax an unphysically low energy can be produced. Beyond that point, the
calculated energy increases to the next plateau.

Ultimately, this is not too surprising, since any Gauss quadrature is only reasonably accurate up to a limited
polynomial order of the integrand. Consequently, if we want to keep more terms in the Neumann expansion, we
have to increase nη correspondingly. This finding is further substantiated by the dependence of the energy found for
nη = 11 and 13. The plateaus are indeed extended to the correspondingly larger values of 2nη. Most importantly,
the amplitude of the energy fluctuation is systematically reduced with increasing nη. The error in the energy is
lowered from 2.13 × 10−3 to 1.45 × 10−3 and finally 1.05 × 10−3 a.u., when nη increases from 9 to 11 and then 13
for |m|max = 4. We obtained the energy at R = 1.4 bohr as −1.8887324 a.u. for lmax = 10, nη = 9, and |m|max = 4,
resulting in a double-ionization potential of 51.394 eV. Keeping the other parameters unchanged, we obtained an
energy of −1.8887128 a.u. for nη = 11. The benchmark energy in the literature is −1.888761428 a.u. at the same
R [42], after we take out the nucleus-nucleus interaction of 1/1.4 a.u.

To summarize: Unlike for other expansion parameters, it is important to be consistent in the size of the angular
quadrature and the largest lmax employed in the Neumann expansion in practical calculations, if we discretize the
coordinate η. However, this provides a way to examine a potential sensitivity of the physical observables of interest
(here the differential cross sections) to the ground-state wave functions generated by varying lmax and other parameters.
This will be further discussed below.
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FIG. 1. (Color online) Energy of the lowest electronic X 1Σg state at R = 1.4 bohr as a function of the lmax value used in the
Neumann expansion of 1/r12. The number of η points, nη , and the largest magnetic quantum number, |m|max, are labeled as
(nη, |m|max). The open symbols correspond to |m|max = 1, while the filled symbols are for |m|max = 4. The benchmark energy
(Egs) from Ref. [42] is shown as well.

B. Convergence of the TDCS

Before we present our results for the cross sections, let us take a closer look at the survival probability

Psurv = |〈Ψgs|Ψ(t)〉|2 (54)

of the aligned H2 molecule in its ground state Ψgs. This is shown in Fig. 2. For homonuclear molecules, the independent
alignment angle θN between the molecular axis and the polarization vector can be confined to the region from 0◦ to
90◦. In the xuv regime, we observe that the hydrogen molecule shows a larger probability of being ionized or excited
(i.e., a lower probability of staying in the initial state) at the end of the pulse in an aligned geometry. This indicates
that the perpendicular component of the temporal electric field exerts more influence on the ionization process due
to the larger dipole momentum. Interestingly, at the earlier stages of the time evolution (e.g., t . 9 a.u.), when the
ionized wave packet is driven back by the change in direction of the electric field, the tilted molecule has a larger
probability of staying in its ground state. This happens near the various minima in Psurv. However, once the electric
field has become sufficiently strong (t & 9 a.u.), the wave packet is driven out and spread into a larger space. This
leads to lower minima in Psurv for the tilted molecule.

When the wave packet is driven back to the nuclear region and therefore has a chance to recombine with the H+
2

ion, a maximum in Psurv appears. Not surprisingly, the parallel geometry always has the largest probability for this
to happen. Although the wave packet can also be scattered for the untilted molecule in the plane perpendicular to
the molecular axis, the probability is undoubtedly larger if the laser electric field is perpendicular to the molecular
axis. A similar behavior of H+

2 in xuv pulses was observed in Ref. [43].
For most calculations performed in this study, we expose the hydrogen molecule to a laser pulse with a peak intensity

of 1015 W/cm2. Looking at Fig. 2 we see that the depletion of the initial ground state can be safely neglected for our
typical interaction times. Even for θN = 90◦, Psurv = 0.99677 remains very close to unity. The negligible depletion
of the ground state suggests that the concept of cross sections is valid and applicable. On the other hand, it also
presents a numerical challenge to predict the cross sections accurately from a time-dependent treatment, due to the
generally small ionization probability.

At first glance, a peak intensity of 1015 W/cm2 might seem very intense for most atomic and molecular targets.
Here, however, we consider an xuv rather than an IR pulse. For an xuv pulse with central photon energy of 75 eV,
such laser fields definitely fall into the “weak-field” regime. The ponderomotive energy in the xuv regime is much
smaller than the photon energy of interest.

In this work, we are mainly interested in the triple-differential cross section, since it reveals the fine details of
possible energy sharings and preferred directions of the ejected electrons in the double-ionization process. Given
the discrepancies between results from various calculations found in the literature, we carried out comprehensive
convergence tests for our predictions of the TDCSs. These tests are essentially divided into two groups. The first
group concerns the laser parameters, while the second one deals with the discretization and expansion parameters.
An example of two different parameter sets for the ξ grid is given in Table I and will be further discussed below.
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FIG. 2. (Color online) Survival probability of the hydrogen molecule subjected to a sine-squared laser pulse with a peak
intensity of 1015 W/cm2. The laser pulse lasts for 10 optical cycles and the system is followed for a period of another 2 cycles
of field-free propagation. The central photon energy of the laser pulse is 75 eV.

TABLE I. The discretization and expansion parameters of the H2 wave function in prolate spheroidal coordinates. Here ξb

stands for the border between the inner and outer regions in the ξ coordinate, while ξmax is the size of the ξ box. In addition,
nξ denotes the number of ξ mesh points in each element. The numbers of ξ elements in the inner and outer region are ninn

and nout, respectively. These ξ parameters produce the total number of ξ mesh points Nξ . The ξ grid I and ξ grid II are used
to examine the convergence of our results.

ξb ninn nout ξmax nξ Nξ

ξ grid I 5 5 67 150 5 288

ξ grid II 9 1 11 97 14 156

In order to obtain a good handle on the sensitivity of the results to the various parameters and the resulting level
of “convergence”, we try to only vary a single parameter while keeping all others fixed if possible. For the dependence
on the laser parameters, we use the ξ grid I combined with (nη, |m|max, lmax) = (9, 4, 10). For the tests regarding
the discretizations and expansions, the peak intensity of laser was fixed at 1015 W/cm2 and a time scale of “10 + 2”
optical cycles (o.c.) was used. Here “10 + 2” refers to a 10-cycle laser pulse with a sine-squared envelope for the field
amplitude, followed by a 2-cycle field-free propagation.

Figures 3 and 4 show the convergence pattern of our TDCS results for asymmetric energy sharing in the parallel
geometry (θN = 0◦). The energy sharing between electron 1 (observed at the fixed angle θ1) and electron 2 (observed
at the variable angle θ2) is 20% : 80%. Only the electron that takes away 20% of the excess energy is recorded at
fixed positions either parallel or perpendicular to the polarization axis.

Since the laser pulse is explicitly involved in our time-dependent treatment, we first have to be sure that the
extracted cross sections are essentially independent of the laser intensity and the time scales. Only then are the
calculations of cross sections meaningful. This also allows us to compare the physical information extracted from our
time-dependent scenario to that obtained through conventional time-independent treatments, which are effectively
equivalent to the weak-field approximation and “infinitely” long interaction times. Rather than computing the cross
sections, it would be more appropriate to consider ionization rates if the cross sections were found to be sensitive to
the laser parameters.

In Fig. 3, we display the dependences of our TDCS results upon the laser parameters. Note that the TDCSs
extracted from I0 = 1015 W/cm2 and 1014 W/cm2 at fixed time evolution of “10 + 2” cycles are nearly identical and
agree with each other to better than the thickness of the line. When we turn to the dependence of time scales at a
fixed intensity of 1015 W/cm2, we use the same pulse, but allow the system to freely evolve for a few additional cycles
to extract the TDCS. This corresponds to the time scale of “10 + 4” o.c. Also, we may increase the laser-molecule
interaction time, but extract the TDCSs at the same cycles of field-free time evolution after the pulse died off. This
gives the scenario of “12 + 2” o.c. Since the total time durations are the same (14 o.c.), they allow us to examine
the extracted TDCSs from different perspectives. The increased interaction time yields a reduced bandwidth of the
photon energy, while the longer field-free propagation ensures that the double-ionization wave packet is further away
from the nuclear region [44]. The calculated TDCSs indeed show a slight, though in our opinion acceptable, sensitivity
to the time scales. Not surprisingly, the sensitivity is most visible for the smaller cross sections, when the two ejected



15

1014 W/cm2
1015 W/cm2(a)

θ1 = 0◦
θN = 0◦

θ2 (deg)

T
D

C
S

(b
/s

r2
eV

)

360300240180120600

0.4

0.3

0.2

0.1

0.0

(b)

θ1 = 90◦
θN = 0◦

θ2 (deg)

T
D

C
S

(b
/s

r2
eV

)

360300240180120600

1.0

0.5

0.0

12 + 2 o.c.
10 + 4 o.c.
10 + 2 o.c.(c)

θ1 = 0◦
θN = 0◦

θ2 (deg)

T
D

C
S

(b
/s

r2
eV

)

360300240180120600

0.4

0.3

0.2

0.1

0.0

(d)

θ1 = 90◦
θN = 0◦

θ2 (deg)

T
D

C
S

(b
/s

r2
eV

)

360300240180120600

1.0

0.5

0.0

FIG. 3. (Color online) Convergence of the coplanar TDCS results for the hydrogen molecule for asymmetric energy sharing
with respect to the laser peak intensity and the time scale. The central photon energy is 75 eV. The slow reference electron,
observed at the fixed angle θ1, takes away 20% of the available excess energy (E1 = 4.7 eV), while the other electron takes 80%
of Eexc (E2 = 18.9 eV). The peak laser intensity in panels (b)-(d) is 1015 W/cm2. The two columns show the corresponding
convergence of the TDCS for θ1 = 0◦ (left) and θ1 = 90◦ (right), respectively. 1 barn (b) = 10−24 cm2.

electrons travel nearly parallel along the same direction (c.f. Fig. 3(c)).

Having confidence in using the current sets of laser parameters, we now turn our attention to the scheme of spatial
discretization (nξ, ξmax, nη) and the convergence of the expansion (lmax, |m|max). The results are displayed in Fig. 4.

For the discretization parameters, we obtain well-converged TDCSs by increasing nξ from 5 to 7, nη from 9 to 11,
and extending the spatial box of ξmax from 100 to 150. Most importantly, however, we consider two sets of ξ mesh
points: ξ grid I and ξ grid II (see Table I). The principal motivation was to see whether or not we can reproduce the
much lower TDCS values (by about 20% compared to the one-center spherical results) that were recently obtained in
an ECS calculation in two-center elliptical coordinates by Tao et al. [15].

We emphasize that these two grids in the “radial” ξ coordinate are completely different regarding both the distribu-
tion of the elements and the number of grid points per element. In the ξ grid I, we divide the ξ space into two parts,
an inner and an outer region with a border at ξb = 5. We place a narrow span of elements in the inner region, and
then wider elements in the outer region. In contrast to that, ξ grid II does not distinguish between inner and outer
regions, i.e., the elements uniformly span the region from 1 to ξmax. The mesh setup in ξ grid II is the same as that
used in Ref. [15], except for the complex rotation. The ξ grid I has a much denser distribution of mesh points than ξ
grid II. Nevertheless, the extracted TDCSs from both sets of ξ grids are in excellent agreement with each other, even
for the smallest cross sections. This strongly suggests that the results are well converged at least with regard to the
ξ grid. Both ξ sets are good enough to capture the physics of interest. Differences at the 20% level are unlikely to be
caused by using different sets of ξ meshes.

Finally, we discuss the convergence of our results with respect to the expansion parameters, |m|max and lmax. As
expected for a one-photon process, |m|max = 4 produced well-converged results.

Recall the discussion above regarding the ground state, especially how the truncated Neumann expansion of 1/r12

in our present FE-DVR implementation affects the initial-state energy and therefore the quality of the wave function.
For consistency, we use the same lmax in the real-time propagation and in the ground-state wave function. As seen
from Figs. 4(i) and 4(j), our truncated Neumann expansion has little effect on the calculated TDCS values. Well-
converged results can be obtained even with an inappropriately large value of lmax = 20, which yields a slightly higher
energy of the ground state (c.f. Fig. 1).

Overall, our detailed convergence tests only reveal a very weak sensitivity of the TDCS results to both the time scales
and the values of lmax. Well-converged TDCS results can be obtained by using either ξ grid I or ξ grid II combined
with (nη, |m|max, lmax) = (9, 4, 10). In the production calculations for the TDCSs shown in the next subsection, we
used the ξ grid I to discretize the two-electron wave packet and a “10 + 2” sine-squared laser pulse with a peak
intensity of 1015 W/cm2.
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FIG. 4. (Color online) Same as Fig. 3, but for the convergence of the TDCS results with respect to the discretization and
expansion parameters. See text for the details.

C. TDCSs for the aligned H2 molecule

Figures 5, 6, and 7 display the coplanar TDCSs of the aligned hydrogen molecule at equal and asymmetric (E1 :
E2 = 20% : 80%) energy sharing. The two electrons are detected in the same (coplanar) plane defined by the ζ and ǫ

axes. The angles θ1, θ2, and θN are all measured with respect to the laser linear polarization axis. We compare our
TDCS predictions with those obtained in the time-independent one-center spherical ECS calculation [11], the time-
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FIG. 5. (Color online) Coplanar TDCS of the aligned hydrogen molecule for equal energy sharing (E1 = E2 = 11.8 eV). The
central photon energy is 75 eV. One electron is detected at the fixed direction of θ1 = 0◦ with respect to the laser polarization
axis. Also shown are the one-center spherical ECS results [11], the two-center prolate spheroidal results [15], and one-center
spherical TDCC results [14].

independent two-center spheroidal ECS model [15], and the time-dependent one-center spherical TDCC approach [14].
The TDCC numbers were recently recalculated with a bigger box size and differ, in some cases substantially, from
those published originally [13]. Except for the recent two-center prolate spheroidal ECS results of Tao et al. [15, 45],
the agreement between the other three sets of results is very satisfactory. Once again, the largest relative differences
occur when the cross sections are small (see Figs. 5(d) and 6(d)).

Using spheroidal coordinates as well, as an illustrative example of their two-center ECS approach, Serov and
Joulakian [46] recently presented the TDCS at the same photon energy, but only for a single geometry of θN = 20◦

and θ1 = 40◦ for asymmetric energy sharing of E1 : E2 = 80% : 20%. Although not shown here, there is again good
agreement between their results, Vanroose et al.’s one-center spherical ECS numbers [11], and our time-dependent
FE-DVR predictions.

It is also interesting to investigate the dominant escape modes for the various scenarios. These modes are strongly
dependent on how the electrons share the excess energy. In an arbitrary geometry (0◦ 6 θN 6 90◦), for example,
the back-to-back escape mode (θ12 = 180◦) is forbidden for equal energy sharing. On the other hand, it becomes the
dominant mode for significantly asymmetric energy sharing, including the 20%:80% scenario discussed in the present
paper (see Fig. 3).

These results can be understood from a symmetry analysis [47]. Equal-energy sharing and back-to-back emission
is equivalent to k1 = −k2. When we consider the exchange and parity operations simultaneously in Eq. (45), we
have Φ−k2,−k1

= P (−1)SΦk1,k2
. Here P = ±1 is the parity for the gerade and ungerade states, respectively. For the

singlet double-continuum state with ungerade parity, we therefore must have Φ−k,k(r1, r2) = 0 at any configuration
of r1 and r2. Although the magnitudes of the momenta k′

1 and k′
2 are not exactly conserved in the time-dependent

picture, the ionization events we collect must satisfy the condition k′
1 = k′

2 (because of the δ function in Eq. (53))
for the equal-energy sharing. This is the reason behind the forbidden back-to-back (θ12 = 180◦) escape mode for the
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FIG. 6. (Color online) Same as Fig. 5, except that the fixed electron is detected at the angle θ1 = 90◦ with respect to the
laser polarization axis. Since there was a plotting error in Fig. 3 of Tao et al. [15], we are comparing here with the proper
numbers [45] from that calculation.

equal energy sharing, as we observed in Figs. 5 and 6. Since the argument does not involve the relative alignment
angles, it is valid for all possible values of θN . On the other hand, this is not the case when the excess energy is not
evenly distributed among the two electrons. Indeed, Figs. 3(a) and 3(c) show maxima in the back-to-back emission,
thereby illustrating the dramatic change in the dominant escape mode.

For equal-energy sharing in the parallel geometry (θN = 0◦), the electron-electron Coulomb repulsion suggests that
the TDCS should be dynamically small if the two electrons travel along the same direction. This is in agreement with
the numerically small cross sections (not exactly zero, however) at θ2 = 0◦ or 360◦ seen in Fig. 5(d).

Recall that the one-photon double-photoionization process in helium [34, 48] shares the same property. The back-
to-back mode is forbidden for equal-energy sharing, and this can be explained by the above argument. It is one of
the similarities between the molecular hydrogen and the atomic helium targets for double photoionization. However,
Figs. 5, 6, and 7 also reveal significant molecular effects in the TDCS results. These are missing for the helium atom,
not only in the shape of the angular distributions, but also in the magnitudes of the cross sections. Depending on
the relative orientation (0◦ < θN < 90◦), there is interference between the Σu and Πu symmetries in H2. A nice
example of this effect was presented by Reddish et al. [49]. Even without interference (i.e., for θN = 0◦ or 90◦), the
perpendicular geometry shows much larger magnitudes of the TDCS than the parallel geometry. Figure 8 shows the
three cases of angular distributions: H2 ζ ⊥ ǫ, H2 ζ ‖ ǫ, and He at equal energy sharing. Interestingly, in most cases
the angular distributions of the perpendicular geometry resemble those of helium. The molecular effect can definitely
not be ignored in the parallel geometry for θ1 = 0◦ (c.f. Fig. 8(a)). The forward escape mode of the second electron is
dominant for the H2 parallel geometry. In contrast, the backward mode is dominant for the H2 perpendicular geometry
and also for helium.

In Fig. 9, we show the TDCS for noncoplanar geometries. Again, all angles are defined with respect to the
polarization vector. For the perpendicular geometry, Fig. 9(a) depicts the escape modes for the configuration of
k1 ‖ ζ (the fixed electron) and at the same time k2 in the plane perpendicular to the plane formed by ǫ and ζ.
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FIG. 7. (Color online) Coplanar TDCS of the aligned hydrogen molecule for asymmetric energy sharing. The electron detected
at the fixed angle θ1 = 90◦ takes away 20% of the available excess energy, while the second electron takes away 80% of Eexc.
The present time-dependent FE-DVR results are compared with those from time-independent one-center spherical ECS [11]
and two-center prolate spheroidal ECS [15] calculations.
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FIG. 8. (Color online) Comparison of predicted relative coplanar TDCSs between H2 in the perpendicular (solid lines) and
parallel (dashed lines) geometries, and He (chain lines) [48] for equal-energy sharing in polar coordinates. The polarization
axis is taken along the horizontal direction. The photon energies for H2 and He are 75 eV and 99 eV, respectively. The fixed
observation angles for one of the electrons are 0◦ (a), 30◦ (b), 60◦ (c), and 90◦ (d) with respect to the laser polarization vector.
Scaling factors were used to emphasize the shape comparison.

Figure 9(b) shows the TDCS after exchanging the directions of k1 and k2 in Fig. 9(a). With the same directions of
k1 and k2 as in Fig. 9(b), Fig. 9(c) is for the case of the molecular axis orientated along the polarization vector. In
the parallel case (θN = 0◦), we observe that any escape modes of both electrons ejected in the direction perpendicular
to ǫ are forbidden. This can be understood by analyzing the spheroidal harmonics in Eq. (53). In this case, only
the 1Σu states can be populated. Hence, only partial waves with (m1, m2) = (−m, m) and (−1)ℓ1+ℓ2 can contribute
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FIG. 9. (Color online) Noncoplanar TDCS of the aligned hydrogen molecule for equal energy sharing. The present time-
dependent FE-DVR results are compared with TDCC predictions [14].

to the cross sections, since Yℓ1m1
(k′, k̂1)Yℓ2m2

(k′, k̂2) at the angles of θ1 = θ2 = 90◦ vanish in spherical coordinates.
Once again, the agreement between our FE-DVR noncoplanar TDCSs and the refined TDCC results [14] is excellent.

VIII. SUMMARY

We have presented calculations for one-photon double ionization of the hydrogen molecule at a photon energy of
75 eV by solving the time-dependent Schrödinger equation in prolate spheroidal coordinates. The triple-differential
cross sections were extracted through the projection of the time-dependent wave packet onto uncorrelated two-electron
continuum states, a few cycles of field-free time evolution after the laser pulse died off.

Exhaustive convergence studies of the TDCS results were performed with respect to a number of discretization
and expansion parameters, as well as the details of the laser field. These tests provide a strong indication that the
results for the triple-differential cross sections presented here are well converged and numerically accurate. Excellent
agreement was obtained between the current time-dependent results in prolate spheroidal coordinates, those obtained
with the ECS approach in spherical coordinates [11] and, finally, larger TDCC calculations [14] than those published
earlier [13].

The present calculations do not confirm the significant reduction by about 20% in the TDCS results predicted in
recent ECS calculations in the two-center prolate spheroidal coordinates [15]. Furthermore, our results did not show
the level of sensitivity to the description of the ground state that was also reported by Tao et al. [15].

The detailed analysis reported in this study provides a high level of confidence in the present results. We hope
that they will be used as benchmarks for comparison in future investigations. Tables of these results are available in
electronic format from the authors upon request.
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[16] D. R. Bates, U. Öpik, and G. Poots, Proc. Phys. Soc. A 66, 1113 (1953).
[17] S. Barmaki, S. Laulan, H. Bachau, and M. Ghalim, J. Phys. B 36, 817 (2003).
[18] S. Barmaki, H. Bachau, and M. Ghalim, Phys. Rev. A 69, 043403 (2004).
[19] Y. V. Vanne and A. Saenz, J. Phys. B 37, 4101 (2004).
[20] G. Lagmago Kamta and A. D. Bandrauk, Phys. Rev. A 71, 053407 (2005).
[21] L. Tao, C. W. McCurdy, and T. N. Rescigno, Phys. Rev. A 79, 012719 (2009).
[22] T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).
[23] D. J. Tannor, in Introduction to Quantum Mechanics, A Time-dependent Perspective, Chap. 11, p318 (University Science

Books, Sausalito, California 2007).
[24] X. Guan, K. Bartschat, and B. I. Schneider, Phys. Rev. A 82, 041404(R) (2010).
[25] X. Guan, B. Li, and K. T. Taylor, J. Phys. B 36, 3569 (2003).
[26] P. M. Morse and H. Feshbach, in Methods of Theoretical Physics, Parts I and II (McGraw-Hill, 1953).
[27] I. A. Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, Mathematical Tables, Chap. 8, p331, eds. M.

Abramowitz and I. A. Stegun (1964).
[28] E. L. Mehler and K. Ruedenberg, J. Chem. Phys. 50, 2575 (1969).
[29] C. W. McCurdy, M. Baertschy, and T. N. Rescigno, J. Phys. B 37, R137 (2004).
[30] X. Guan, K. Bartschat, and B. I. Schneider, Phys. Rev. A 77, 043421 (2008).
[31] X. Guan, C. J. Noble, O. Zatsarinny, K. Bartschat, and B. I. Schneider, Comp. Phys. Comm. 180, 2401 (2009).
[32] K. T. Taylor, J. S. Parker, D. Dundas, K. J. Meharg, L. R. Moore, E. S. Smyth, and J. F. McCann, in Many-Particle

Quantum Dynamics in Atomic and Molecular Fragmentation, Chap. 9, p153, eds. J. Ullrich and V. Shevelko (Springer-
Verlag, Berlin Heidelberg 2003).

[33] C. Flammer, in Spheroidal Wave Functions, (Dover Publications, Inc., Mineola, New York 2005).
[34] J. Colgan, M. S. Pindzola, and Robicheaux, J. Phys. B 34, L457 (2001).
[35] L. A. A. Nikolopoulos and P. Lambropoulos, Phys. Rev. A 74, 063410 (2006).
[36] B. I. Schneider, L. A. Collins, and S. X. Hu, Phys. Rev. E 73, 036708 (2006).
[37] W. Gropp, E. Lusk, and A. Skjellum, in Using MPI: Portable Parallel Programming with the Message-Passing Interface,

(MPI Press, Cambridge, Massachusetts 1999).
[38] http://www.netlib.org/lapack.
[39] http://www.netlib.org/blas.
[40] http://www.nccs.gov/jaguar.
[41] http://www.nics.tennessee.edu/computing- resources/kraken.
[42] J. Sims and S. Hagstrom, J. Chem. Phys. 124, 094101 (2006).



22

[43] S. X. Hu, L. A. Collins, and B. I. Schneider, Phys. Rev. A 80, 023426 (2009).
[44] L. B. Madsen, L. A. A. Nikolopoulos, T. K. Kjeldsen, and J. Fernández, Phys. Rev. A 76, 063407 (2007).
[45] T. N. Rescigno, private communication (2010).
[46] V. V. Serov and B. B. Joulakian, Phys. Rev. A 80, 062713 (2009).
[47] F. Maulbetsch and J. S. Briggs, J. Phys. B 28, 551 (1995).
[48] X. Guan, unpublished (2008).
[49] T. J. Reddish, J. Colgan, P. Bolognesi, L. Avaldi, M. Gisselbrecht, M. Lavollée, M. S. Pindzola, and A. Huetz, Phys. Rev.

Lett. 100, 193001 (2008).


