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We generalize the quantal density functional theory (QDFT) of electrons in the presence of an
external electrostatic field E(r) = −∇v(r) to include an external magnetostatic field B(r) = ∇ ×
A(r), where {v(r), A(r)} are the respective scalar and vector potentials. The generalized QDFT,
valid for nondegenerate ground and excited states, is the mapping from the interacting system
of electrons to a model of noninteracting fermions with the same density ρ(r) and physical current
density j(r), and from which the total energy can be obtained. The properties {ρ(r), j(r)} constitute
the basic quantum mechanical variables because, as proved previously, for a nondegenerate ground
state they uniquely determine the potentials {v(r), A(r)}. The mapping to the noninteracting
system is arbitrary in that the model fermions may be either in their ground or excited state. The
theory is explicated by application to a ground state of the exactly solvable (2-dimensional) Hooke’s
atom in a magnetic field, with the mapping being to a model system also in its ground state. The
majority of properties of the model are obtained in closed analytical or semi-analytical form. A
comparison with the corresponding mapping from a ground state of the (3-dimensional) Hooke’s
atom in the absence of a magnetic field is also made.

PACS numbers:

I. INTRODUCTION

The study of the electronic properties of matter in the presence of both an external electrostatic field E(r) = −∇v(r)
and a magnetostatic field B(r) = ∇ × A(r), where {v(r), A(r)} are the scalar and vector potentials, continues to
be of interest. Properties such as the Zeeman effect in atoms and molecules, and the de Haas-van Alphen effect, the
Hall effect and magnetoresistance in solids, have been studied. The more recent interest has focused on electrons
confined to two dimensions: metal-oxide-semiconductor structures, quantum wells and super lattices, the integer and
fractional Quantum Hall effects, and quantum dots.

In this paper we generalize the conventional quantal density functional theory [1, 2] (QDFT) of a system of electrons
in the presence of an external electrostatic field E(r) to now include an external magnetostatic field B(r). In the
presence of a magnetic field, QDFT is the mapping from the true interacting system of electrons in a nondegenerate
ground or excited state to a model S system of noninteracting fermions having the same density ρ(r) and physical
current density j(r). From the model system the same total energy E may be obtained. The state of the model system
is arbitrary in that it may be in a ground or excited state configuration. The existence of the model fermionic system
is an assumption. Due to the present interest in two-dimensional electronic systems, we then explicate this QDFT
by application to the exactly solvable Hooke’s atom [3] in which the electrons are confined to a plane by a magnetic
field.

The choice of the properties {ρ(r), j(r)} is governed by the fact that they constitute the basic variables in the
quantum mechanics of electrons in static external potentials {v(r),A(r)}. They are the basic variables because as we
have proved previously [4], for the nondegenerate ground state, the ground state {ρ(r), j(r)} uniquely determines the
external potentials {v(r),A(r)}. In other words, the relationship between {ρ(r), j(r)} and {v(r),A(r)} is one-to-one.
Thus, {ρ(r), j(r)} uniquely determine the Hamiltonian, and hence by solution of the Schrödinger equation, all the
properties of the system. (In Hohenberg-Kohn [5] theory, i.e. in the absence of a magnetic field, the basic variable
is the ground state density ρ(r) because it uniquely determines the external potential v(r). The relationship between
ρ(r) and v(r) is one-to-one.) We have also proved [4] that in general the wave function Ψ is a functional of ρ(r), j(r),
and a smooth gauge function α(R) with R = r1, r2, . . . , rN . As ρ(r) and j(r) are gauge invariant properties, it is the
functional dependence on the gauge function α(R) that ensures the wave function written as a functional is gauge
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variant. However, as the choice of the gauge function is usually arbitrary because all gauge functions correspond to
the same physical system, it can be chosen to be zero. Hence, the choice of the basic variables {ρ(r), j(r)} for the
properties that the S system must reproduce.

For completeness we note that the Hohenberg-Kohn theorem [5] was generalized by Rajagopal and Callaway [6] to
the relativistic case in which the variables are the four-potential {v(rt),A(rt)} and the four-current {ρ(rt), j(rt)}. For
stationary state theory, the idea of employing {ρ(r), j(r)} within the context of Kohn-Sham theory [7] in which the
mapping is in terms of energy functionals and functional derivatives was due to Ghosh and Dhara [8] and Diener [8].
The former employ these variables without proving the one-to-one relationship between {ρ(r), j(r)} and {v(r),A(r)}.
The latter does not account for the fact that in the presence of a magnetic field, the relationship between the potentials
{v(r),A(r)} and the wave function Ψ can be many-to-one and not one-to-one. See also our work of Ref. [4] for a
Kohn-Sham {ρ(r), j(r)} functional theory. There is also the work of Vignale and Rasolt [9] who employ the density
ρ(r) and the paramagnetic current density jp(r) as the variables. (The current density jp(r) is not a basic variable
in the rigorous sense defined above.) However, as jp(r) is gauge variant, these authors employ instead the vorticity
ν(r) = ∇ × (jp(r)/ρ(r)) in their theory. For additional work on this latter theory, see Refs. [10–13]. There is also a
magnetic field density functional theory [14] in which the variables employed are the density ρ(r) and the magnetic
field B(r).

In Sect. II, we present the equations governing the QDFT in the presence of a magnetic field. In Sect. III, we
apply the generalized QDFT to map a ground state of the Hooke’s atom in a magnetic field to one of noninteracting
fermions in their ground state with the same density ρ(r) and physical current density j(r). The majority of the
properties describing the model S system can be obtained in closed analytical or semi-analytical form. The contrast
of the properties with the case when the magnetic field is absent [1, 15] is made. Concluding remarks follow in Sect.
IV.

II. QUANTAL DENSITY FUNCTIONAL THEORY

As in conventional QDFT [1, 2], the description of the mapping in the presence of an external magnetostatic field
to an S system with the same {ρ(r), j(r)} is in terms of ‘classical’ fields whose sources are quantal in that they are
expectations of Hermitian operators. In addition to the fields representative of correlations due to the Pauli exclusion
principle, Coulomb repulsion, and correlation-kinetic effects, there now exists a field representative of correlation-
magnetic effects. The new field is a consequence of the difference between the vector potentials for the interacting
and model systems. The equations of the QDFT are derived from the generalized ‘quantal Newtonian’ first law (or
differential virial theorem) and the integral virial theorem as written in terms of fields for both the interacting [10, 16]
and S systems. As QDFT is based on the virial theorems, the theory is valid for both a nondegenerate ground or
excited state of the interacting electrons. Additionally, the state of the model S system is arbitrary, in that it may be
in a ground or excited state configuration. We begin with a description of the interacting system.

A. Interacting System of Electrons

Consider a system of N electrons in the presence of an external electrostatic field E(r) = −∇v(r) and a magneto-
static field B(r) = ∇ × A(r), where v(r) and A(r) are the corresponding scalar and vector potentials, respectively.
(For simplicity of equation writing we assume e = ~ = m = c = 1. To obtain the expressions in atomic units, replace

A(r) by A(r)/c. ) The Hamiltonian Ĥ is then

Ĥ = T̂A + Û + V̂ , (1)

where T̂A is the physical kinetic energy operator:

T̂A =
1

2

N
∑

i=1

(p̂i + A(ri))
2 (2)

= T +
N

∑

i=1

ω̂(ri;A(ri)), (3)

with T̂ the ‘canonical’ kinetic energy operator

T̂ =

N
∑

i=1

p2
i

2
= −

N
∑

i=1

1

2
∇2

i , (4)
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and the operator ω̂(r;A) defined as

ω̂(r;A(r)) =
1

2
A2(r) − iΩ̂(r;A) (5)

with

Ω̂(r;A(r)) =
1

2
{∇ ·A(r) + 2A(r) · ∇}. (6)

The electron-interaction potential energy operator Û is

Û =

N
∑

′

i,j=1

u(rirj) =
1

2

N
∑

′

i,j=1

1

|ri − rj |
, (7)

and the external electrostatic potential energy operator V̂ is

V̂ =
N

∑

i=1

v(ri). (8)

The time-independent Schrödinger equation is

Ĥ(R;A)Ψ(X) = EΨ(X), (9)

where {Ψ(X), E} are the eigenfunctions and eigenenergies of the system, with R = r1, . . . , rN ; X = x1, . . . ,xN ;
x = rσ, {rσ} being the spatial and spin coordinates.

The system of interacting electrons can equivalently be described in terms of the ‘quantal Newtonian’ first law [10]

according to which the sum of the external F
ext(r) and internal F

int(r) fields experienced by each electron vanishes.
Thus,

F
ext(r) + F

int(r) = 0. (10)

This law is valid for arbitrary gauge and derived employing the continuity condition

∇ · j(r) = 0. (11)

In Appendix A we provide a different derivation of the generalized ‘quantal Newtonian’ first law based on the
approach originated by Holas and March [17] for the zero magnetic field case. (In [10] these authors derived the first
law via the equation of motion for the single particle density matrix.)

The components of these fields arise from local and nonlocal quantal sources such as the density ρ(r), the pair-
correlation function P (rr′), the reduced single-particle density matrix γ(rr′) and the physical current density j(r),
which in turn are expectations of Hermitian operators or the complex sum of Hermitian operators taken with respect
to the wave function Ψ(X). Thus,

ρ(r) =
〈

Ψ(X)|ρ̂(r)|Ψ(X)
〉

, (12)

P (rr′) =
〈

Ψ(X)|P̂ (rr′)|Ψ(X)
〉

, (13)

γ(rr′) =
〈

Ψ(X)|γ̂(rr′)|Ψ(X)
〉

, (14)

j(r) =
〈

Ψ(X)|̂j(r)|Ψ(X)
〉

= jp(r) + jd(r), (15)
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with jp(r) and jd(r) the paramagnetic and diamagnetic components, and where the density ρ̂(r), pair-correlation

P̂ (rr′), single-particle density matrix γ̂(rr′), and current density ĵ(r) operators are defined as

ρ̂(r) =

N
∑

i=1

δ(ri − r), (16)

P̂ (rr′) =

N
∑

′

i,j=1

δ(ri − r)δ(rj − r′), (17)

γ̂(rr′) = Â+ iB̂, (18)

Â =
1

2

N
∑

j=1

[

δ(rj − r)Tj(a) + δ(rj − r′)Tj(−a)
]

, (19)

B̂ = − i

2

N
∑

j=1

[

δ(rj − r)Tj(a) − δ(rj − r′)Tj(−a)
]

, (20)

Tj(a) is a translation operator such that Tj(a)ψ(. . . rj , . . .) = ψ(. . . rj + a, . . .), and a = r′ − r, and

ĵ(r) = ĵp(r) + ĵd(r), (21)

with the paramagnetic density operator

ĵp(r) =
1

2i

N
∑

k=1

[

∇rk
δ(rk − r) + δ(rk − r)∇rk

]

(22)

and the diamagnetic current density operator

ĵd = ρ̂(r)A(r). (23)

The external field F
ext(r) is the sum of the electrostatic E(r) and Lorentz L(r) fields:

F
ext(r) = E(r) − L(r), (24)

where L(r) is defined in terms of the Lorentz ‘force’ l(r) as

L(r) =
l(r)

ρ(r)
, (25)

and where

l(r) = j(r) × B(r), (26)

with its components given as

lα(r) =
3

∑

β=1

[

jβ(r)∇αAβ(r) − jβ(r)∇βAα(r)
]

. (27)

The internal field F
int(r) is the sum of the electron-interaction Eee(r), kinetic Z(r), differential density D(r), and

internal magnetic I(r) fields. These fields are defined in terms of the corresponding ‘forces’ eee(r), z(r; γ), d(r),
i(r; jA), respectively, as

Eee(r) =
eee(r)

ρ(r)
; Z(r) =

z(r; γ)

ρ(r)
; D(r) =

d(r)

ρ(r)
; I(r) =

i(r; jA)

ρ(r)
. (28)

The electron-interaction ‘force’ eee(r), representative of electron correlations due to the Pauli exclusion principle and
Coulomb repulsion, is obtained via Coulomb’s law via its quantal source, the pair-correlation function P (rr′):

eee(r) =

∫

P (rr′)(r − r′)

|r − r′|3 dr′. (29)
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The kinetic ‘force’ z(r; γ), representative of kinetic effects, is obtained from its quantal source, the reduced single-
particle density matrix γ(rr′). It is defined in terms of its components as

zα(r; γ) = 2

3
∑

β=1

∇βtαβ(r; γ), (30)

where the kinetic energy tensor tαβ(r) is

tαβ(r; γ) =
1

4

(

∂2

∂r′α∂r
′′
β

+
∂2

∂r′β∂r
′′
α

)

γ(r′r′′)

∣

∣

∣

∣

r
′=r

′′=r

. (31)

The differential density ‘force’ d(r) whose quantal source is the density ρ(r), is defined as

d(r) = −1

4
∇∇2ρ(r). (32)

Finally, the contribution of the magnetic field to the internal ‘force’ i(r; jA) for which the quantal source is the physical
current density j(r) is defined in terms of its components as

iα(r; jA) =

3
∑

β=1

∇βIαβ(r; jA), (33)

with

Iαβ(r; jA) =
[

jα(r)Aβ(r) + jβ(r)Aα(r)
]

− ρ(r)Aα(r)Aβ(r). (34)

The fields L(r), Eee(r), D(r), and the sum [Z(r) + I(r)] are gauge invariant [10].
The energy E is then the sum of the kinetic T , external Eext, electron-interaction Eee, and internal magnetic

contribution I energies:

E = Eext + (T + Eee + I), (35)

where in integral virial form in terms of the respective fields

T = −1

2

∫

ρ(r)r · Z(r)dr (36)

Eext =

∫

ρ(r)r · Fext(r)dr (37)

Eee =

∫

ρ(r)r · Eee(r)dr (38)

I =

∫

ρ(r)r · I(r)dr. (39)

By operating on the first law by
∫

drρ(r)r· one obtains the integral virial theorem [7]:

2T + Eee − I = −Eext. (40)

B. Model System of Noninteracting Fermions

We next assume that there exists a model system of noninteracting fermions – an S system – that possesses the same
ground state density ρ(r) and physical current density j(r) as that of the interacting system of electrons described
above. In constructing the S system one needs to then determine an effective scalar potential vs(r) and an effective
vector potential As(r) such that on substitution into the corresponding Schrödinger equation, the resulting Slater
determinantal wave function will reproduce the {ρ(r), j(r)}. In essence, one thus assumes there exists an effective
magnetic field Bs(r) = ∇ × As(r).

The S system Hamiltonian is

Ĥs = T̂A,s + V̂s =

N
∑

i=1

hs(ri), (41)
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where

T̂A,s =
1

2

N
∑

i=1

(p̂i + As(ri))
2, (42)

V̂s =

N
∑

i=1

vs(ri), (43)

so that

hs(r) =
1

2
(p̂ + As(r))

2 + vs(r). (44)

The S system orbital equation is

[1

2
(p̂i + As(r))

2 + vs(r)
]

φi(x) = ǫiφi(x), (45)

and its wave function is a Slater determinant Φ{φi} of the orbitals φi(x) occupying the lowest states if the S system is
in its ground state. Assuming the model fermions are subject to the same external electrostatic field E(r) = −∇v(r),
we write

vs(r) = v(r) + vee(r), (46)

where vee(r) is an effective scalar electron-interaction potential energy whose rigorous physical interpretation will be
given below. The {ρ(r), j(r)} as obtained from the S system are the expectations

ρ(r) =
〈

Φ{φi}|ρ̂(r)|Φ{φi}
〉

=
∑

σ

N
∑

i=1

φ⋆
i (rσ)φ⋆

i (rσ), (47)

and

j(r) =
〈

Φ{φi}|̂js(r)|Φ{φi}
〉

= jp,s(r) + jd,s(r), (48)

with jp,s(r), jd,s(r) the S system paramagnetic and diamagnetic current density components, and where the operator

ĵs(r) is defined as

ĵs(r) = ĵp(r) + ĵd,s(r), (49)

with

ĵd,s(r) = ρ̂(r)As(r). (50)

The ‘quantal Newtonian’ first law for the S system derived employing the continuity condition of Eq. (11) is

F
ext
s (r) + F

int
s (r) = 0, (51)

where

F
ext
s (r) = E(r) − Ls(r). (52)

Here Ls(r) is the corresponding effective Lorentz field defined in terms of the Lorentz ‘force’ as

Ls(r) =
ls(r)

ρ(r)
, (53)

with

ls(r) = j(r) × Bs(r), (54)

and where the components of the ‘force’ are

ls,α(r) =

3
∑

β=1

[

jβ(r)∇αAs,β(r) − jβ(r)∇βAs,α(r)

]

. (55)
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The internal field F
int
s (r) of the S system is

F
int
s (r) = −∇vee(r) − D(r) − Zs(r) − Is(r), (56)

where the kinetic Zs(r) and internal magnetic Is(r) fields are defined in terms of the ‘forces’ zs(r; γs) and is(r; jAs)
as

Zs(r) =
z(r; γs)

ρ(r)
and Is(r) =

is(r; jAs)

ρ(r)
. (57)

The S system kinetic ‘force’ in turn is defined in terms of its quantal source, the Dirac density matrix γs(rr
′) as

zs,α(r; γs) = 2

3
∑

β=1

∇βts,αβ(r; γs) (58)

where the kinetic energy tensor ts,αβ(r; γs) is

ts,αβ(r; γs) =
1

4

[

∂2

∂r′α∂r
′′
β

+
∂2

∂r′β∂r
′′
α

]

γs(r
′r′′)

∣

∣

∣

∣

r
′=r

′′=r

, (59)

and the source

γs(rr
′) =

〈

Φ{φi}|γ̂(rr′)|Φ{φi}
〉

=
∑

σ

N
∑

i=1

φ⋆
i (rσ)φ⋆

i (r′σ). (60)

The internal magnetic ‘force’ is(r; jAs) is defined as

is,α(r; jAs) =
∑

β

∇βIs,αβ(r; jAs), (61)

with

Is,αβ(r; jAs) =

[

jα(r)As,β(r) + jβ(r)As,α(r)

]

− ρ(r)As,α(r)As,β(r). (62)

The effective scalar and vector potentials {vs(r),As(r)} of the S system differential equation Eq. (45) are deter-
mined as follows:
(a) The effective vector potential As(r) is obtained from the requirement that the physical current density j(r) of the
S system Eq. (48) is the same as that of the interacting system Eq. (15).
(b) The effective scalar potential vs(r) and the effective electron-interaction potential vee(r) are determined as ex-
plained next. As the external electrostatic field E(r) is the same for the interacting and model systems, we equate
the corresponding expressions for this field given by the ‘quantal Newtonian’ first law for each system. Thus, we
obtain the effective electron-interaction potential energy vee(r) to be the work done to move a model fermion from

some reference point at infinity to its position at r in the force of a conservative effective field F
eff(r):

vee(r) = −
∫

r

∞

F
eff(r) · dℓ′, (63)

where F
eff(r) is the sum of the electron-interaction Eee(r), correlation-kinetic Ztc

(r), and correlation-magnetic Mc(r)
fields:

F
eff(r) = Eee(r) + Ztc

(r) + Mc(r), (64)

and where

Ztc
(r) = Zs(r) − Z(r), (65)

Mc(r) = Ls(r) − L(r) + Is(r) − I(r). (66)

As in the B = 0 case [1, 2], the field Eee(r) may be subdivided into its Hartree EH(r), Pauli Ex(r), and Coulomb
Ec(r) field components. The quantal sources for these fields are the density ρ(r), the Fermi hole ρx(rr′), and the
Coulomb hole ρc(rr

′), respectively. Thus, the effective field may be expressed as

F
eff(r) = EH(r) + Ex(r) + Ec(r) + Ztc

(r) + Mc(r), (67)
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with each field being representative of a specific electron correlation. Note that ∇×F
eff(r) = 0 so that the work done

vee(r) is path-independent. The individual components of F
eff(r) are separately curl free for systems with certain

symmetry, as in the example of the following section which is one of cylindrical symmetry. The work done in each
field is then path-independent.

Writing the effective vector potential As(r) as

As(r) = A(r) + Aee(r), (68)

where Aee(r) is an effective electron-interaction vector potential, the expression for the ground state energy in terms
of S system properties is

E =
∑

i

ǫi −
∫

ρ(r)vee(r)dr −
∫

j(r) · Aee(r)dr + Eee + Tc, (69)

where the correlation-kinetic energy Tc is

Tc =
1

2

∫

ρ(r)r · Ztc
(r)dr. (70)

On applying
∫

drρ(r)r · ∇ to Eq. (63) one obtains the corresponding integral virial theorem for the S system:

Eee + 2Tc +Mc =

∫

ρ(r)r · Feff(r)dr, (71)

where

Mc =

∫

ρ(r)r · Mc(r)dr, (72)

The ‘quantal Newtonian’ first law is of course valid for both ground and excited states. Hence, the mapping via
QDFT is applicable to ground and excited states. Furthermore, as in the B = 0 case [1, 2], the mapping to the S
system is arbitrary in that the model fermions may be in a ground or excited state.

III. APPLICATION TO AN EXACTLY SOLVABLE MODEL

For the application of QDFT we consider the Hooke’s atom [3] comprised of two electrons in a harmonic external
potential of frequency ω0 in which the electrons are confined to the x−y plane by a magnetic field B applied in the
z-direction. With the vector potential chosen such that A = 1

2B × r, the Coulomb gauge ∇ ·A = 0 is satisfied. The
Hamiltonian for this system (in a.u. with e = ~ = m = 1) is

Ĥ =

2
∑

i=1

{

1

2

(

p̂i +
1

c
A(ri)

)2

+
1

2
ω2

0r
2
i

}

+
1

|r1 − r2|
. (73)

There exist analytical solutions to the corresponding Schrödinger equation for effective oscillator frequencies ω̃ =
√

ω2
0 + ω2

L belonging to certain denumerably infinite set of values, where ωL = B/2c is the Larmor frequency. For
ω̃ = 1, the ground state wave function is

Ψ(r1r2) = C(1 + r12)e
− 1

2
(r2

1
+r2

2
), (74)

where r12 = |r1 − r2| and C2 = 1/π2(3 + 2π). The corresponding ground state energy is E = 3 a.u.
For the wave function of Eq. (74), many properties of the QDFT mapping to the model fermion system are obtained

in closed analytical or semi-analytical form. These expressions and their asymptotic behavior near and at the nucleus
and in the classically forbidden region are given in Appendix B. We next discuss the individual properties.

A. Quantal Sources

1. Electron Density ρ(r) and Physical Current Density j(r)

The ground state electron density ρ(r) is

ρ(r) =
2

π(3 +
√

2π)
e−r2{√

πe−
1

2
r2

[(1 + r2)I0
(1

2
r2

)

+ r2I1
(1

2
r2)] + (2 + r2

)}

, (75)
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FIG. 1: (Color Online) Electron density ρ(r) and radial probability density rρ(r).

where I0(x) and I1(x) are the zeroth- and first-order modified Bessel functions [18]. (Note that the expression given
in [19] is incorrect.) The density has cylindrical symmetry: ρ(r) = ρ(r). The density ρ(r) and the radial probability
density rρ(r) are plotted in Fig 1. As expected for this harmonic external potential, the density does not exhibit a
cusp at the nucleus. The asymptotic structure of the density near the nucleus and in the classically forbidden region
are given in Appendix B. As the wave function is real, the paramagnetic current density jp(r) = 0. Thus, the physical
current density

j(r) =
1

c
ρ(r)A(r), (76)

and satisfies the continuity condition ∇ · j(r) = 0.
For the mapping of the above interacting system in its ground state to an S system also in its ground state, the

corresponding S system orbitals φi(x) are of the general form

φi(r) =

√

ρ(r)

2
eiθ(r) ; i = 1, 2 (77)

where θ(r) is an arbitrary real phase factor. The S system paramagnetic current density jp,s(r) is then

jp,s(r) = −ρ(r)∇θ(r). (78)

The phase factor θ(r) may be incorporated into a gauge transformation so that for the resulting S system the effective

vector and scalar potentials are A′
s(r) = As(r) + ∇θ(r) and v′s(r) = vs(r) with the orbitals being φi(r) =

√

ρ(r)/2.
Thus, for different gauge functions, the corresponding S systems differ only by a gauge transformation. We emphasize,
however, that the mapping from the ground state of the interacting system to the model system in its ground state
is unique. The unique S system reproduces the density and physical current density of the interacting system.

As the phase factor is arbitrary, for convenience we set θ(r) = 0, so that jp,s(r) = 0. The requirement that the S
system produce the same physical current density j(r) then leads to the effective vector potential As(r) to be

As(r) = A(r). (79)

The S system differential equation is then
[

1

2
p̂2 +

1

2
ω̃2r2 + vee(r)

]

√

ρ(r) = ǫ
√

ρ(r). (80)
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FIG. 2: (Color Online) Cross-sections through the quantal Fermi-Coulomb ρxc(rr
′), Fermi ρx(rr′), and Coulomb ρc(rr

′) holes
for an electron at the nucleus as indicated by the arrow.

Note that as a consequence of Eq. (79), the contribution of the correlation-magnetic field Mc(r) to the potential
energy vee(r) vanishes, as does the contribution of Aee(r) to the total energyE. Thus, it is only the electron-interaction
Eee(r) and correlation-kinetic Ztc

(r) fields that contribute to vee(r) and E.

2. Pair-correlation density g(rr′), Fermi ρx(rr′) and Coulomb ρc(rr
′) holes

It is best to study the electron-interaction properties due to the Pauli exclusion principle and Coulomb repulsion
via the pair-correlation density g(rr′) which is defined in terms of the quantal source P (rr′) as g(rr′) = P (rr′)/ρ(r).
The pair-density may be separated into its local and non-local components as g(rr′) = ρ(r′)+ρxc(rr

′), where ρxc(rr
′)

is the Fermi-Coulomb hole charge distribution. In turn ρxc(rr
′) may be further subdivided into its Fermi ρx(rr′) and

Coulomb ρc(rr
′) hole charge components. The Fermi hole is defined in terms of the S system Dirac density matrix as

ρx(rr′) = −|γs(rr
′)|2/2ρ(r). These charge distributions satisfy the sum rules:

∫

g(rr′)dr′ = N−1;
∫

ρxc(rr
′)dr′ = −1;

∫

ρx(rr′)dr′ = −1; ρx(rr′) ≤ 0; ρx(rr) = −ρ(r)/2;
∫

ρc(rr
′)dr′ = 0.

For the ground state then ρx(rr′) = −ρ(r′)/2 independent of the electron position r, so that the non-local nature
of the pair-correlation density is exhibited by the dynamic Coulomb hole ρc(rr

′). In Fig 2 cross-sections of the Fermi-
Coulomb ρxc(rr

′), Fermi ρx(rr′), and Coulomb ρc(rr
′) holes are plotted for an electron at the nucleus. Observe that

for this electron position, all the holes are spherically symmetric about it. Also observe that both the Fermi-Coulomb
and Coulomb holes exhibit a cusp at the electron position representative of the two-dimensional electron-electron
coalescence condition on the wave function [2, 20].

In Figs 3-6 cross-sections through the Coulomb hole ρc(rr
′) in different directions corresponding to θ′ = 0◦, 45◦, 90◦

with respect to the nucleus-electron direction are plotted. The electron positions considered, as indicated by arrows,
are r = 0.5, 1.585, 3.0, and 18.0 a.u. Observe the dynamic structure of the Coulomb hole and the fact that it is not
symmetric about the electron. For asymptotic electron positions (Fig. 6), the Coulomb hole becomes more and more
spherically symmetric about the nucleus. The cusp [2, 20] in the hole at the electron position is also clearly evident
in Fig 3. The Coulomb hole also becomes an essentially static charge distribution for far asymptotic positions of the
electron.
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FIG. 3: (Color Online) Cross-sections through the Coulomb hole ρc(rr
′) in different directions corresponding to θ′ = 0◦, 45◦, 90◦

with respect to the nucleus-electron direction. The electron is at r = 0.5 a.u.
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FIG. 4: (Color Online) Same as in Fig. 3 except that the electron is at r = 1.585 a.u.
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FIG. 5: (Color Online) Same as in Fig. 3 except that the electron is at r = 3 a.u.
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FIG. 6: (Color Online) Same as in Fig. 3 except that the electron is at r = 18 a.u.
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FIG. 7: (Color Online) The electron-interaction Eee(r), and its Hartree EH(r) and Pauli-Coulomb Exc(r) components. The
function 1/r2 is also plotted.

3. Single-particle γ(rr′) and Dirac γs(rr
′) Density Matrices

The expressions for the reduced single-particle γ(rr′) and Dirac γs(rr
′) density matrices are given in Appendix B.

B. Fields and Energies

1. Electron-interaction field Eee(r) and Energy Eee

The analytical expression for the electron-interaction field Eee(r) and the corresponding value of the energy Eee are
given in Appendix B (see also Table 1). The field Eee(r) and energy Eee can be split into their Hartree [EH(r), EH ],
Pauli-Coulomb [Exc(r), Exc], Pauli [Ex(r), Ex], and Coulomb [Ec(r), Ec] components. As the respective quantal
sources for the fields are all spherically symmetric about the electron position at the nucleus, all the fields vanish at
the origin. The asymptotic structure of the fields in the classically forbidden region is

Eee(r) ∼
r→∞

1

r2
+

2

r3
, EH(r) ∼

r→∞

2

r2
+

5

r3
, Exc(r) ∼

r→∞
− 1

r2
− 3

r3

Ex(r) ∼
r→∞

− 1

r2
− 5

2r3
, Ec(r) ∼

r→∞
− 1

2r3
. (81)

The asymptotic structure is a consequence of the quantal source charge sum rules and the fact that these dynamic
charge distributions become static for asymptotic positions of the electron. The asymptotic structure of Eee(r) near
the nucleus is

Eee(r) ∼
r→∞

1

2(2 +
√
π)

[(4 + 3
√
π)r − 1

4
(13

√
π + 16)r3]. (82)

The fields are plotted in Figs 7-9. The corresponding energies obtained from these fields are quoted in Table 1.
It is interesting to note that in contrast to the Hooke’s atom in the absence of a magnetic field [1, 15] for which
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FIG. 8: (Color Online) The Pauli field Ex(r). The function −1/r2 is also plotted.
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FIG. 9: (Color Online) The Coulomb field Ec(r). The function −1/2r3 is also plotted.
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TABLE I: Quantal density functional theory properties of the ground state S system that reproduces the density, physical
current density, and total energy of the Hooke’s atom in a magnetic field in a ground state with effective oscillator frequency
ω̃ = 1.

Property Value (a.u.)

E 3.000 000

Eee 0.818 401

EH 1.789 832

Exc −0.971 431

Ex −0.894 916

Ec −0.076 515

Eext 1.295 400

Ts 0.780 987

Tc 0.105 212

ǫ 2.000 000

the Coulomb field is an order of magnitude smaller than the Pauli field, the Coulomb field in the presence of the
magnetic field though still smaller is of the same order of magnitude as the corresponding Pauli field. Nevertheless,
the Coulomb energy is again an order of magnitude smaller than the Pauli energy (see Table 1). The reason for this
is that the Coulomb field (see Fig. 9) is both positive and negative. Yet another point of contrast is that in the case
when the magnetic field is present, the Coulomb field decays asymptotically as O(− 1

r3 ) whereas in the absence of the

magnetic field it decays as O(− 1
r4 ).

2. Correlation-kinetic field Ztc(r) and energy Tc

The correlation-kinetic field Ztc
(r) and energy Tc are obtained from the interacting and S system kinetic-energy

tensors tαβ(r; γ) and ts,αβ(r; γs), respectively. As a consequence of the cylindrical symmetry, these tensors are of the
form

tαβ(r; γ) =
rαrβ
r2

f(r) + δαβf(r) (83)

and

ts,αβ(r; γs) =
rαrβ
r2

h(r) (84)

where the functions f(r), k(r), and h(r) are given in Appendix B. To compare the off-diagonal matrix elements of
the tensors, we plot in Fig 10 the functions f(r) and h(r). Observe that they are extremely close, both vanishing at
the nucleus, and decaying in a similar manner asymptotically. Hence, the contribution of the off-diagonal elements to
the corresponding kinetic ‘forces’ are similar, and therefore their contribution to the correlation-kinetic field Ztc

(r)
very small. To compare the diagonal matrix elements of the tensors, we plot in Fig. 11 the functions f(r) + 2k(r)
and h(r). Observe that the diagonal matrix element of the interacting system tensor is now finite at the nucleus and
differs from that of the S system in the interior region of the atom. Hence, the contribution to the correlation-kinetic
field Ztc

(r) arises principally from the diagonal matrix elements and from the interior of the atom. This is also the
region from which the contribution to the correlation-kinetic energy Tc arises.

The expressions for the interacting and S system kinetic ‘forces’ zα(r; γ) and zs,α(r; γs), respectively, and their
corresponding asymptotic structure are given in Appendix B. The correlation-kinetic field Ztc

(r) and its components
Zs(r) and Z(r) are plotted in Fig. 12. Observe that Ztc

(r) is positive throughout space. Its asymptotic structure
obtained from Eqs. (B7), (B20) and (B23) is

Ztc
(r) ∼

r→∞

3

r3
− 12

r5
. (85)
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FIG. 10: (Color Online) Functions f(r) and h(r) of the off-diagonal elements of the interacting and non-interacting kinetic
energy tensors tαβ(r; γ) and ts,αβ(r; γs), respectively.
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FIG. 11: (Color Online) The functions f(r) + 2k(r) and h(r) of the diagonal elements of the tensors tαβ(r; γ) and ts,αβ(r; γs),
respectively.
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FIG. 12: (Color Online) Correlation-kinetic field Ztc (r), and its components Zs(r) and Z(r) for the noninteracting and
interacting systems. The function 3/r3 is also plotted.

(Note the cancelation of the asymptotic structure of the ‘forces’ z(r) and zs(r) from terms of O(r5) to O(r0).)
The kinetic energy of the interacting and S systems, T and Ts, may be obtained either from the fields Z(r) and

Zs(r), respectively, or from the corresponding system kinetic energy densities t(r) and ts(r). (The kinetic energy
density is the trace of the kinetic energy tensor.) The value of T = 0.886 199 a.u.; Ts = 0.780 987 a.u.; Tc = 0.105 212
a.u. In contrast to the case with no magnetic field [1, 15] for which Tc is an order of magnitude smaller than Ts, in
the present case the Tc though still smaller is of the same order of magnitude as Ts.

C. Potentials

1. Electron-interaction potential Wee(r)

Due to cylindrical symmetry, the electron-interaction field Eee(r) is conservative. Hence, the contribution of Pauli
and Coulomb correlations Wee(r) to the effective electron-interaction potential energy vee(r) is the work done in this
field:

Wee(r) = −
∫

r

∞

Eee(r
′) · dℓ′. (86)

This work done is path-independent. The electron-interaction potential Wee(r) may be further subdivided into its
Hartree WH(r), Pauli-Coulomb Wxc(r), Pauli Wx(r) and Coulomb Wc(r) components, each being the work done in
the conservative fields EH(r), Exc(r), Ex(r), and Ec(r), respectively.

The structure of the individual potentials follows directly from the corresponding fields. Thus, for example, since
the field Exc(r) is negative throughout space and vanishes at the nucleus, the corresponding potential Wxc(r) is
negative and has zero slope at the nucleus. The asymptotic structure of the potentials follows from Eq. (81):

Wee(r) ∼
r→∞

1

r
+

1

r2
, WH(r) ∼

r→∞

2

r
+

5

2r2
, Wxc(r) ∼

r→∞
−1

r
− 3

2r2

Wx(r) ∼
r→∞

−1

r
− 5

4r2
, Wc(r) ∼

r→∞
− 1

4r2
. (87)
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FIG. 13: (Color Online) The Hartree potential energy WH(r)
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FIG. 14: (Color Online) The Pauli-Coulomb potential energy Wxc(r). The function −1/r − 3/2r2 is also plotted.
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FIG. 15: (Color Online) The Pauli potential energy Wx(r). The function −1/r − 5/4r2 is also plotted.
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FIG. 16: (Color Online) The Coulomb potential energy Wc(r). The function −1/4r2 is also plotted.
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FIG. 17: (Color Online) The correlation-kinetic potential energy Wtc(r). The function 3/2r2 is also plotted.

Note that the Coulomb potential Wc(r) decays as O(−1/r2), whereas in the absence of a magnetic field Wc(r) decays
as O(−1/r3).

The potentials WH(r),Wxc(r),Wx(r),Wc(r), and Wee(r) are plotted in Figs 13-16, 18.

2. Correlation-kinetic potential Wtc(r)

Once again, as a consequence of cylindrical symmetry, the correlation-kinetic field Ztc
(r) is conservative, and

therefore the contribution of this effect to the effective electron-interaction potential energy vee(r) is the work done
in this field:

Wtc
(r) = −

∫

r

∞

Ztc
(r′) · dℓ′. (88)

This work done is also path-independent. The potential energy Wtc
(r) is plotted in Figs. 17, 18. It is positive

throughout space as a result of the field Ztc
(r) being positive. Its asymptotic structure obtained from Eq. (85) is

Wtc
(r) ∼

r→∞

3

2r2
. (89)

It is evident from Eqs. (87) and (89) (see also Fig. 18) that Wtc
(r) decays asymptotically much faster than the

electron-interaction potential Wee(r). This decay of Wtc
(r) of O( 1

r2 ) is the same as in the absence of a magnetic field.

3. Effective electron-interaction potential vee(r)

The effective electron-interaction potential vee(r) is then the sum of the electron-interactionWee(r) and correlation-
kinetic Wtc

(r) potentials:

vee(r) = Wee(r) +Wtc
(r). (90)
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FIG. 18: (Color Online) The electron-interaction Wee(r), correlation-kinetic Wtc(r), and effective electron-interaction vee(r)
potential energies. The function 1/r is also plotted.

The potential vee(r) is plotted in Fig. 18. Its structure near the nucleus and in the classically forbidden region are

vee(r) ∼
r→0

1.50 − 0.99r2, (91)

vee(r) ∼
r→∞

1

r
+

5

2r2
. (92)

Observe (see Figs 16 and 17), that the Coulomb Wc(r) and correlation-kinetic Wtc
(r) components of vee(r) are of

the same order of magnitude but opposite in sign. Hence, there is a substantial cancelation of these effects in the
potential vee(r). There is also a significant cancelation between the Hartree WH(r) and Pauli Wx(r) potentials (see
Figs. 13 and 14). It is due to this cancelation that the asymptotic structure of vee(r) is 1/r (see Eq. 87), and is due
to the residual Hartree potential. The Pauli and Coulomb correlations, and correlation-kinetic effects, all contribute
to the term of O(1/r2) of vee(r).

D. Eigenvalue ǫ

The eigenvalue of the S system differential equation Eq. (80) can be obtained directly from it since the solution
√

ρ(r) is known. Or it may be determined by writing vee(r) with ω̃ = 1 as

vee(r) = ǫ+
1

2

∇2√ρ
√
ρ

− 1

2
r2. (93)

Since vee(r) vanishes at infinity, and ∇2 = ∂2/∂r2 + (1/r)∂/∂r, we obtain ǫ = 2 a.u.

E. Single-particle expectations

With the density ρ(r) known, the expectations of the single-particle operators Ô =
∑

i r
n
i , n = 2, 1,−1 and Ô =

∑

i δ(ri) may be determined and are given in Appendix B.
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IV. CONCLUDING REMARKS

We have extended the QDFT of electrons to the case where there exists both a static external scalar and vector
potential {v(r),A(r)}. The QDFT, based on the ‘quantal Newtonian’ first law, maps the interacting system to one of
noninteracting fermions with the same density and physical current density {ρ(r), j(r)}, which properties constitute
the basic quantum mechanical variables. The QDFT is general in that it is valid for both ground and excited
nondegenerate states of the interacting system. The mapping to the model system is arbitrary in that it could be
either in a ground or excited state. A principle attribute of the theory is that the separate contributions to a property
of the different electron correlations that must be accounted for in the mapping, viz. those due to the Pauli Exclusion
Principle and Coulomb repulsion, and the correlation-kinetic and correlation-magnetic effects, are explicitly defined.
As such, the contribution of each individual electron correlation to a property can be separately obtained and studied.

To explicate the theory, we have applied it to the Hooke’s atom in the presence of an external magnetic field.
Thereby, we have explicitly constructed a noninteracting fermionic system which possesses the same ground state
{ρ(r), j(r)} as that of the atom. In this example, the mapping demonstrated is from a singlet ground state of the
atom to a model system also in its singlet ground state [21].

The role played by each individual electron correlation is clearly demonstrated in the above application. Thus, for
example, correlation-kinetic effects contribute positively to the effective electron-interaction potential energy vee(r)
of the model system, whereas the correlations due to Coulomb repulsion contribute negatively. Both these potentials
are also of the same order of magnitude. Additionally, it also turns out that the lowest-order contribution of both the
correlation-kinetic and Coulomb potentials in the classically forbidden region is of O(1/r2). As a consequence, there
is a significant cancellation of the contributions of these two correlations to both the potential energy vee(r) as well
as to the total energy E. In a similar manner, contributions of correlations arising from the Pauli exclusion principle
and those due to the Coulomb self-energy, also tend to cancel.

A comparison of the present results with those of the mapping for the Hooke’s atom in the absence of a magnetic field
[1, 2, 15] shows both similarities and differences, the latter arising as a consequence of the difference in dimensionality.
Thus, for example, the 3-dimensional dynamic Coulomb hole for the Hooke’s atom exhibits a cusp at the position of
the electron thereby indicating the satisfaction of the electron-electron coalescence condition for the wave function
in 3-dimensions [20, 23]. Similarly, the 2-dimensional Coulomb hole of the present work exhibits a cusp at each
electron position representative of the 2-dimensional electron-electron coalescence constraint [20]. On the other hand,
the asymptotic decay structure of the corresponding Coulomb fields and potentials in the classically forbidden region
differ in spite of the fact that in each case the Coulomb hole satisfies the same sum rule of having a total charge of zero.
This difference in the structure is a result of the difference in dimensionality. Another striking difference due to the
reduced dimensionality is that correlation-kinetic effects which are relatively insignificant in the 3-dimensional case
are far more significant in 2-dimensions. The correlation-kinetic energy in the latter case is greater in magnitude than
the Coulomb energy and over ten percent of the Pauli energy. This fact is important in the Kohn-Sham description
of the mapping [4] the application of which requires the construction of approximate energy functionals of {ρ(r), j(r)}
and their functional derivatives. Contributions due to correlation-kinetic effects cannot therefore be ignored in a first
approximation.

Finally, we are presently extending the QDFT described in the present work to the case of external time-dependent
electromagnetic fields. In this case it has been shown [24] that the basic variables are the time-dependent density
and physical current density {ρ(r, t), j(r, t)}. Such a QDFT will then make possible, for example, the study of
the interaction of radiation with matter from the perspective of the separate contributions of the various electron
correlations present.
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Appendix A: Proof of the ‘Quantal Newtonian’ First Law in the Presence of a Magnetic Field

Consider the Hamiltonian Ĥ of Eq. (1) and the corresponding Schrödinger equation Eq. (9). Writing the wave
function as Ψ = ΨR + iΨI , where ΨR and ΨI are the real and imaginary parts, we have on substitution into Eq. (9)
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[Û + V̂ +
1

2
A2(r) − E](ΨR + iΨI) = [−T̂ + iΩ̂](ΨR + iΨI), (A1)

or, since T̂ and Ω̂ have differential operators:

Û + V̂ +
1

2
A2(r) − E =

(−T̂ΨR − Ω̂ΨI)

ΨR
=

(−T̂ΨI + Ω̂ΨR)

ΨI
. (A2)

With ∇2
i =

∑3
β=1

∂2

∂r2

iβ

, we have on differentiating the individual terms on the right hand side of (A2) with respect to
r1α

∂

∂r1α
[
T̂ΨR

ΨR
] = − 1

2ΨR

N
∑

i=1

3
∑

β=1

∂3ΨR

∂riβ∂riβ∂r1α
+

1

2(ΨR)2
∂ΨR

∂r1α

N
∑

i=1

3
∑

β=1

∂2ΨR

∂r2iβ
, (A3)

and

∂

∂r1α
[
Ω̂ΨI

ΨR
] =

N
∑

i=1

3
∑

β=1

{ 1

ΨR

∂

∂r1α
(Aiβ

∂ΨI

∂riβ
) − 1

(ΨR)2
Aiβ

∂ΨI

∂riβ

∂ΨR

∂r1α
}

+
1

2

N
∑

i=1

3
∑

β=1

{ 1

ΨR

∂

∂r1α
(ΨI ∂Aiβ

∂riβ
) − 1

(ΨR)2
ΨI ∂Aiβ

∂riβ

∂ΨR

∂r1α
}. (A4)

Differentiating the left hand side of (A2) with respect to r1α, employing Eq.(A3) and (A4), we arrive at

[
∂

∂r1α
{v(r1) +

1

2
A2(r1) +

N
∑

j=2

u(r1, rj)}](ΨR)2

=
N

∑

i=1

3
∑

β=1

[
1

2
ΨR ∂3ΨR

∂riβ∂riβ∂r1α
− 1

2

∂ΨR

∂r1α

∂2ΨR

∂r2iβ
]

−
N

∑

i=1

3
∑

β=1

[ΨR ∂

∂r1α
(Aiβ

∂ΨI

∂riβ
) −Aiβ

∂ΨI

∂riβ

∂ΨR

∂r1α
]

−1

2

N
∑

i=1

3
∑

β=1

{ΨR ∂

∂r1α
(ΨI ∂Aiβ

∂riβ
) − ΨI ∂Aiβ

∂riβ

∂ΨR

∂r1α
}. (A5)

The right hand side of (A5) can be further simplified by using the following relations:

1

4

∂3ΨRΨR

∂riβ∂riβ∂r1α
=

1

2

∂2ΨR

∂r2iβ

∂ΨR

∂r1α
+
∂ΨR

∂riβ

∂2ΨR

∂riβ∂r1α
+

1

2
ΨR ∂3ΨR

∂riβ∂riβ∂r1α
, (A6)

and

− ∂

∂riβ
[
∂ΨR

∂r1α

∂ΨR

∂riβ
] = −∂ΨR

∂r1α

∂2ΨR

∂riβ∂riβ
− ∂2ΨR

∂r1α∂riβ

∂ΨR

∂riβ
. (A7)

Adding (A6) and (A7) we obtain

1

4

∂3ΨRΨR

∂riβ∂riβ∂r1α
− ∂

∂riβ
[
∂ΨR

∂r1α

∂ΨR

∂riβ
] =

1

2
ΨR ∂3ΨR

∂riβ∂riβ∂r1α
− 1

2

∂ΨR

∂r1α

∂2ΨR

∂r2iβ
, (A8)

where the right hand side of (A8) then corresponds to the terms in the first parenthesis of (A5).
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Thus, (A5) for the real part of the wave function ΨR becomes

[
∂

∂r1α
{v(r1) +

1

2
A2(r1) +

N
∑

j=2

u(r1, rj)}](ΨR)2

=
N

∑

i=1

3
∑

β=1

{1

4

∂3(ΨRΨR)

∂riβ∂riβ∂r1α
− ∂

∂riβ
(
∂ΨR

∂r1α

∂ΨR

∂riβ
)}

−
N

∑

i=1

3
∑

β=1

[ΨR ∂

∂r1α
(Aiβ

∂ΨI

∂riβ
) −Aiβ

∂ΨI

∂riβ

∂ΨR

∂r1α
]

−1

2

N
∑

i=1

3
∑

β=1

{ΨR ∂

∂r1α
(ΨI ∂Aiβ

∂riβ
) − ΨI ∂Aiβ

∂riβ

∂ΨR

∂r1α
}. (A9)

Similarly, the equation for the imaginary part of the wave function ΨI is

[
∂

∂r1α
{v(r1) +

1

2
A2(r1) +

N
∑

j=2

u(r1, rj)}](ΨI)2

=

N
∑

i=1

3
∑

β=1

{1

4

∂3(ΨIΨI)

∂riβ∂riβ∂r1α
− ∂

∂riβ
(
∂ΨI

∂r1α

∂ΨI

∂riβ
)}

+

N
∑

i=1

3
∑

β=1

[ΨI ∂

∂r1α
(Aiβ

∂ΨR

∂riβ
) −Aiβ

∂ΨR

∂riβ

∂ΨI

∂r1α
]

+
1

2

N
∑

i=1

3
∑

β=1

{ΨI ∂

∂r1α
(ΨR ∂Aiβ

∂riβ
) − ΨR ∂Aiβ

∂riβ

∂ΨI

∂r1α
}. (A10)

Note that the terms in the first parenthesis in (A9) and (A10) correspond to the derivation in the B = 0 case. The
terms in the second two parenthesis are the additional terms in the presence of a vector potential.

Adding (A9), and (A10) yields

[
∂

∂r1α
{v(r1) +

1

2
A2(r1) +

N
∑

j=2

u(r1, rj)}]|Ψ|2

=

N
∑

i=1

3
∑

β=1

{1

4

∂3|Ψ|2
∂riβ∂riβ∂r1α

− ∂

∂riβ
(
∂ΨR

∂r1α

∂ΨR

∂riβ
+
∂ΨI

∂r1α

∂ΨI

∂riβ
)}

+ [Aiβ(
∂ΨI

∂riβ

∂ΨR

∂r1α
− ∂ΨR

∂riβ

∂ΨI

∂r1α
) + (ΨI ∂

∂r1α
(Aiβ

∂ΨR

∂riβ
) − ΨR ∂

∂r1α
(Aiβ

∂ΨI

∂riβ
))]

+
1

2

N
∑

i=1

3
∑

β=1

{ΨI ∂

∂r1α
(ΨR ∂Aiβ

∂riβ
) − ΨR ∂Aiβ

∂riβ

∂ΨI

∂r1α

−ΨR ∂

∂r1α
(ΨI ∂Aiβ

∂riβ
) + ΨI ∂Aiβ

∂riβ

∂ΨR

∂r1α
}. (A11)

The terms of the first parenthesis on the right hand side of (A11) may be rewritten by splitting each term into its
i = 1 and i ≥ 2 contributions as

N
∑

i=1

3
∑

β=1

1

4

∂

∂riβ

∂

∂riβ

∂

∂r1α
|Ψ|2 =

[

1

4
∇2

1

∂

∂r1α
|Ψ|2 +

1

4

N
∑

j=2

3
∑

β=1

∂

∂rjβ

∂

∂rjβ

∂

∂r1α
|Ψ|2

]

, (A12)
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and

N
∑

i=1

3
∑

β=1

∂

∂riβ

(

∂ΨR

∂r1α

∂ΨR

∂riβ
+

∂ΨI

∂r1α

∂ΨI

∂riβ

)

=

[ 3
∑

β=1

∂

∂r1β

(

∂ΨR

∂r1α

∂ΨR

∂r1β
+
∂ΨI

∂r1α

∂ΨI

∂r1β

)

+

N
∑

j=2

3
∑

β=1

∂

∂rjβ

(

∂ΨR

∂r1α

∂ΨR

∂rjβ
+
∂ΨI

∂r1α

∂ΨI

∂rjβ

)]

. (A13)

Again, the only new terms in (A11) that arise on the right hand side due to the presence of the magnetic field or
vector potential A are those of the second two parentheses of (A11). These terms can be further simplified to

N
∑

i=1

3
∑

β=1

[Aiβ(
∂ΨI

∂riβ

∂ΨR

∂r1α
− ∂ΨR

∂riβ

∂ΨI

∂r1α
) + (ΨI ∂

∂r1α
(Aiβ

∂ΨR

∂riβ
) − ΨR ∂

∂r1α
(Aiβ

∂ΨI

∂riβ
))

+ΨI ∂Aiβ

∂riβ

∂ΨR

∂r1α
− ΨR ∂Aiβ

∂riβ

∂ΨI

∂r1α
]. (A14)

Once again, we split these terms into their i = 1 and i ≥ 2 contributions.
The i = 1 term of Eq. (A14) is

3
∑

β=1

[A1β(
∂ΨI

∂r1β

∂ΨR

∂r1α
− ∂ΨR

∂r1β

∂ΨI

∂r1α
) + (ΨI ∂

∂r1α
(A1β

∂ΨR

∂r1β
) − ΨR ∂

∂r1α
(A1β

∂ΨI

∂r1β
))]

= [
∂A1β

∂r1α
(ΨI ∂ΨR

∂r1β
− ΨR ∂ΨI

∂r1β
) + (

∂

∂r1β
(A1βΨI ∂ΨR

∂r1α
−A1βΨR ∂ΨI

∂r1α
))]. (A15)

The i ≥ 2 contribution of (A14) is

=
N

∑

i=2

3
∑

β=1

∂

∂riβ
[Aiβ(ΨI ∂ΨR

∂r1α
− ΨR ∂ΨI

∂r1α
) + ΨI ∂Aiβ

∂riβ

∂ΨR

∂r1α
− ΨR ∂Aiβ

∂riβ

∂ΨI

∂r1α
]. (A16)

We next operate by N
∑

σ1

∫

dXN−1 on (A11) employing (A12, A13, A15, A16) for its right hand side. For the left

hand side of (A11) one obtains

∂

∂r1α

{

v(r1) +A2(r1)
}

ρ(r1) +N

N
∑

j=2

∑

σ1

∫

∂u(r1rj)

∂r1α
|Ψ|2dXN−1. (A17)

For the right hand side of (A11) we note that the contributions of the second terms of (A12) and (A13), and that
of the term (A16) vanish for |rj | → ∞. Thus, the result of the above operation on the right hand side of (A11) is

1

4
∇2

1

∂

∂r1α
ρ(r1) − 2N

3
∑

β=1

∑

σ1

∫

1

2

∂

∂r1β

(

∂ΨR

∂r1α

∂ΨR

∂r1β
+
∂ΨI

∂r1α

∂ΨI

∂r1β

)

dXN−1

+ N

3
∑

β=1

∑

σ1

∫
[

∂A1β

∂r1α

(

ΨI ∂ΨR

∂r1β
− ΨR ∂ΨI

∂r1β

)

+

{

∂

∂r1β

(

A1βΨI ∂ΨR

∂r1α
−A1βΨR ∂ΨI

∂r1α

)}]

dXN−1. (A18)

It can be readily seen that in the second term of (A18), the terms within the parenthesis

N
∑

σ1

∫

1

2

(

∂ΨR

∂r1α

∂ΨR

∂r1β
+
∂ΨI

∂r1α

∂ΨI

∂r1β

)

dXN−1 = tαβ(r), (A19)
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where the kinetic energy tensor tαβ(r) is

tαβ(r) =
1

4

(

∂2

∂r′α∂r
′′
β

+
∂2

∂r′β∂r
′′
α

)

γ(r′r′′)

∣

∣

∣

∣

r
′=r

′′=r

, (A20)

with γ(r′r′′) the reduced single particle density matrix quantal source of Eq. (15). Thus, the second term of (A18) is
the component zα(r) of the kinetic ‘force’ z(r; γ):

zα(r) = 2

3
∑

β=1

∂

∂rβ
tαβ(r). (A21)

The third term of (A17) may be expressed in terms of the pair-correlation function P (rr′) of Eq. (14):

N

N
∑

j=2

∑

σ1

∫

∂u(r1rj)

∂r1α
|Ψ|2dXN−1 =

∫

∂u(rr′)

∂rα
P (rr′)dr′. (A22)

In vector form (A22) is

∫

∇u(rr′)P (rr′)dr′ = −
∫

P (rr′)(r − r′)

|r − r′|3 dr′ (A23)

= −eee(r), (A24)

with eee(r) the electron-interaction ‘force’ as obtained by Coulomb’s law.
The last term of (A18) may be expressed in terms of the paramagnetic current density jp(r) as

kα(r; jpA) =
3

∑

β=1

[(

∂A1β

∂r1α

)

jpβ(r1) +
∂

∂r1β

(

A1βjpα(r1)

)]

. (A25)

On putting together (A17) and (A18) in terms of their further simplifications expressed as ‘forces, we have in vector
form

ρ(r)

[

∇v(r) +
1

2
∇A2(r)

]

− eee(r) + z(r; γ) + d(r) + k(r; jpA) = 0, (A26)

where the differential density ‘force’ d(r) is

d(r) = −1

4
∇∇2ρ(r). (A27)

Equation (A26) is the differential virial theorem derived by Holas and March [6] via the equation of motion for the
single particle density matrix.

Now since the physical current density j(r) is

j(r) = jp(r) + ρ(r)A(r), (A28)

we have

k(r; jpA) +
1

2
ρ(r)∇A2(r) = k(r; jA) −

3
∑

β=1

∇β [ρ(r)Aα(r)Aβ(r)], (A29)

so that

kα(r; jA) =

3
∑

β=1

[jβ(r){∇αAβ(r)} + ∇β{Aβ(r)jα(r)}]. (A30)

Equation (A26) is then

ρ(r)∇v(r) − eee(r) + z(r; γ) + d(r) + k(r; jA) −
3

∑

β=1

∇β [ρ(r)Aα(r)Aβ(r)] = 0. (A31)
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The last two terms of (A31) which are the only terms that depend upon the vector potential can be afforded a
rigorous physical interpretation. Their sum can be expressed as the sum of a contribution of the external Lorentz
‘force’ l(r) and a corresponding contribution i(r) to the internal ‘force’. The Lorentz ‘force’ l(r) defined in terms of
the physical current density j(r) is

l(r) = j(r) × B(r). (A32)

With B = ∇ × A, we have

lα(r) =

3
∑

β=1

[jβ(r)∇αAβ(r) − jβ(r)∇βAα(r)]. (A33)

The contribution of the magnetic field to the internal force i(r) is defined via its components as

iα(r) =
3

∑

β=1

∇βIαβ(r), (A34)

where

Iαβ(r) = [jα(r)Aβ(r) + jβ(r)Aα(r)] − ρ(r)Aα(r)Aβ(r). (A35)

On applying the continuity condition ∇ · j(r) =
∑

β ∇βjβ(r) = 0, it is readily seen that

lα(r) + iα(r) = kα(r; jA) −
3

∑

β=1

∇β [ρ(r)Aα(r)Aβ(r)]. (A36)

Thus, (A31) may be written in ‘quantal Newtonian’ form in terms of external F
ext(r) and internal F

int(r) fields as

F
ext(r) + F

int(r) = 0 (A37)

with the external field defined as

F
ext(r) = E(r) − L(r) (A38)

where the external electrostatic E(r) field is

E(r) = −∇v(r), (A39)

and the magnetostatic Lorentz field L(r) is

L(r) =
l(r)

ρ(r)
. (A40)

The internal field F
int(r) is

F
int(r) = Eee(r) − Z(r) − D(r) − I(r), (A41)

where the electron-interaction Eee(r), kinetic Z(r), differential density D(r), and internal magnetic I(r) fields are
defined in terms of their corresponding forces as

Eee(r) =
eee(r)

ρ(r)
; Z(r) =

z(r; γ)

ρ(r)
; D(r) =

d(r)

ρ(r)
; I(r) =

i(r; jA)

ρ(r)
. (A42)

Appendix B: QDFT Analytical Expressions for the Ground State Properties of the Hooke’s Atom in a

Magnetic Field

In this appendix we give the QDFT analytical and semi-analytical expressions for the mapping from a ground state
of the interacting Hooke’s atom in a magnetic field to one of noninteracting fermions in a ground state with equivalent
density ρ(r) and physical current density j(r). The expressions derived are for an effective oscillator frequency ω̃ = 1.
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1. Electron density ρ(r)

ρ(r) = 2πC2e−r2{√
πe−

1

2
r2[

(1 + r2)I0(
1

2
r2) + r2I1(

1

2
r2)

]

+ (2 + r2)
}

, (B1)

with C2 = 1/π2(3 + 2π), and where I0(x) and I1(x) are the zeroth- and first-order modified Bessel functions Iν(x)
[18] with

Iν(x) =

∞
∑

n=0

1

n!Γ(n+ ν + 1)

(

1

2
x

)2n+ν

(B2)

and Γ(x) the Gamma function [18]. The asymptotic structure of ρ(r) near the nucleus is

ρ(r) ∼
r→0

2

π(3 +
√

2π)
{2 +

√
π − (1 +

1

2

√
π)r2 − 1

16

√
πr4 + · · · }, (B3)

with

ρ(0) = 0.436132 a.u. (B4)

Employing the asymptotic behavior of the Bessel functions:

I0(z) ∼
r→∞

ez

√
2πz

∞
∑

n=0

(−1)n

(2z)n

Γ(n+ 1
2 )

n!Γ(−n+ 1
2 )

+
e−z

√
2πz

∞
∑

n=0

i

(2z)n

Γ(n+ 1
2 )

n!Γ(−n+ 1
2 )
,

(B5)

and

I1(z) ∼
r→∞

ez

√
2πz

∞
∑

n=0

(−1)n

(2z)n

Γ(n+ 3
2 )

n!Γ(−n+ 3
2 )

− e−z

√
2πz

∞
∑

n=0

i

(2z)n

Γ(n+ 3
2 )

n!Γ(−n+ 3
2 )
,

(B6)

the asymptotic structure of the density in the classically forbidden region is

ρ(r) ∼
r→∞

2

π(3 +
√

2π)
e−r2{r2 + 2r + 2 +

1

2r
+

1

16r3
+ ...}. (B7)

2. Pair-correlation density g(rr′)

g(rr′) =
2C2(1 +R)2e−(r2+r′2)

ρ(r)
(B8)

where R = |r − r′|.

3. Single-particle density matrix γ(rr′)

γ(rr′) = 2C2e−
1

2
(r2+r′2)

∫

(1 + |r − y|)(1 + |r′ − y|)dy (B9)
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4. Dirac Density matrix γs(rr
′)

γs =
√

ρ(r)ρ(r′) (B10)

5. Electron-interaction field Eee(r)

Eee(r) =
2π

3

2C2

ρ(r)

r

r
e−

3

2
r2

[2I 1

2

(
1

2
r2) +

3r

2
I0(

1

2
r2) − r

2
I1(

1

2
r2)] (B11)

6. Electron-interaction energy Eee

Eee = 4π
5

2C2

∫ ∞

0

r2e−
3

2
r2

[2I 1

2

(
1

2
r2) +

3r

2
I0(

1

2
r2) − r

2
I1(

1

2
r2)]dr (B12)

= 4π
5

2C2

[
√

2π

4
+

1

2

]

= 0.818401 a.u. (B13)

7. Kinetic energy tensor tαβ(r; γ)

tαβ(r; γ) =
rαrβ
r2

f(r) + δαβk(r), (B14)

where

f(r) = πC2e−r2

{

r4 + 1 − 1 − e−r2

r2
+
√
πe−r2/2

[

r4I0(
1

2
r2) + (r4 − r2)I1(

1

2
r2)

]}

, (B15)

and

k(r) = πC2e−r2 (1 − e−r2

)

2r2
. (B16)

8. Kinetic energy tensor ts,αβ(r; γs)

ts,αβ(r; γs) =
rαrβ
r2

h(r), (B17)

where

h(r) =
1

8ρ(r)
(
∂ρ

∂r
)2. (B18)
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9. Kinetic ‘force’ zα(r; γ)

zα(r; [γ]) = 2
∑

β

∇βtαβ(r; [γ]) =
2rα
r

[
∂(f(r) + k(r))

∂r
+
f(r)

r
]

=
2πC2rα

r
e−r2{[−2r5 + 5r3 − 2r +

2(1 − e−r2

)

r
]

+
√
πe−r2/2[(−2r5 + 4r3)I0(

r2

2
) + (−2r5 + 6r3 − r)I1(

r2

2
)]}. (B19)

z(r) ∼
r→∞

2πC2e−r2

(−2r5 − 4r4 + 5r3 + 11r2 − 2r − 33

8
+

2

r
− 15

33r2
+

6

r3
) (B20)

z(r) ∼
r→0

2πC2[(4 +
15

4

√
π)r3 − (

17

3
− 49

8

√
π)r5]. (B21)

10. Kinetic ‘force’ zs,α(r; γs)

zs,α(r; [γs]) = 2
∑

β

∇βtαβ(r; [γs]) =
rα
2rρ

(
∂ρ

∂r
)[− 1

2ρ
(
∂ρ

∂r
)2 +

∂2ρ

∂r2
+

1

2r
(
∂ρ

∂r
)]. (B22)

zs(r) ∼
r→∞

2πc2e−r2

(−2r5 − 4r4 + 5r3 + 11r2 − 2r − 33

8
+

5

r
− 15

33r2
− 5

r3
). (B23)

zs(r) ∼
r→0

0.33r + 0.40r3 − 0.76r5. (B24)

11. Kinetic Energy T

T = 2π2C2[
3

2
+

3

8

√
2π] = 0.886199 a.u. (B25)

12. External Energy Eext

Eext =

∫

ρ(r)
r2

2
dr = 2π2C2

[

2 +
5
√

2π

8

]

= 1.295400 a.u. (B26)

13. Electron-interaction potential Wee(r)

Wee(r) = −2π
3

2C2

∫ r

∞

1

ρ(y)
e−

3

2
y2

[

2I 1

2

(
y2

2
) +

3

2
yI0(

y2

2
) − 1

2
yI1(

y2

2
)

]

dy. (B27)

Wee(0) = 1.217891 a.u. (B28)
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14. Hartree potential WH(r)

In two-dimensions the term 1/|r− r′| can be rewritten as

1

|r − r′| =
4

π

∫ ∞

0

{1

2
I0(kr<)K0(kr>) +

∞
∑

m=1

cos[m(φ − φ′)]Im(kr<)Km(kr>)}

=
4

π
{ 1

2r>
K(

r2<
r2>

) +
∞
∑

m=1

√
πΓ(m+

1

2
)(
r2<
r2>

)mcos[m(φ− φ′)]

× 2F1(
1

2
,
1

2
+m,m+ 1;

r2<
r2>

)
1

2r>Γ(m+ 1)
}, (B29)

where r<(r>) is the smaller (larger)of r and r′, Ii andKi are the modified Bessel functions of i−th order, 2F 1(a, b, c;x)
is the Hypergeometric function [18], and K(x) is the complete elliptic integral of the first kind [18]

K(k) =

∫ 1

0

dt[(1 − t2)(1 − kt2)]−1/2 =
π

2
2F 1(

1

2
,
1

2
, 1; k). (B30)

Using the above equations and performing the angular integral, we obtain

WH(r) =

∫

ρ(r′)

|r − r′|dr
′

= 4

∫ r

0

dr′
r′

r
ρ(r′)K(

r′2

r2
) + 4

∫ ∞

r

dr′ρ(r′)K(
r2

r′2
). (B31)

15. Expectations

〈r〉 =

∫

ρ(r)rdr

= 4π2c2
∫

e−r2{2r2 + r4 +
√
πe−

1

2 [(r2 + r4)I0(
1

2
r2) + r4I1(

1

2
r2)]}dr

= 4π2c2[
7

8

√
π +

√
6π

18
(2F1(

3

4
,
5

4
, 1,

1

9
) + 2F1(

5

4
,
7

4
, 1,

1

9
)) +

5
√

6π

36
2F1(

7

4
,
9

4
, 1,

1

9
)]

= 2.037 89 a.u. (B32)

〈r2〉 =

∫

ρ(r)r2dr

= 4π2c2
∫

e−r2{2r3 + r5 +
√
πe−

1

2 [(r3 + r5)I0(
1

2
r2) + r5I1(

1

2
r2)]}dr

= 4π2c2[2 +
3
√
π

8
√

2
+

19
√
π

32
√

2
+

9
√
π

32
√

2
]

= 4π2c2[2 +
5
√

2π

8
]

= 2.590 8 a.u. (B33)
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〈1
r
〉 =

∫

ρ(r)
1

r
dr

= 4π2c2
∫

e−r2{2 + r2 +
√
πe−

1

2 [(1 + r2)I0(
1

2
r2) + r2I1(

1

2
r2)]}dr

= 4π2c2[
5

4

√
π +

√
6

6
π2F1(

1

4
,
3

4
, 1,

1

9
) +

√
6

18
π2F1(

3

4
,
5

4
, 1,

1

9
) +

√
6

72
π2F1(

5

4
,
7

4
, 1,

1

9
)]

= 2.996 87 a.u. (B34)

〈δ(r)〉 = ρ(0) = 2πC2[2 +
√
π] = 0.436132 a.u. (B35)
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