
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Hydrogen recombination due to collisions with He and Ar
Stephen Paolini, Luke Ohlinger, and Robert C. Forrey
Phys. Rev. A 83, 042713 — Published 27 April 2011

DOI: 10.1103/PhysRevA.83.042713

http://dx.doi.org/10.1103/PhysRevA.83.042713


AB10644

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Hydrogen recombination due to collision with He and Ar

Stephen Paolini, Luke Ohlinger, and Robert C. Forrey

Department of Physics, Penn State University, Berks Campus, Reading, PA 19610-6009

(Received: )

Abstract

Quantum mechanical calculations are reported for hydrogen recombination in

the presence of a chemically inert spectator. The calculations employ a square

integrable Sturmian basis set to provide a discrete representation of the H2

continuum. Direct three-body recombination is approximated by computing

transitions from the non-resonant continuum. Resonant and non-resonant

states are handled on equal footing within the sequential two-step energy

transfer mechanism. Theoretical rate coefficients are computed within the

equilibrium and steady-state approximations for the density of intermediate

molecules. The results are compared with existing experimental data for

He and Ar. The sensitivity of the calculations to pressure variations and to

changes in the potential energy surface are investigated for He. The reliability

of these calculations and their relevance for astrophysical models is discussed.
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I. INTRODUCTION

Atomic and molecular recombination in the presence of a third body, often known as

three-body recombination (TBR), is one of the most fundamental types of chemical reaction.

Together with the inverse process of collision-induced dissociation (CID), it comprises about

half of the reactions that have been identified as important in combustion chemistry [1,2].

Of particular interest is the recombination of hydrogen due to its fundamental importance

in astrophysics [3–5] and practical importance in plasma physics and rocket propulsion [6].

The current status for TBR of H2 due to collisions with H is far from satisfactory.

Astrophysical models of primordial star formation [3–5] require TBR rate coefficients as

input. A survey of published rate coefficients [7] showed disagreement by orders of magnitude

at the low temperatures which are relevant for H2 formation in primordial gas. Simulations

have shown [5] that this uncertainty fundamentally limits the ability to model the density,

temperature, and velocity structure of the gas near the collapsing center of population III

stars. TBR of H2 due to collisions with He and the reverse CID process are also important

for many astrophysical environments [8]. Due to the availability of experimental data [9],

hydrogen recombination due to He and Ar colliders has provided a convenient testing ground

for the development of TBR theories [10,11]. At room temperatures, there is not much

difference in the efficiency of these noble gas colliders in catalyzing hydrogen recombination.

At lower temperatures, the catalytic efficiency becomes more sensitive to the collider and

the calculations more sensitive to the theoretical formulation.

The orbiting resonance theory (ORT) developed by Roberts, Bernstein, and Curtiss [10]

has been the most widely used approach for calculating hydrogen recombination rates. The

theory assumes a steady-state population of H2 orbiting resonances and calculates the rate of

stabilization due to collisions with a third body. The full set of resonances [12–14] is reduced

to a set of six after energy and lifetime considerations are taken into account. Classical
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trajectories are computed for the restricted set of resonances and the recombination rate

constants are determined. Because the ORT mechanism is a sequential process involving

two-body collisions, the theory neglects the possibility that the recombination occurs in a

single step as a consequence of a direct three-body collision. The influence of three-body

collisions was investigated for H2+H2 by Schwenke [14,15] and for Ne2+H by Pack, Walker,

and Kendrick [2,16]. In both cases, the master equations were solved for the kinetics, and

it was found that three-body collisons were not at all negligible. Similar conclusions were

found in other studies (a detailed historical account is provided in [2]) suggesting that a

reexamination of this issue is needed.

Recently, quasiclassical dynamical calculations have been performed [17] which included

two-body and three-body collisions in a unified treatment of H2 recombination due to H.

Quantum mechanical calculations which account for two-body and three-body collisions

have also been performed for CID of H2 due to He [8,18,19]. Advances in present computing

power have made it possible to remove many of the approximations that were necessary for

earlier calculations. The large internal energy spacing of the H2 molecule allows quantum

mechanical representations that are sufficiently compact for He and Ar colliders such that

numerical convergence is now achievable at low to intermediate collision energies. It should

be possible, therefore, to develop a complete set of state-to-state rate coefficients which may

be used in kinetic models to account for both TBR and the inverse process of CID. This

goal requires (i) a potential energy surface (PES) that is accurate for all possible coordinate

configurations (ii) a complete set of state-to-state cross sections computed using a fully

quantum mechanical formulation (iii) a coherent inclusion of direct three-body collisions in

the dynamics (iv) a master equation analysis of the kinetics which includes lifetimes for

long-lived resonant states and time delays for short-lived non-resonant states.

In the present work, we address the first three of these requirements. We employ the
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best available PES for each system and study the sensitivity of our calculations to regions

where the PES may be inadequate. We use an L2 discretization of the continuum that

allows for converged dissociation and recombination cross sections. Non-resonant states

are handled using the same two-step energy transfer mechanism that is used in ORT to

describe resonant states. The quantum mechanical coupled states (CS) formulation is used

to compute the scattering cross sections. Recombination rate constants are computed using

both the equilibrium and steady-state approximations for the population of intermediate

molecules. The results for He and Ar are compared to existing experimental data.

II. THEORY

Recombination of H in the presence of an inert third body M may occur through the

direct process

H + H + M → H2 + M (1)

or through the sequential two-step process

H + H → H2(u) (2)

H2(u) + M → H2(b) + M (3)

where b and u designate bound and unbound states. The recombination rate coefficient for

the two-step process is given by

kr =
∑

bu

kub
[H2(u)]

[H ]2
(4)

where [X] denotes the density of X, and kub is the rate coefficient which connects the bound

and unbound states. At equilibrium,
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[H2(u)]

[H ]2
=

gu exp(−Eu/kBT )

4QT

(5)

where QT is the usual translational partition function and the factor of 4 in the denominator

of equation (5) is needed to account for the two H atoms approaching each other on the 1Σ+
g

electronic state. TBR rate coefficients may be obtained from CID rate coefficients using

detailed balance

kub =
gb

gu
exp

(

Eu − Eb

kBT

)

kbu (6)

where gb and gu are the degeneracy factors associated with the diatomic energies Eb and Eu.

If the unbound states are restricted to quasibound states, then the formulation reduces to the

orbiting resonance theory of Roberts, Bernstein, and Curtiss [10]. The 3-body continuum

contribution may be included in the two-step formulation by allowing non-resonant states

in the summation over u in equation (4). These non-resonant states represent discretized

contributions in a numerical quadrature of the continuum [8]. In this approach, the direct

recombination process (1) is treated in the same manner as the contributions from the

orbiting resonances. The state-to-state rate coefficient

kif =

(

8kBT

πµ

)1/2

(kBT )−2
∫

∞

0
σif (ET ) exp(−ET /kBT ) ET dET (7)

is also extended to include resonant and non-resonant unbound states. In equation (7),

ET = E −Ei is the translational energy in the ith channel, µ is the reduced mass of M with

respect to H2, and σif (ET ) is the cross section for the collision.

It is noteworthy that equation (4) may be assumed to include lifetime and pressure

effects via a steady-state approximation for the formation of the intermediate molecule.

The steady-state density is given by

[H2(u)]

[H ]2
=

keq
u

1 + τu[M ]
∑

b kub
(8)
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where τu is the lifetime of the unbound diatomic state and keq
u is the equilibrium constant

given in equation (5). As noted by Pack, Walker, and Kendrick [16], this steady-state

approximation neglects possible repopulation of the intermediate molecules by three-body

collisions. Their master equation analysis showed that three-body collisions are essential for

keeping the metastable quasibound states from getting depleted at high pressures. Unbound

states which are either part of the non-resonant continuum or else correspond to broad above

barrier resonances with neglible lifetimes are unmodified by equation (8). These states give

rise to pure third-order kinetics for all pressures. The use of equation (8) for unbound

resonances with significant lifetimes, however, does not give pure third-order kinetics at

large pressures due to the neglected [M]-dependence in the numerator which arises from

three-body collisions [16]. The use of the equilibrium approximation (5), the steady-state

approximation (8), and the need for a more detailed master equation analysis for the present

system is discussed in the next section.

The collision cross sections are computed quantum mechanically using the coupled states

formulation [20,21] for the Hamiltonian

H = −
1

2m
∇2

r −
1

2µ
∇2

R + V (r, R, θ) , (9)

where m is the reduced mass of H2, r is the distance between the H atoms, R is the distance

between M and the center of mass of the H2, and θ is the angle between ~r and ~R. The

three dimensional potential energy surface is separated into a diatomic potential v(r) and

an interaction potential VI(r, R, θ). The diatomic Schrödinger equation
[

1

2m

d2

dr2
−

j(j + 1)

2m r2
− v(r) + ǫvj

]

χvj(r) = 0 , (10)

is diagonalized to obtain the eigenstates χvj for each vibrational and rotational quantum

number v and j. The bound and unbound diatomic energies Eb and Eu in equations (5)-(7)

are determined by the eigenvalues ǫvj . The diagonalization is performed by expanding the

diatomic eigenstates in an orthonormal Laguerre polynomial L(2j+2)
n basis set

6 (March 14, 2011)



φj,n(r) =

√

an!

(n + 2j + 2)!
(ar)j+1 exp(−ar/2)L(2j+2)

n (ar) . (11)

The full wave function in the body-fixed frame is expanded for total angular momentum J

in the set of diatomic eigenstates as

ΨJΩ(~R,~r) = 1
R

∑

v,j

Cvj(R)χvj(r)YjΩ(θ, 0) , (12)

where Ω is the body-fixed projection of both J and j. In the CS formulation, the off-diagonal

Coriolis couplings that arise in the body-fixed frame are neglected, and the eigenvalue of the

orbital angular momentum operator l̂2 is approximated by l(l + 1) where l is assumed to be

a conserved quantum number. This procedure yields the set of coupled equations

[

d2

dR2
−

l(l + 1)

R2
+ 2µ(E − ǫvj)

]

Cvj(R) = 2µ
∑

v′,j′
Cv′j′(R) 〈vjΩ|VI |v

′j′Ω〉 , (13)

where

〈vjΩ|VI |v
′j′Ω〉 =

λmax
∑

λ=0

(−1)Ω[(2j + 1)(2j′ + 1)]1/2

×









j′ λ j

0 0 0

















j′ λ j

Ω 0 −Ω









〈χvj |Vλ|χv′j′〉 , (14)

and Vλ are coefficients for the expansion of the interaction potential in terms of Legendre

polynomials Pλ

VI(r, R, θ) =
λmax
∑

λ=0

Vλ(r, R)Pλ(cos θ) . (15)

The (...) denotes a 3-j symbol, and the matrix element 〈χvj |Vλ|χv′j′〉 assumes integration

over r. The collision cross section is given by

σvj→v′j′ =
π

2µET (2j + 1)

Jmax
∑

J=0

(2J + 1)
Ωmax
∑

Ω=0

(2 − δΩ0)|δjj′δvv′ − SJΩ
vj;v′j′|

2 , (16)

where SJΩ
vj;v′j′ is the scattering matrix and ET = E − ǫvj . The set of coupled equations (13)

may be conveniently solved using the general inelastic scattering program MOLSCAT [22].
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The interaction potentials for the two systems are obtained from [23] and [24]. To describe

dissociation and recombination, the PES should provide an accurate representation for all

values of H-H separation. For He+H2 [8,25], the dissociation cross sections were found to

be insensitive to changes in the Muchnik and Russek (MR) potential for large stretching of

the H-H bond (r > 4 a.u.). Although the functional form for the dispersion term in the

MR potential is not adequate to properly represent the physics [23], the exponential decay

contained within the Sturmian representation effectively cuts off the unphysical long-range

behavior in the potential. For intermediate stretching (2 < r < 4 a.u.), the MR potential

is not constrained by ab initio data, and there is some sensitivity of the cross sections

to changes in the parametrization of the potential in this region [25]. This sensitivity is

investigated in the next section.

III. RESULTS

Recombination rate coefficients were computed from CID rate coefficients using detailed

balance. Cross sections for CID were computed previously for He+H2 for the most weakly

bound vibrational levels [8]. We extend these calculations to include more deeply bound

vibrational levels and more translational energies near the dissociation thresholds. The same

method is then used for computing Ar+H2 cross sections. Rate coefficients are computed

from the cross sections using equation (7). Figure 1 shows the CID rate coefficients for the

two systems when the H2 molecule is initially in the last bound vibrational level for j = 0.

The results are very similar, particularly at low temperature. The present results for Ar

are also compared with the distorted wave Born approximation results of Sakai [26]. The

comparison shows the distorted wave results are significantly lower than the present results

at low temperatures but agree very well with the present results at high temperatures.

Figures 2 and 3 show three-body recombination rate coefficients for He+H2 as a function
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of temperature. In Figure 2, the curves correspond to recombination from positive energy

states of H2 with j = 4. The dominant recombination contribution comes from the v = 14

orbiting resonance. This resonance is long-lived with a width of 8.4 × 10−6 cm−1 [14]. The

remaining v ≥ 15 states are non-resonant. The rate coefficients for these states decrease

uniformly with v for low temperature. At higher temperatures, the v = 15 − 19 curves

intersect and the recombination rate coefficients are of comparable magnitude. The rate

coefficients for v = 20 and v = 21 are considerably smaller than v = 15 − 19 for all

temperatures indicating that the basis set is sufficiently converged. In Figure 3, the curves

correspond to recombination from positive energy states of H2 with j = 5. The v = 14 state

is a resonance with a width of 15.22 cm−1 [14]. Although still the dominant contribution to

recombination, the rate coefficient for v = 14 is closer in magnitude to that of v = 15. The

rate coefficients for the non-resonant states v = 15 − 20 decrease uniformly with v for all

temperatures. The contribution from v = 20 is significantly smaller than the others which

again indicates that the basis set is sufficiently converged.

Figures 4 and 5 show three-body recombination rate coefficients for Ar+H2 as a function

of temperature. Orbiting resonances occur for H2(v = 13, j = 8) and H2(v = 13, j = 9) with

widths of 1.485 cm−1 and 48.28 cm−1, respectively. Figure 4 shows the resonant contribution

for j = 8 is clearly dominant over the non-resonant contribution for all temperatures. As

in the He case shown in Figure 3, the rate coefficients for the non-resonant states decrease

uniformly with v over the entire temperature range. This is not the case for the j = 9 rate

coefficients shown in Figure 5. The v = 15 curve crosses the v = 14 curve around 400 K and

overtakes the resonant v = 13 curve around 700 K. Likewise, the v = 17 curve crosses the

v = 16 curve around 300 K and approaches the v = 14 curve at 1000 K. The highest energy

pseudostate for j = 9 corresponds to v = 18 which gives a neglible contribution to the total

recombination rate and indicates that the basis set is sufficiently converged.
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The total resonant and non-resonant three-body recombination rate coefficients for

He+H2 are shown in Figure 6. These results include recombination to either of the two

most weakly bound vibrational levels for each rotational level j ≤ 20. Recombination to

more strongly bound levels were found to make a neglible contribution. The resonant and

non-resonant contributions were added together to obtain the total rate coefficient which is

compared to the experimental data of Trainor et al. [9] at 77 K and 300 K. The total rate

coefficients computed using the PES of Muchnik and Russek [23] are seen to be about 25%

larger than the experimental data.

There are several possibilities for this discrepancy. One possibility is the inadequate

constraint of the PES for stretching of the H2 bond beyond 2 a.u. To test this hypothesis,

a modified PES was constructed as described in Mack et al. [25]. The terms Ad(r) and

αd(r) contained in the original PES [23] were matched to decaying exponential functions of

the form Ar exp(−Br). The parameters A and B were determined by the continuity of the

functions and their derivatives at r = 2 a.u. This modification does not affect the original

PES in regions where there is ab initio data to constrain the parametrization. For large

stretching, the exponential decay contained in the modified PES provides a more realistic

r-dependence for the terms Ad(r) and αd(r) than does the linear dependence contained in

the original PES [23]. Figure 6 shows that the three-body recombination rate coefficients

are in much better agreement with the experimental data when the modified PES is used

in the calculations. Of course, the modification described above is not unique, and it would

be desirable to constrain the 2 < r < 4 a.u. region with additional ab initio data.

Another possibility for the discrepancy between theory and experiment for He is the

use of the equilibrium approximation (5). This approximation does not take into account

the lifetimes of the intermediate states and may overestimate the resonant contributions

at large pressures. The steady-state approximation (8) reduces the resonant contribution
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and often provides a more accurate estimate of theoretical recombination rate coefficients.

Figure 7 illustrates this point using the original MR PES without the modification described

above. The theoretical curve decreases with [He] and may be brought into good agreement

with the experimental data for [He]=1022 cm−3. The steady-state approximation, while

generally more accurate than the equilibrium approximation, still neglects repopulation of

intermediate quasibound states due to three-body collisions. A detailed master equation

analysis is needed to fully account for this density dependence. The actual density used

in the experiments was not reported, and if it was less than 1015 cm−3, the steady-state

and equilibrium approximations yield essentially the same recombination rate coefficient

(see Figure 7). In this case, a master equation analysis is not needed and the discrepancy

between theory and experiment would likely be due to inaccuracies in the PES.

The case of Ar provides a good point of comparison because the He and Ar experiments

were performed in a similar manner. The PES for Ar+H2 [24] was specifically designed for

use in energy transfer studies involving dissociation and recombination. The PES provides an

accurate account of the H2 bond length in both the strong bonding and dissociation limits.

The recombination rate coefficients computed using this PES, therefore, provide a good

test of the reliability of the quantum mechanical scattering formulation. Figure 8 shows

the calculated recombination rate coefficients for Ar+H2 together with the experimental

data of Trainor et al. [9]. The comparison shows excellent agreement between theory and

experiment at 300 K. There is a large discrepancy, however, between theory and experiment

at 77 K. We believe this is due to the neglect in our calculations of the exchange mechanism

which produces intermediate states of ArH before recombining to form H2. This mechanism,

which is negligible for He due to its weaker attraction, is expected to become increasingly

important for Ar as the temperature is reduced. The agreement at 300 K suggests that

the Ar density is probably low enough that the equilibrium approximation is sufficient. The
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same reasoning further underscores the need to extend the range of ab initio data for He+H2

to the intermediate stretching region (2 < r < 4 a.u.).

IV. CONCLUSIONS

Rate coefficients for TBR and CID of H2 due to collisions with He are known to be

important for astrophysical models [4,8]. While there is no experimental data available to

benchmark the CID calculations, there is existing experimental data available to compare

with the TBR calculations. These comparisons show that the present theoretical results are

about 25% larger than expected. Two possible reasons for this discrepancy were explored.

The PES which was used in the calculations is known to be unconstrained by ab initio data

for H2 bonds that are stretched beyond 2 a.u. TBR and CID calculations were found to

be sensitive to this region of the PES. A second possibility was the use of the equilibrium

approximation for the population of intermediate molecular states. Good agreement with

the experimental data was found at high He density using the steady-state approximation.

A third possible reason for the discrepancy between theory and experiment would be the use

of the CS formulation which neglects Coriolis couplings in the body-fixed frame. However,

based on previous studies, we believe this formulation is adequate at the temperatures

considered in the present case. The agreement between theory and experiment found here

for TBR due to Ar collisions at 300 K also attests to the reliability of the CS formulation.

The Ar results suggest that the equilibrium approximation is probably adequate for the

conditions of the experiment. Therefore, we conclude that the largest source of theoretical

uncertainty for He comes from the unconstrained region of the MR PES. Considering the

success of this PES for calculating elastic and inelastic processes [27] over a large range

of energies, it would be desirable to extend the surface by adding ab initio data in the

unconstrained region (2 < r < 4 a.u.) and recompute the TBR rate coefficients.

12 (March 14, 2011)



Although a 25% discrepancy between theory and experiment is not ideal, it is unlikely to

make a significant difference in astrophysical models even if all the error is on the theoretical

side. However, the current status for TBR of H2 due to collisions with H is considerably

worse than for He. One of the motivations of this work was to develop a theory of TBR

which includes important non-resonant processes and is fully quantum mechanical. This

goal has been met for the case of chemically inert spectators. The next issue which must

be faced is how to extend the theory to include exchange mechanisms. In addition to the

important astrophysical H+H2 TBR system, it has recently been shown that a wide variety

of cold, trappable van der Waals molecules can be produced via TBR in a buffer gas loaded

magnetic trap [28,29]. Theoretical support for these low temperature experiments requires

a fully quantum mechanical description which includes exchange mechanisms. It is hoped

that some of the theoretical methods developed in this work may be useful in addressing

recombination for these important systems.
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Figure 1: (Color online) Rate coefficient for CID from v = 14, j = 0. The solid blue curve

(He) and dashed red curve (Ar) are the present results. Also shown for Ar are the distorted

wave Born approximation results of Sakai [26].
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Figure 2: (Color online) Three-body recombination rate coefficients for He+H2(v, j = 4).

The curves show an orderly decrease with v at low temperatures. The v = 14 curve cor-

responds to recombination from a resonant state whereas the v ≥ 15 curves correspond to

recombination from positive energy pseudostates.
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Figure 3: (Color online) Three-body recombination rate coefficients for He+H2(v, j = 5).

The curves show an orderly decrease with v at all temperatures. The v = 14 curve cor-

responds to recombination from a resonant state whereas the v ≥ 15 curves correspond to

recombination from positive energy pseudostates.
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Figure 4: (Color online) Three-body recombination rate coefficients for Ar+H2(v, j = 8).

The curves show an orderly decrease with v at all temperatures. The v = 13 curve cor-

responds to recombination from a resonant state whereas the v ≥ 14 curves correspond to

recombination from positive energy pseudostates.
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Figure 5: (Color online) Three-body recombination rate coefficients for Ar+H2(v, j = 9).

The curves show an orderly decrease with v at low temperatures. The v = 13 curve cor-

responds to recombination from a resonant state whereas the v ≥ 14 curves correspond to

recombination from positive energy pseudostates.
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Figure 6: (Color online) Rate coefficient for 3-body recombination into H2 due to collision

with He. The total rate coefficients are obtained as the sum of the resonant and non-

resonant contributions. Results for a modified PES (see text) show improved agreement

with the experimental data.
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Figure 7: (Color online) Rate coefficient for 3-body recombination into H2 due to collision

with He as a function of density (in units of cm−3). Results for the unmodified PES may be

brought into good agreement with the experimental data using equation (8) with a density

of 1022 cm−3.
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Figure 8: (Color online) Rate coefficient for 3-body recombination into H2 due to collision

with Ar. The total rate coefficients are obtained as the sum of the resonant and non-resonant

contributions. The discrepancy at 77 K is likely due to the neglect in our calculations of

the exchange mechanism which produces intermediate states of ArH before recombining to

form H2.
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