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We report the first polarizability measurements of atomic cesium’s 6d3/2 state. The scalar and
tensor polarizabilities are determined from hyperfine-resolved Stark-shift measurements using two-
photon laser-induced-fluorescence spectroscopy of an effusive beam. The resulting values are α0 =
−5310(180)a3

0 and α2 = 8650(260)a3

0 . In addition, our measurements yield the hyperfine coupling
constants A = 16.36(15)MHz and B = −0.7(8)MHz, which agree with previous measurements. We
also present relativistic all-order calculation of both scalar and tensor polarizabilities. The resulting
theoretical values, α0 = −5686(121)a3

0 and α2 = 8750(82)a3

0 , are in agreement with the present
experimental results.

I. INTRODUCTION

Accurate knowledge of atomic polarizabilities is im-
portant for a variety of applications including: the de-
velopment of the next-generation atomic time and fre-
quency standards, optical cooling and trapping schemes,
the study of fundamental symmetries, thermometry and
other macroscopic standards, quantum information with
neutral atoms, the study of cold degenerate gases and
long-range interactions, atomic transition rate determi-
nations, and benchmark comparisons of theory and ex-
periment [1].

For example, an imperfect knowledge of atomic po-
larizabilities presents a problem in accurate determina-
tion of blackbody radiation (BBR) shifts. At the present
time, BBR shifts are the largest source of uncertainty
for most new-generation optical frequency standards [2].
Polarizabilities have also been used to determine specific
electric-dipole matrix elements needed for other applica-
tions [3].

Accurate atomic-structure calculations are critical for
interpreting studies of parity-nonconserving (PNC) in-
teractions with heavy atoms. To date, the most accurate
atomic-physics PNC measurement has been carried out
in atomic cesium [4]. Interpreting these measurements
requires the accurate calculation of the tensor transition
polarizability and the parity-violating amplitude. Under-
standing the reliability of these calculations is needed to
effectively analyze experimental PNC results [5].

Accurate polarizabilities for group I and II atoms and
ions of the periodic table have recently become available
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through a variety of techniques. However, most of the
experimental and theoretical studies have focused on the
ground and lowest excited states. As demonstrated by
the recent review [1], few of the the excited-state polar-
izabilities are known accurately even for the alkali-metal
atoms. Cesium is an exception, as it has been the subject
of a larger number of such studies owing to its importance
for PNC investigations.

Although the polarizabilities for a wide range of atomic
cesium states have been reported to date, many of the
values represent data that are decades old and of low
precision. Table X in Mitroy et al. [1] provides an
overview of the many experimentally and theoretically
determined polarizabilities of cesium. Among these, ex-
amples of notable measurements include very high preci-
sion results for the 6s1/2 [6], the 6p1/2 [7], and the 6p3/2

[8, 9] states. The polarizabilities of essentially all the
lower-lying states of cesium have also been calculated.
These calculation were carried out using using both the
Coulomb approximation [10] and a relativistic all-order
method [11, 12].

From Ref. [1], we see that experimental results exist
for most of the lowest-lying states of cesium with the no-
table exceptions of the 5dj and 6dj states. In the present
article, we report the first measurements of the scalar
and tensor polarizabilities of cesium’s 6d3/2 state using
hyperfine-resolved, two-photon fluorescence spectroscopy
of an effusive beam with single-mode tunable lasers. As
a test of the high-precision methodology, we also carry
out calculations of both the scalar and tensor polariz-
abilities for this state. We note that these quantities are
particularly suitable for such a test owing to significant
cancellations of various contributions.

The study of the nd state polarizabilities in monova-
lent systems is also important for the development of
optical frequency standards with Ca+ and Sr+ ions. In
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both of these cases, nd5/2 states are used as upper clock
levels, so their polarizabilities must be precisely known
for evaluating the BBR shift [13, 14].

In this work, we have also determined the 6d3/2 hy-
perfine coupling constants. By comparing these hyper-
fine measurements to literature values we gain confidence
that our frequency scale is well calibrated.

Below, we discuss the experimental determination of
the polarizabilities and hyperfine constants in Sec. II.
Theoretical calculations of the scalar and tensor polar-
izabilities are discussed in Sec. III. The comparison of
the experimental and theoretical values is discussed in
Sec. IV.

II. EXPERIMENT

To maintain the hyperfine-resolved nature or our mea-
surements, we choose a range of electric fields over which
the Stark shift is comparable in magnitude to the hy-
perfine splitting. This preserves the magnetic sub-levels
as members of the total angular momentum manifolds
and permits the application of perturbation theory to
the combined hyperfine-Stark perturbation. As outlined
in Ref. [15], the perturbation Hamiltonian is the sum of
the hyperfine interaction operator, Vhf , and the Stark
interaction operator, VS ,

H = Vhf + VS . (1)

The hyperfine operator is diagonal in F and m, the total
atomic angular momentum and its projection onto the
quantization axis. The first two terms of these matrix
elements are given by

〈Fm|Vhf |Fm〉 = (2)

1

2
AK +

1

4
B

3
2K(K+1)− 2I(I+1)J(J−1)

I(2I−1)J(2J−1)

where A is the magnetic dipole coupling constant, B is
the the electric quadrupole coupling constant, J is the

electronic angular momentum, I is the nuclear angular
momentum, and K = F (F +1)− J(J+1) − I(I+1).

For nondegenerate states, the first-order Stark inter-
action is zero. This results in the Stark term being
quadratic in the electric field, ǫ. The Stark interaction
matrix element is diagonal in m and is typically written
as the sum of two terms

〈Fm|VS |F
′′m〉 = −

1

2
α0ǫ

2δF,F ′′ −
1

2
α2ǫ

2 〈Fm|Q|F ′′m〉 ,

(3)
where α0 is the scalar polarizability, α2 is the tensor po-
larizability, δF,F ′′ is the Kronecker delta, and Q is the op-
erator describing the Stark mixing of the hyperfine levels.

The combined hyperfine-Stark interaction is evaluated
by diagonalizing the explicit perturbation Hamiltonian

VF,F ′′;m = 〈Fm|Vhf (F = F ′′)|F ′′m〉 + 〈Fm|VS |F
′′m〉 .

(4)
The hyperfine term can be either deduced from Eq. (2)
or determined experimentally (which is the method used
here). The individual matrix elements of the Stark term
can be computed using 3 − j and 6 − j symbols (for
example, see Ref. [16]).

Because the Stark interaction is diagonal in m, diag-
onalizing Eq. (4) can be simplified by a judicious choice
of the specific |Fm〉 levels used in the polarizability anal-
ysis. Figure 1 shows a schematic of the relevant hy-
perfine manifolds involved in this measurement. The
|Fm〉 = |5, 5〉 sub-level of the 6d 2D3/2 state cannot mix
with any other state, so it is associated with the simplest
perturbation Hamiltonian and represented by the 1 × 1
matrix

V5,F ′′;5 = −
1

2
α0ǫ

2 −
1

2
α2ǫ

2 + 〈5, 5|Vhf |5, 5〉 . (5)

The |Fm〉 = |5, 4〉 sub-level is the next simplest case
because it mixes with only the |Fm〉 = |4, 4〉 sub-level.
This yields a 2 × 2 matrix

V5,F ′′;4 = −
1

2
α0ǫ

2 −

(

1
5α2ǫ

2 − 〈5, 4|Vhf |5, 4〉
√

21
5 α2ǫ

2
√

21
5 α2ǫ

2 − 1
5α2ǫ

2 − 〈5, 4|Vhf |5, 4〉

)

. (6)

The |5, 5〉 and |5, 4〉 sublevels have the added advantage
of being the easiest of the 6d3/2 magnetic sublevels in
cesium to isolate experimentally.

The scalar polarizability can be determined from
Eq. (5) by plotting the Stark shift of the |5, 5〉 peak as a
function of ǫ2, but first the tensor polarizability must be
found. This is done by diagonalizing Eq. (6), and sub-
tracting the |5, 4〉 eigenvalue from the |5, 5〉 eigenvalue of

Eq. (5). This provides an expression for α2 in terms of
hν54, the splitting between the |5, 5〉 and |5, 4〉 substates,

10

3

(

1 − ν54

νhf

)

hν54
(

1 − 10
3

ν54

νhf

) = −α2ǫ
2, (7)

where hνhf is the hyperfine splitting between the F = 5
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FIG. 1: The relevant hyperfine manifolds. Also illustrated
are the laser-excitation and fluorescence-detection schemes of
the 6d3/2 state of cesium. Two single-mode lasers excite the
6s1/2(F

′′ = 4) → 6p1/2(F
′ = 3 or 4) → 6d3/2(F ) resonant

two-photon transition. Absorption of the 876.4 nm laser beam
is monitored in a vapor cell and 852.4 nm fluorescence is de-
tected from an effusive beam.

and F = 4 states at zero field. The tensor polarizability
is thus found by plotting the left side of Eq. (7) against
ǫ2.

A. Apparatus

Figure 2 shows a schematic of the experimental setup.
The Stark shifts and the hyperfine intervals of the 6d3/2

state of cesium are measured with hyperfine-resolved,
resonant two-photon spectroscopy. Two single-mode
external-cavity diode lasers probe a well collimated ef-
fusive beam using laser-induced-fluorescence (LIF) spec-
troscopy and simultaneously probe a vapor cell using ab-
sorption spectroscopy with phase-sensitive detection. A
well characterized electric field splits the hyperfine mag-
netic sublevels in the effusive beam while the vapor cell
is held in a field-free region. Stark shifts are measured in
the effusive beam, and the vapor cell provides frequency-
scale calibration. The frequency scale is directly refer-
enced to a rubidium frequency standard using an optical
modulation technique.

Figure 1 provides an overview of the spectroscopic
schemes used for state preparation and signal acquisition.
These schemes have been described in detail elsewhere:
laser excitation and fluorescence detection from a effu-
sive beam in Ref. [17]; laser excitation and absorption
detection from the vapor cell in Ref. [18]. Briefly, the
linearly polarized beams from two single-mode, external-
cavity diode lasers (DL1 and DL2 in Fig. 2) are split
and sent simultaneously through an effusive beam and
a vapor cell. The beams from DL1 and DL2 counter-
propagate through both the effusive beam and the vapor
cell with their polarization vectors aligned.

About 10% of the output from DL1 is directed into a
saturated-absorption spectrometer where DL1 is center
locked to the 6s1/2(F

′′ = 4) → 6p1/2(F
′ = 3 or 4) transi-

tion at λ1 ≈ 894.6 nm using a phase-sensitive servo. The
second diode laser, DL2, is scanned across the 6p1/2(F

′ =
3 or 4) → 6d3/2(F = 2,· · ·,5) manifold at λ2 ≈ 876.4 nm.
The DL2 cavity length, and thus its wavelength, is var-
ied with a piezo-electric crystal. The potential difference
across the piezo-electric crystal is controlled by a 12-bit
digital-to-analog converter (DAC). The hyperfine mea-
surements include data from all three 6d3/2(F = 2,· · ·,5)
intervals, whereas the polarizability requires measuring
only the interval between the m = 4 to m = 5 magnetic
sublevels of the 6d3/2(F = 5) manifold.

For LIF detection, the 6p3/2 → 6s1/2 fluorescence sig-
nal from the effusive beam is passed by a 852 nm in-
terference filter to a photomultiplier tube (PMT). The
DL2 wavelength is stepped across the the 6p1/2 → 6d3/2

hyperfine transitions (by incrementing the DAC setting)
and the photon count rate is collected by a counter-timer
board and stored in a microcomputer. Simultaneously,
the absorption signal from the cesium vapor cell is mon-
itored using phase-sensitive detection.

To implement phase-sensitive detection, the DL1 beam
is amplitude modulated at about 17.4 kHz using using a
40MHz acousto-optical modulator (40MHz AOM). The
DL2 beam is monitored with a photodiode (PD) and
and a lockin amplifier (a SRS model SR830 DSP Lockin
Amplifier). These data are encoded by a 12-bit analog-
to-digital converter (with 2.4 mV resolution) and stored
along side the LIF count rate for each DL2 wavelength.

The effusive beam apparatus is contained inside a dif-
ferentially pumped vacuum chamber. The beam-source
chamber pressure is approximately 5×10−6 mbar and the
fluorescence-detection chamber pressure is approximately
5× 10−8 mbar. The beam source is held at about 200◦C,
creating a cesium vapor pressure of about 0.1 mbar. This
vapor effuses through a 0.5 mm nozzle. Two apertures
collimate the beam to a divergence of 4.2 mrad, and the
cesium flux is 1010 atoms/sec. At the intersection be-
tween the effusive beam and the laser beams, a uniform
DC electric field is established between two parallel cop-
per plates. Each plate is 90 mm in diameter and ground
to a flatness of ±0.05 mm. They are held at a separation
of 14.7(2)mm by four insulating posts — the uncertainty
in plate separation is our chief contribution to systematic
error.

An electric potential of up to 10.6 kV is applied across
these plates. This potential difference is monitored with a
calibrated precision voltmeter (Keithly model 2000 Mul-
timeter) and a 1000:1 precision voltage divider (Cad-
dock Electronics model HVD Ultra-Precision Voltage Di-
vider). The multimeter has a certified accuracy of eight
parts in 105, and we have determined the precision of the
voltage divider to be better than one part in 103.
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FIG. 2: Apparatus for measuring Stark shifts and hyperfine intervals of the 6d3/2 state of cesium. Symbols in the diagram
have the following meanings — 9.193GHz EOM: 9.193GHz electro-optical modulator; 40MHz AOM: 40MHz acousto-optical
modulator; ADC: 12-bit analog-to-digital converter; Broadband EOM: 1-250MHz electro-optical modulator; BS: beam splitter;
DAC: 12-bit digital-to-analog converter; DL1 and DL2: single-mode external-cavity diode lasers; PD and Lockin: photodiode
and phase-sensitive lockin amplifier; PMT: photomultiplier tube; Pol.: high contrast linear polarizer; Rb Freq. Stnd.: 10MHz
rubidium frequency standard; RF Signal Gen.: 1kHz-2GHz radio-frequency signal generator; Sat. Abs. Spect.: saturated-
absorption spectrometer; solid lines: signal paths; short dashed line: laser beam paths; long dashed lines: cesium beam path.

B. Frequency calibration

We calibrate the laser frequency scale using a modifica-
tion of the technique described in Ref. [18]. The scanned
laser beam (from DL2) is split and simultaneously passes
through the effusive beam and the absorption cell. Prior
to passing into the absorption cell, a broadband electro-
optical modulator (EOM) adds modulation sidebands to
the DL2 frequency. In this experiment, we choose among
three modulation frequencies: 115 MHz for the Stark
shift measurements, and either 155 MHz or 210 MHz for
the hyperfine splitting measurements (155 MHz for the
6p1/2(F

′ = 3) → 6d3/2(F = 2, 3, 4) transitions and
210 MHz for the 6p1/2(F

′ = 4) → 6d3/2(F = 3, 4, 5) tran-
sitions). These values are chosen to optimize modula-
tion efficiency and to match the intervals being measured
without obscuring spectral features. The modulation fre-
quencies are directly referenced to a 87Rb frequency stan-
dard. This frequency standard provides both short-term
stability and long-term accuracy to better than 5 parts
in 109.

The broadband EOM produces a dominant sideband
on either side of the laser’s central frequency. As the laser
is scanned across a spectral peak, three features are ob-
served precisely separated by the modulation frequency.
The frequency scale for the hyperfine splitting measure-
ments is calibrated using the method of Ref. [17]. For the
Stark shift measurements, the relative frequency scale is
calibrated by fitting a second-order polynomial to a total
of six peaks: the 6p1/2(F

′ = 4) → 6d3/2(F = 4) peak,

the 6p1/2(F
′ = 4) → 6d3/2(F = 5) peak, and the four as-

sociated modulation sidebands. The nonlinearity given
by these fits is always about 1 part in 104.

When we fit a third-order polynomial to the same six
points, we find the third-order term to be about two parts
in 108. We incorporate the uncertainty associated with
the third-order term into our systematic error budget (see
Sec, II C 2), although this effect does not contribute sig-
nificantly to the overall uncertainty.

The residual magnetic field can introduce systematic
errors into frequency measurements. For example, the
optical pumping of differentially shifted magnetic sub-
levels can cause line centers to shift in frequency. This
phenomenon has the potential to introduce nonlineari-
ties into our frequency scale because power density dif-
ferences between the central laser frequency and the mod-
ulation sidebands can produce differential degrees of op-
tical pumping of Zeeman-shifted magnetic sublevels. We
employ several measures to minimize the effect of resid-
ual magnetic fields. We linearly polarize all laser beams
with extinction ratios better than 2000:1. Linearly po-
larized light limits the dipole-transition selection rules
to ∆m = 0; sublevels with the same magnetic quan-
tum number tend to have similar Zeeman shifts. We also
use high-permeability shielding in the region where the
laser beams intersect the effusive beam. This reduces the
residual magnetic field by about one order of magnitude.
Since we do not observe significant nonlinearity of our
frequency scale, we conclude that our frequency calibra-
tion technique is not sensitive to optical pumping effects.
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FIG. 3: Two-photon spectra of the 6d3/2(F = 3, 4, 5) hyperfine states at zero field. The upper plot shows the laser-induced-
fluorescence signal from the effusive beam (circles) with the hyperfine sublevels marked. Also shown are fitted Voigt profiles,
offset for clarity (blue dotted line), and the aggregate fit (red solid line). The lower plot shows the frequency-calibration
spectrum: the absorption signal from the cesium vapor cell collected concurrent with the upper plot. For the calibration
spectrum, the laser is phase modulated at 210 MHz and the locations of the hyperfine sublevels and sidebands are marked. The
least-squares fit of Viogt profiles to the lower plot has been omitted for clarity sake.

TABLE I: The magnetic dipole A and electric quadrupole B
hyperfine coupling constants of cesium’s 6d3/2 state.

Source A B
[MHz] [MHz]

Present work 16.36(15) -0.7(8)
Reference [18] 16.34(3) -0.1(2)
Reference [19] 16.30(15) < ±8
Reference [12] 17.8

To reduce both optical pumping and power broadening
effects, we operate all laser beams at low power densities.
In general, we observed line broadening at power densi-
ties above 4 mW/cm

2
. The DL1 laser beam operates be-

tween 0.4 mW/cm2 and 1.0 mW/cm2 and the DL2 laser

beam operates between 0.7 mW/cm
2

and 1.5 mW/cm
2
.

All data presented here are collected at the lower end of
these power-density ranges. Collisional broadening and
collisional line shifts are not an issue because of the low
background pressures in both the fluorescence detection
chamber and the absorption cell.

C. Experimental Results and Data Analysis

Data analysis is divided into two parts. In Sec. II C 1,
we verify the accuracy of our frequency scale by generat-
ing the hyperfine coupling constants for the 6d3/2 state
at zero field. In Sec. II C 2, we determine the scalar and
tensor polarizabilities of the 6d3/2 state.

1. Hyperfine Coupling Constants

Figure 3 shows a typical spectrum of the 6s1/2(F
′′ =

4) → 6p1/2(F
′ = 4) → 6d3/2(F = 3, 4, 5) two-photon

transitions at zero field. The upper plot is the laser-
induced-fluorescence signal from the effusive beam. The
lower plot is the absorption signal from the vapor cell.
The lower plot includes the phase-modulation side bands
used to calibrate the frequency scale. In this case, the
modulation frequency is 210 MHz. Both spectra are col-
lected simultaneously.

Also shown in the upper panel of Fig. 3 are fitted Voigt
profiles. A Voigt profile is fitted to each spectral feature
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FIG. 4: Stark-shifted two-photon spectra of the 6d3/2(F = 3, 4, and 5) hyperfine states. The upper plot is the laser-induced-
fluorescence signal from the effusive beam taken at 6.86(9) kV/cm. All (F, m) sublevels of the F = 4 and F = 5 hyperfine
manifold are marked. The |5, 5〉 and |5, 4〉 states are clearly resolved. Also shown are Voigt profiles fitted to each spectral
feature, offset for clarity (blue dotted line), and the aggregate least-squares fit (red solid line). The lower plot shows the
frequency-calibration spectrum: the absorption signal from the cesium vapor cell collected concurrent with the upper plot but
at zero field. For the calibration spectrum, the scanned laser is phase modulated at 115 MHz and the locations of the hyperfine
states and the modulation sidebands are marked. The least-squares fit of Viogt profiles to the lower plot has been omitted for
clarity sake.

using a Levenburg-Margquardt residual minimization al-
gorithm. The same nonlinear fitting procedure is applied
to the absorption data, although these results are omit-
ted from Fig. 3 for the sake of clarity. Data were collected
at 500 kHz intervals, but the fitting procedure allows the
centroid of each peak to be determined with an uncer-
tainty of about 100 kHz. The reduced χ2 for all fits are
on the order of one, and for Fig. 3, χ2 = 1.1 for both
panels.

We determine the F = 4 → F = 5 hyperfine inter-
val to be 82.46(15)MHz by averaging the centroid differ-
ences from 50 individual 6s1/2(F

′′ = 4) → 6p1/2(F
′ =

4) → 6d3/2(F = 3, 4, 5) spectra. However, we do not use
these spectra to determine the F = 3 → F = 4 splitting
because of the lower single-to-noise ratio of the F = 3
peak. Instead, we measure the F = 2 → F = 3 and
the F = 3 → F = 4 hyperfine intervals by averaging the
centroid differences from 50 individual 6s1/2(F

′′ = 4) →
6p1/2(F

′ = 3) → 6d3/2(F = 2, 3, 4) spectra. These inter-
vals are 64.71(15)MHz and 49.31(20)MHz, respectively.

The hyperfine coupling constants are generated by ap-

plying Eq. (2) to our hyperfine intervals using the method
outlined in Ref. [18]. These results are reported in Table
I along with equivalent values from the literature. One
might expect our results to differ from the literature be-
cause of our efforts to minimize magnetic fields and opti-
cal pumping effects which had not been done in previous
studies. However, our measurements agree closely with
those using two-photon absorption spectroscopy in a va-
por cell [18], and cascade-radio-frequency spectroscopy
[19]. The theoretical relativisitic all-order value [12] dif-
fer from experiment by 9%. This is not unexpected be-
cause correlation correction contributes over 40% for A
with large contributions coming from fourth and higher-
orders making accurate modeling of electron-correlation
effects very difficult in this case. This issue was discussed
in detail in Ref. [12]. Much higher accuracy is expected
for the theoretical all-order calculation of polarizabilities.
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ting for the 6d3/2 state. A linear least-squares fit gives a slope

of −2.152(11) Mhz/(kV/cm)2 or −8648(44) a3

0.

2. Polarizabilities

Figure 4 shows a typical spectrum of the 6s1/2(F
′′ =

4) → 6p1/2(F
′ = 4) → 6d3/2(F = 3, 4, 5) two-photon

transitions at 6.86(9) kV/cm along with the associated
frequency-calibration spectrum at zero field. The upper
plot is the Stark-shifted laser-induced-fluorescence signal
from the effusive beam. The various |F, m〉 sublevels are
labeled for the F = 4 and F = 5 hyperfine states. The
positions of the |5, 5〉 and |5, 4〉 peaks are needed for our
analysis and they are clearly resolved here. We vary the
electric field between 5.05(7) kV/cm and 6.96(9) kV/cm
and clearly resolve the |5, 5〉 and |5, 4〉 peaks at every field
strength. The lower plot of Fig. 4 shows the frequency-
calibration absorption spectrum from the vapor cell at
zero field and with 115 MHz phase-modulation applied
to the scanned laser. The hyperfine states are labeled
along with the modulation sidebands.

The centroid of each spectral feature is determined by
fitting Voigt profiles, as described is Sec. II C 1. The χ2

values of these fits are on the order of unity. The fre-
quency scale is calibrated by fitting a second-order poly-
nomial to the centroids of the absorption spectrum as
described in Sec. II B.

The slight overlap between the |5, 4〉 and |5, 3〉 peaks
caused some concern that the fitting routine might pull
the |5, 4〉 centroid towards (or away from) the correct
|5, 4〉 peak position. To estimate the effect of peak over-
lap, we used our fitting routine to analyze a series of
model spectra. To construct a model spectrum, we
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the 6d3/2 state. A linear least-squares fit gives a slope of

−0.2499(68) Mhz/(kV/cm)2 or −1004(27) a3

0.

placed two Voigt functions with widths and overlaps sim-
ilar to what we observe experimentally, and add Gaus-
sian noise at levels that mimic the experimental signal-
to-noise levels. We then apply our fitting routine to each
model spectrum to find the peak centroids. Comparing
the fit centroids to the original peak centers shows that
the variations in peak positions are small compared to the
uncertainty in the fitted centroid. We therefore conclude
that the peak overlap does not significantly influence our
results.

The scalar and tensor polarizabilities are deduced from
data in a two-step procedure. First, the tensor polariz-
ability is found using Eq. (7) by measuring the |5, 5〉 to
|5, 4〉 splitting as a function of the electric field. Second,
the scalar polarizability is found using Eq. (5) by mea-
suring the net shift of the |5, 5〉 peak as a function of the
electric field.

For the tensor polarizability, the |5, 5〉 to |5, 4〉 split-
ting provides ν54 for Eq. (7). The value for νhf is de-
termined in Sec. II C 1. Graphing the left-hand side of
Eq. (7) against of ǫ2 produces a linear plot with a slope
of −α2. Using our data, this plot is shown in Fig. 5.
A least-squares linear fit yields α2 = 2.152 ± 0.011 ±
0.060 Mhz/(kV/cm)

2
or 8648 ± 44 ± 240 a3

0, where the
first uncertainty is statistical and the second is due to
the systematics.

To find α0, the net Stark shift of the |5, 5〉 sublevel is
determined by measuring the interval between the shifted
|5, 5〉 peak in the effusive beam (for example, the upper
plot in Fig. 4) and the simultaneously measured F = 5
peak at zero field in the vapor cell (for example, the lower
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TABLE II: Systematic uncertainty budget for the polarizabil-
ity measurements. Uncertainties are given as relative values.

Reference frequency (δν/ν): 2 × 10−10

Hyperfine measurement (δνhf/νhf ): 0.002
Plate separation (2δd/d)): 0.027
Potential difference (2δV/V ): 0.0015
Third-order fit (δν3/ν3): 0.00050
Total: 0.028

plot in Fig. 4) as a function of electric field strength.
Applying Eq. 5, the net Stark shift of the |5, 5〉 peak,
hνs, is

hνs = −
1

2

[

α0(6d3/2) + α2(6d3/2) − α0(6p1/2)
]

ǫ2, (8)

where α0(6d3/2) is the scalar polarizability of the 6d3/2

state, α2(6d3/2) is the tensor polarizability of the 6d3/2

state, and α0(6p1/2) is the scalar polarizability of the
6p1/2 state.

Figure 6 shows hνs as a function of ǫ2. A linear fit gives
a slope of −0.2499(68)Mhz/(kV/cm)

2
or −1004(27) a3

0.
To evaluate α0(6d3/2), we use the value α0(6p1/2) −

α0(6s1/2) = 927.35(0.12) a3
0 [7] and α0(6s1/2) = 401.0 ±

0.6 a3
0 [6], where α0(6s1/2) is the scalar polarizability

of the 6s1/2 state. This yields a scalar polarizability

α0(6d3/2) = −5309 ± 69 ± 150 a3
0. Again, the first un-

certainty is statistical and the second is due to the sys-
tematics.

Table II gives an accounting of our systematic error
budget. The reference frequency uncertainty, δν/ν, arises
from the long-term drift of the 10 MHz rubidium fre-
quency standard due to aging. The hyperfine uncer-
tainty, δνhf/νhf , is the statistical uncertainty of our hy-
perfine measurement. The plate separation uncertainty,
2δd/d, is derived from physical measurements of the field
plates — this contribution dominates our overall uncer-
tainty. The potential difference uncertainty, 2δV/V , is
the combined accuracy of the voltmeter and the volt-
age divider. The third-order fitting uncertainty, δν3/ν3,
is found by examining the magnitude of the third-order
coefficient of the frequency scale fitting function. In prac-
tice, only second-order fitting functions are used for data
analysis.

III. THEORETICAL DETERMINATION OF

SCALAR AND TENSOR 6d3/2

POLARIZABILITIES

The scalar, α0, and tensor, α2, polarizabilities of Cs in
an excited state v are given by [1]

α0 = αcore +
2

3(2jv + 1)

∑

nlj

|〈v||d||nlj〉|2

Enlj − Ev
, (9)

α2 = (−1)jv

√

40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑

nlj

(−1)j

{

jv 1 j
1 jv 2

}

|〈v||d||nlj〉|2

Enlj − Ev
, (10)

where 〈i||d||j〉 is a reduced electric-dipole matrix element
and n, l, j are the principal, electronic angular momen-
tum, and total angular momentum quantum numbers of
the excited state. The Cs+ ionic core polarizability αcore

is small (15.8 a0
3) and is taken from coupled-cluster cal-

culation of Ref. [20]. The correction to the ionic core
polarizability that accounts for the presence of the re-
spective valence electron is negligible for the 6d3/2 state.
Evaluation of the remaining terms requires the knowl-
edge of the reduced electric-dipole matrix elements for
the 6d3/2 − npj and 6d3/2 − nf5/2 transitions. Our cal-
culations are carried out with the finite basis set con-
structed using B-splines [21] making the sums in Eqs. (9)
and (10) finite.

We calculate electric-dipole matrix elements up to
n = 26 using the all-order (linearized coupled-cluster)
method described in review [22] and references therein.
Our calculation of the polarizabilities and their uncer-
tainties follows recent work on Ca+ polarizabilities [13].

In the linearized coupled-cluster formalism, restricting
the expression for the all-order wave function of a mono-
valent atom in state v to single, double, and valence triple
excitations yields the following expansion [22]:

|Ψv〉 =

[

1 +
∑

ma

ρmaa†
maa +

1

2

∑

mnab

ρmnaba
†
ma†

nabaa+

+
∑

m 6=v

ρmva
†
mav +

∑

mna

ρmnvaa†
ma†

naaav +

+
1

6

∑

mnrab

ρmnrvaba
†
ma†

na†
rabaaav

]

|Ψ(0)
v 〉, (11)

where the indices m, n, and r range over all possible
virtual states while indices a and b range over all occupied

core states and |Ψ
(0)
v 〉 is the lowest-order Dirac-Fock (DF)

atomic state vector.
In order to establish the uncertainty of the matrix ele-

ments that give dominant contributions to the 6d3/2 po-
larizability, we carry out separate calculations with and
without the triple excitation term given by the last line
of Eq. (11). We refer to the results of these two ab ini-

tio calculations as single-double (SD) and single-double
partial triple (SDpT) values, respectively. We also es-
timate omitted correlation correction terms in both of
these approximations using semi-empirical scaling pro-
cedure described in detail in [13]. The resulting values
are referred to as SDsc and SDpTsc data in text and ta-
bles below. In summary, four calculations in different
all-order approximations (SD, SDpT, SDsc and SDpTsc)
were carried out for each of the 6d3/2 − 6pj , 6d3/2 − 7pj,
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TABLE III: Recommended values of the reduced electric-dipole matrix elements in a3

0. The lowest-order DF and all-order SD
and SDpT values are listed; the label “sc” indicates the scaled values. Final recommended values and their uncertainties are
given in the column labelled “Final”. The last column gives relative uncertainties of the final values in %. Absolute values are
given.

Transition DF SD SDsc SDpT SDpTsc Final Unc. (%)
6d3/2 − 4f5/2 25.582 24.399 24.615 24.619 24.522 24.615(92) 0.38%
6d3/2 − 5f5/2 9.611 3.266 3.957 4.023 3.770 3.96(19) 4.7%
6d3/2 − 6f5/2 5.237 2.612 2.895 2.969 2.870 2.895(74) 2.5%
6d3/2 − 6p1/2 2.623 4.343 4.241 4.145 4.193 4.241(97) 2.3%
6d3/2 − 6p3/2 1.337 2.147 2.092 2.052 2.075 2.092(40) 1.9%
6d3/2 − 7p1/2 19.619 17.772 17.988 18.035 17.944 17.988(48) 0.27%
6d3/2 − 7p3/2 8.863 7.969 8.073 8.096 8.053 8.073(23) 0.29%

TABLE IV: Contributions to the 6d3/2 scalar (α0) and tensor

(α2) polarizabilities of Cs in a3

0. Uncertainties are given in
parenthesis.

Contribution α0 α2

6p1/2 -58(3) 58(3)
7p1/2 -14372(76) 14372(76)
8p1/2 294(19) -294(19)
9p1/2 18(1) -18(1)
np1/2 11 -11

6p3/2 -15(1) -12
7p3/2 -3711(21) -2969(17)
8p3/2 45(3) 36(3)
9p3/2 3 2
np3/2 2 2

4f5/2 11766(88) -2353(18)
5f5/2 131(12) -26(2)
6f5/2 53(3) -11(1)
7f5/2 25(2) -5
8f5/2 14(1) -3
9f5/2 9(1) -2
nf5/2 85(5) -17(1)
Core 16
Total -5686(121) 8750(82)

6d3/2 − 8pj, 6d3/2 − 9pj, 6d3/2 − 4f5/2, 6d3/2 − 5f5/2,
and 6d3/2−6f5/2 matrix elements to establish uncertain-
ties of these values. The results for the most important
transitions are listed in Table III. Absolute values of the
reduced matrix elements in atomic units (a0e) are given,
where a0 is the Bohr radius. The lowest-order Dirac-
Fock (DF) values are also listed to demonstrate the size
of the correlation correction. SDsc values are taken as
final. The uncertainty of the final values is estimated as
a maximum of the difference between the final values and
SDpT ab initio and scaled results. Strategies to deter-
mine uncertainties of the all-order values was discussed
in detail in Ref. [13]. The relative uncertainties in per
cent are listed in the last column of Table III. We find
the size of the correlation correction to be a good indica-
tor of the accuracy of the final values. For example, the
correlation correction reduces the lowest-order value for
the 6d3/2 − 5f5/2 transition by 60%. Our final value for

this matrix element is accurate to only about 5% since
the contributions of the higher-order correlation correc-
tions are very large resulting in discrepancies between all-
order calculations in different approximations. However,
only three transitions strongly dominate both scalar and
tensor polarizabilities: 6d3/2 − 4f5/2, 6d3/2 − 7p1/2, and
6d3/2 − 7p3/2. In all of these cases, correlation is rather
small ranging from 4 to 10%. Therefore, our accuracy for
these transitions is expected to be very high. Our esti-
mated uncertainties in these matrix elements range from
0.27% to 0.38%.

We list the contributions to the 6d3/2 scalar (α0) and
tensor (α2) polarizabilities of Cs in Table IV. All data
are given in atomic units, a3

0. Uncertainties are given
in parenthesis. The larger contributions are listed in-
dividually. The rows labeled “npj” and “nf5/2” give
the remainders of the corresponding sums. For exam-
ple, row “np1/2” lists the sum of all np1/2 contributions
with n > 9. SDsc matrix elements and experimental en-
ergies [23, 24] are used for npj contributions with n < 12
and nf5/2 contributions with n < 11. SD matrix ele-
ments and energies are used for higher-n contributions
up to n > 26. The remaining terms are negligible and
are evaluated in the lowest-order DF approximation. The
uncertainties in the polarizability contributions are twice
those of the corresponding matrix elements according to
Eqs. (9) and (10). The uncertainties of the final results
are obtained by adding uncertainties of the individual
terms in quadrature.

IV. COMPARISON OF THE RESULTS

Table V compares the present experimental, present
theoretical, and past theoretical polarizability results.
Our measurements agree well with Coulomb approxima-
tion (CA) calculations [10], however the CA calculations
are not expected to be of high precision. The agree-
ment is also good with the more sophisticated relativis-
tic all-order calculations of Refs. [1, 11]. Present theo-
retical results are in agreement with Refs. [1, 11] but are
substantially more accurate. The present experimental
and theoretical values for the tensor polarizability are in
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TABLE V: Comparison of the theoretical and experimental
values for the 6d3/2 scalar and tensor polarizabilities in cesium

in a3

0. The stated experimental uncertainties are quadrature
combinations of statistics and systematics.

α0 α2

Present (Expt.) -5310(170) 8650(260)
Present (Theory) -5686(121) 8750(82)
Ref. [10] -5320 8620
Refs. [1, 11] -5680(450) 8770(360)

agreement within the experimental precision. The scalar
values differ by less than two combined experimental-
theoretical standard deviations.

We note significant cancellation of the dominant con-
tributions in the theoretical calculations which is partic-
ularly strong for the scalar polarizability. As a result,
the final uncertainty in value of the scalar polarizability
(2%) is significantly higher than the uncertainties of the
individual contributions. As an additional check of the
accuracy of our α0 result, we carry out the calculation
of the scalar polarizability using ab initio SD matrix el-
ements instead of our final scaled values; experimental
energies are still used for consistency. The resulting SD
number, −5572 a3

0, is within the estimated uncertainty of
our final result, −5686(121) a3

0. This indicates that the
strong cancellation between various terms also leads to
partial cancellation of the higher-order correlation con-
tributions. Otherwise, we would have seen much larger
differences between final and SD values. We therefore
expect the theoretical estimate of the uncertainty to be
reliable.

There is the possibility that our experimental results
are biased by the optical pumping of magnetic sublevels.
We attempt to mitigate such effects by minimizing the
residual magnetic field and by using linearly polarized
light (see Sec. II B). To test the effect of optical pumping,
we varied the laser power densities by a factor of two
and saw a statistically significant variations in neither
α0 nor α2. (The experimental results quoted in Table
V are for measurements at the lowest power densities.)
We have also measured the polarizabilities using laser
beams with crossed polarization axes rather than parallel
polarization axes. This changes the y-intercept in Fig. 6
by 1.7(7)MHz, but neither of the slopes in Figs. 5 and 6
changed. We presume the small shift in the y-intercept is
due to a population shift caused by the projection of the
magnetic sublevels onto a different bases, but the slopes
are (and should be) independent of sublevel populations
in our measurements.

The scalar polarizability is also susceptible to small
drifts of the locked laser DL1. The broad Doppler width
inherent to the vapor cell allows the position of absorp-
tion peaks to drift with DL1, but the fluorescence signal
from the effusive beam can only drift by the ±1 MHz
Doppler width of the effusive beam. The tensor polar-
izability is not susceptible to this drift because the in-
terval being measured is between two fluorescence peaks
from the effusive beam; drifts in DL1 will cause the flu-
orescence signal to decrease but will leave the frequency
interval essentially unchanged. To minimize the effect
of DL1 drifting on the scalar polarizability, we carefully
monitor the locking servo’s error signal during data col-
lection to insure that thermal fluxuations do not pull the
lock away from the center frequency.

V. CONCLUSION

We present high-precision calculations for the 6d3/2 po-
larizability of cesium. We also present the first polariz-
ability measurements for this state. Relativistic all-order
calculations produce scalar and tensor polarizabilities of
α0 = −5686(121) a3

0 and α2 = 8750(82) a3
0. These val-

ues are in agreement with measurements using hyperfine-
resolved two-photon laser-induced fluorescence from an
effusive cesium beam. The resulting empirical polariz-
abilities are α0 = −5310(170) a3

0 and α2 = 8650(260) a3
0.

Both our theoretical and experimental results agree with
previous calculations [1, 10, 11].

The experimental frequency scale is calibrated using
the absorption signal from a cesium vapor cell. Phase
modulation of the excitation laser is used to directly
reference this scale to a rubidium frequency standard.
To confirm the frequency scale accuracy, we also mea-
sure the magnetic dipole and electric quadrupole hy-
perfine coupling constants: A = 16.36(15)MHz and
B = −0.7(8)MHz. These hyperfine coupling constants
agree with previous measurements [18, 19].
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