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We analyze and review the theory of the hydrogen-deuterium isotope shift for the 1S–2S transition, which

is one of the most accurately measured isotope shifts in any atomic system, in view of a recently improved

experiment. A tabulation of all physical effects which contribute to the isotope shift is given. These include the

Dirac binding energy, quantum electrodynamic (QED) effects, including recoil corrections, and the nuclear size

effect, including the pertaining relativistic and radiative corrections. From a comparison of the theoretical result

∆fth = 670 999 566.90(66)(60) kHz (exclusive of the nonrelativistic nuclear finite-size correction) and the

experimental result ∆fexp = 670 994 334 605(15) Hz, we infer the deuteron-proton charge radius difference
˙

r2
¸

d
−

˙

r2
¸

p
= 3.82007(65) fm2 and the deuteron structure radius rstr = 1.97507(78) fm.

PACS numbers: 14.20.Dh, 13.40.-f, 31.30.jf

I. INTRODUCTION

The 1S–2S hydrogen-deuterium isotope shift is one of the

most accurately measured isotope shifts in physics. Compi-

lations of the contributing effects in the literature have been

somewhat sketchy. Since the isotope shift is a primary source

of information for the determination of the isotopic differ-

ence of the nuclear charge radii, such a compilation appears

to be useful, not the least because of recently improved ex-

periments. Our 2009 experiment [1] has recently confirmed

the experimental value for the 1S–2S isotope shift reported

in Ref. [2] and improved its accuracy by about an order of

magnitude.

From a comparison of theory and experiment, it is possible

to determine the mean square charge radius difference. Denot-

ing the mean-square nuclear charge radius as 〈r2〉, we remem-

ber that the leading order energy shift ∆ENS (for S states)

due to the nuclear size effect is given by the expression (in SI

units)

ENS = h fNS =
2

3

(

mr

me

)3
(Zα)4mec

2

n3

〈r2〉
λ2

C

δℓ0 , (1)

where n is the principal quantum number of the atomic state.

The physical quantities are denoted as usual: h is the Planck

constant, α is the fine-structure constant, and Z is the nuclear

charge number (Z = 1 for proton and deuteron),mr is the re-

duced mass of the system, me is the electron mass, mN is the

nuclear mass, c is the speed of light, and λC = ~/(me c) is the

Compton wavelength of the electron divided by a factor 2π.

Equation (1) relates the nuclear radius to the electron “size”

(its Compton wavelength) to the proton “size” (its charge ra-

dius). The Kronecker delta is nonvanishing only for S states

with orbital angular momentum ℓ = 0. The energy shift is

ENS and the corresponding frequency is fNS. Taking into ac-
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count the fact that λC ∝ m−1
e , we note that ENS is propor-

tional to m3
e, which provides the basis for an accurate deter-

mination of the nuclear charge radius using muonic atoms [3],

where me is replaced by mµ.

For reference purposes, we note that the proton radius is

defined as follows,

〈r2〉p = 6~
2 ∂GE

∂q2

∣

∣

∣

∣

q2=0

, (2)

whereGE is the electric Sachs form factor of the proton, with

radiative corrections [4–9] being subtracted.

For the isotope shift exclusive of the main nuclear

size effect, the following theoretical result has been

given in Eq. (8) of Ref. [2], which reads ∆fth =
670 999 568.6(1.5)(1.5) kHz. Here, the first uncertainty

comes from the electron-proton mass ratio and the second

is the theoretical uncertainty. In general, we here denote all

physical quantities related to the hydrogen-deuterium isotope

shift with a ∆, whereas contributions to the energy shifts of

individual atomic energy levels are denoted without this pre-

fix. In Eq. (399) of the extensive review article [10], we find

the result ∆fth = 670 999 568.9(1.5)(0.8) kHz, where the

first uncertainty is from the electron-proton mass ratio and the

second is from a theoretical uncertainty due to uncalculated

higher-order terms. It is stated in Sec. 16.1.6 of Ref. [10] that

the theoretical uncertainty of the isotope shift is mainly deter-

mined by the unknown single logarithmic and nonlogarithmic

contributions of order (Zα)7 (m/M) and α(Zα)6 (m/M),
and also by the uncertainties of the deuteron size and structure

contributions. The overall theoretical uncertainty of all contri-

butions to the isotope shift, exclusive of the leading proton and

deuteron size corrections, is quoted as 0.8 kHz.

Here, we reanalyze the effect in the light of the most recent

theoretical developments, and we also present a compilation

of all contributing physical effects. Including a rather conser-

vative estimate for the multiphoton exchange contribution to

the nuclear polarization effect for the isotope shift, our theo-

retical result reads

∆fth = 670 999 566.90(66)(60) kHz . (3)
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The first uncertainty is due to (recently improved) values of

the electron to proton and electron to neutron mass ratios [11].

The new values for these mass ratios are also the primary rea-

son why the theoretical value given in Eq. (3) is slightly differ-

ent from those used in Ref. [2] and in Sec. 16.1.6 of Ref. [10].

The difference ∆fexp − ∆fth is due to the nuclear size

effect given in Eq. (1) and allows for a determination of

the nuclear charge radius difference 〈r2〉d − 〈r2〉p based on

atomic physics experiments, as detailed below. From scatter-

ing experiments, on the other hand, one may determine nu-

clear physics values for the charge radii. Based on a care-

ful analysis of the world scattering data, the deuteron root

mean square (rms) charge radius rd =
√

〈r2〉d has been ob-

tained in Ref. [12] as rd = 2.130(9) fm, where we have added

the statistical and systematic uncertainties given in Ref. [12]

quadratically. This value is in good agreement with the rec-

ommended value derived from the 2006 CODATA adjustment

of the fundamental constants,

rd = 2.1402(28) fm (Refs. [11, 13]) . (4)

As explained in Ref. [13], this value of the deuteron charge

radius is mostly based on a theoretical analysis of the most

accurately measured transition frequencies in hydrogen and

deuterium.

An analysis of the world scattering data for the proton leads

to a value of rp = 0.895(18) fm (Refs. [14–16]), which is in

good agreement with the recommended value derived from

the 2006 CODATA adjustment of the fundamental constants,

rp = 0.8768(69) fm (Refs. [11, 13]) . (5)

The most recent value from electron scattering [17] reads rp =
0.879(8) fm, where we quadratically add the statistical and

systematic uncertainties given in Ref. [17]. The recent Lamb

shift measurement in muonic hydrogen, however, leads to a

value of

rp = 0.84184(67) fm (Ref. [3]) , (6)

which is in disagreement with the two above mentioned values

from electron scattering values and with the 2006 CODATA

value. The difference of the CODATA mean-square radii of

deuteron and proton reads

〈r2〉d − 〈r2〉p = 3.812(17) fm2 [Eqs. (4) and (5)] . (7)

By contrast, the difference of the CODATA deuteron ra-

dius (4) and the muonic hydrogen proton radius (6) is 〈r2〉d −
〈r2〉p = 3.872(12) fm2. One of the motivations for the cur-

rent study is to verify if the difference of the CODATA charge

radii of deuteron and proton is compatible with the measure-

ment of the isotope shift. Another motivation is to fill a gap

in the literature: the theory of the isotope shift has never been

discussed in great detail, and a dedicated compilation of all

effects that contribute to the shift is missing up to now.

A particular remark should be made. The 1997 isotope

shift measurement [2] is used as an input datum for the CO-

DATA analysis [11], and one may thus wonder to which ex-

tent the measurement of the isotope shift and the concomi-

tant determination of the deuteron-proton mean-square radius

difference is independent from the CODATA values of the

mean-square radii of the individual nuclei. In the last two

rows of Table XLV of Ref. [11], it is clarified that a sepa-

rate comparison of transition frequencies in both hydrogen

and deuterium to theory (without using the isotope shift as

an input datum) leads to the values rp = 0.8802(80) fm and

rd = 2.1286(93) fm, which are both in excellent agreement

with the CODATA values given in Eqs. (4) and (5).

In order to address the current situation, we here discuss the

theory of the isotope shift in detail. Calculations will be pre-

sented together with some information that is not readily ac-

cessible from the original literature references. Following our

general outline, we first describe the advances in the experi-

ment which have led to the recent improvements in the mea-

surement of the isotope shift, before summarizing the current

status of the theory of the isotope shift in Sec. III, describing

all contributions. The nuclear charge radius difference of pro-

ton and deuteron is evaluated in Sec. IV, based on the isotope

shift. Finally, conclusions are drawn in Sec. V.

II. MEASUREMENT OF THE ISOTOPE SHIFT

The 1S–2S hydrogen-deuterium isotope shift was remea-

sured in the period from March 2009 to January 2010 by

means of Doppler-free two-photon spectroscopy on a thermal

atomic beam [1]. Here, we briefly discuss the main improve-

ments of the measurement relative to the previous experiment

conducted in 1997 (Ref. [2]).

The tenfold reduction of the uncertainty of the frequency

difference fD
1S−2S − fH

1S−2S in the 2010 measurement com-

pared to the measurement in 1997 results from three factors:

(i) implementation of a new all-solid-state ultra-stable laser

system, (ii) implementation of an optical frequency measure-

ment based on an Er-doped fiber frequency comb which al-

lows higher data rates, and (iii) availability of more accu-

rate input data for the determination of the hyperfine centroid

frequency from the measured transition frequency which in-

volves specific hyperfine components.

These improvements will now be discussed. To this end,

let us first review a few basic principles of the isotope shift

measurement by optical frequency comparison. Namely, in

order to measure the difference of the 1S–2S transition fre-

quencies in deuterium and hydrogen, we excite the hyperfine

transitions F = 3
2 → 3

2 , mF = ± 3
2 → ± 3

2 in deuterium

(D) and F = 1 → 1, mF = ±1 → ±1 in hydrogen (H)

and denote the isotope shift of the measured hyperfine struc-

ture (HFS) components as ∆fDH. The choice is determined

by their low sensitivity to conceivable stray magnetic fields

because of their nearly equal Landé g-factors (the 1S and the

2S Landé g factors differ only by relativistic corrections of

order α2). The isotope shift of the 1S – 2S hyperfine centroid

is given by the difference of the transition frequencies

∆fexp = fD
1S−2S − fH

1S−2S − ∆fHFS ≡ ∆fDH − ∆fHFS ,
(8a)

where ∆fDH = fD
1S−2S −fH

1S−2S, and the hyperfine subcom-
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FIG. 1: Schematic of the excitation region. For the characterization

of the dc Stark shift, the Faraday cage is replaced by a plane capacitor

with the electric field oriented along one of the three axes (see also

Fig. 3). PMT denotes a photomultiplier tube.

ponents are

fD
1S−2S ≡fD

1S−2S

(

F = 3
2 → 3

2 ,mF = ± 3
2 → ± 3

2

)

, (8b)

fH
1S−2S ≡fH

1S−2S (F = 1 → 1 ,mF = ±1 → ±1) . (8c)

We thus have to determine the hyperfine correction ∆fHFS to

high accuracy. The optical measurements of the 2S hyperfine

intervals in H and D [18, 19] together with the radio-frequency

measurements of the ground state splitting [20, 21] give a re-

sult of ∆fHFS = 215 225 596.5(2.9) Hz. This is a factor of

4.5 more accurate than the value used in [2] due to the im-

proved 2S interval frequencies as reported in Refs. [18, 19].

The general experimental setup is given in Fig. 1 and fol-

lows the principle of time-resolved two-photon spectroscopy

laid out in Ref. [22]: A 160 Hz light chopper with a 50%

duty cycle is installed before the 243 nm enhancement cav-

ity used for the time-of-flight measurements. After blocking

the light, well defined delay times τ = 10, 210, . . . , 2210µs

are implemented before the start of the detection of 2S atoms

along the atomic beam line. The fastest 2S atoms escape, and

the slowest atoms are selected from the initial distribution.

Lines recorded at higher delays τ exhibit a smaller 2nd order

Doppler effect as well as reduced time-of-flight broadening at

the expense of lesser count rates since there are fewer atoms.

In order to introduce the delay, we use a multichannel scaler

which simultaneously records 12 delayed lines [23].

Each measurement day started from one of the two ran-

domly chosen isotopes, for which we recorded up to 100 1S–

2S spectra during less than four hours. Then we readjusted

the system for the other isotope and measured it in a simi-

lar way. The overall measurement time was restricted by the

saturation of the cryogenic pump (see Fig. 1). Compared to

the 1997 measurement, we replaced the one-directional scan

over the 1S–2S transition by changing the laser frequency in

a random order around the transition center. This reduces con-

ceivable systematic effects (e.g., due to a slow change in the

atomic flow as a function of time). At each laser frequency,

we alternate between two power levels differing by typically

a factor of two. Thus, we simultaneously record two 1S–2S

TABLE I: Results of the 1S-2S hydrogen-deuterium frequency mea-

surements (f1997
exp , f2010

exp ) and uncertainty budgets (σ1997
exp , σ2010

exp ) for

the 1997 (Ref. [2]) and 2010 (Ref. [1]) measurements, respectively.

Contributions neglected in the 1997 measurement are denoted by

dashes. The frequency ∆fDH is the HFS subcomponent defined in

Eq. (8).

Contribution f1997
exp σ1997

exp f2010
exp σ2010

exp

[Hz] [Hz] [Hz] [Hz]

∆fDH − 671 209 560 kHz 225 ≃ 150 203.1 5.1

∆fHFS − 215 225 000 Hz 585 14 596.5 2.9

ac Stark shift — — 0 1

dc Stark shift — — 0 5

2nd order Doppler 0 20 0 6

density effects — — 0 11

∆fexp − 670 994 334 000 Hz 640 150 606 15

lines taken at different intensities, but otherwise similar con-

ditions. This allows for a more accurate correction of the ac

Stark shift as compared to the 1997 measurement.

The diode laser setup mainly used in the experiment [1] is

schematically depicted in Fig. 2. We used an extended cavity

diode laser (ECDL) at 972 nm with a 24 cm long resonator

in Littrow configuration with an intra-cavity electro-optical

modulator (EOM). The laser is locked to a high-finesse ul-

tra low expansion glass (ULE) cavity in vertical configuration

maintained at the critical temperature at which the sensitiv-

ity of the cavity length to temperature fluctuations is minimal

[24]. Locking to the cavity provides a spectrally narrow laser

carrier (0.5 Hz) with a nearly linear frequency drift of only

+50 mHzs−1. This feature significantly simplifies the mea-

surement of the instant laser frequency by a frequency comb.

EOM
grating

se
rv

o
lo

o
p

972 nm

reference
cavity

photo-
diode

photo-
diode

l/4TA

frequency
comb

K&K continuous
counter

frequency
control

intensity
control

AOM 1

AOM 2

fa
st

sl
o

w

24 cm long ECDL1

LD

2

2

optical fiber

H/D
spectroscopy

243 nm

FIG. 2: Schematic of the long cavity laser system used for both iso-

topes. ECDL – extended cavity diode laser, LD – laser diode, EOM

– electro-optical modulator, TA – tapered amplifier, AOM – acousto-

optic modulator.

In order to measure the frequency of the spectroscopy light,

we us a 250 MHz repetition rate Er-doped fiber frequency

comb. Beating part of the light sent to the reference cavity

with the comb disentangles the spectroscopic routine (scan-
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FIG. 3: Characterization of the stray fields in the excitation region by

help of an auxiliary electric field ±Eaux applied by a plane capacitor

field along one of the axes x, y, and z. Measuring the transition fre-

quency for an auxiliary field ±Eaux and zero auxiliary field, we can

fit a three-parameter parabola to the data. The deviation of the center

of the parabola from the point recorded at zero auxiliary field then is

a measure of the dc Stark shift due to stray fields. The probing of the

stray fields along the x axis in our experimental setup is illustrated at

the right part of the figure.

ning of the AOM and recording 1S-2S spectra) from the fre-

quency measurement of the laser. In this case, the frequency

measurement can be done with continuous counters (we use

Klische+Kramer FX-80), and their frequency readings are

separately saved together with time marks. Due to the very

low drift of the ULE cavity, the time synchronization of coun-

ters and the laser frequency scanning only has to be accurate

on the order of a second. Such an approach typically allows

to accumulate twice as much frequency data compared to pre-

vious measurements, e.g., Ref. [25], and to define the instant

laser frequency with less uncertainty.

As a frequency reference for the frequency comb, we use

an active, GPS referenced hydrogen maser. The required frac-

tional inaccuracy of the frequency reference is of the order

of 10−11, but should be very stable during the comparison of

the isotopes (with a fractional instability of 10−15). Indeed,

the isotope shift is the difference of two big numbers fD
1S−2S

and fH
1S−2S , each of the order of 1015 Hz. According to its

specification, the maser has a frequency instability lower than

2× 10−15. The measurements of both isotopes should thus be

done within one day. The GPS calibration, in turn, provides a

frequency inaccuracy of 5 × 10−15 which is not limiting.

Systematic effects have been discussed in Ref. [1]. Of par-

ticular importance is the estimate of the dc Stark effect due to

conceivable stray fields. For fields along the x axis, the pro-

cedure for estimating the stray fields is illustrated in Fig. 3.

Based on this estimate, we set an upper limit of |Estray| <
6 mV/cm for stray fields along the axis. Repeating the mea-

surement for all three axes and converting the stray field

to a dc Stark frequncy shift, we can finally set a limit of

∆fstray < 1 Hz for the excitation volume restricted by two

diaphragms (Fig. 1). However, we cannot probe the region

between the nozzle and the front diaphragm. Therefore, we

conservatively assume the strength of a possible stray electric

field there to be smaller than 100 mV/cm. For delay 1410µs

this corresponds to a line shift of 5 Hz which we take as an

uncertainty contributed by stray electric fields.

Due to irradiation with the 243 nm light, there is an ac Stark

shift of the 1S–2S transition whose theoretical evaluation has

been discussed in Refs. [22, 26]. A difference between the

isotopes can be caused only by errors in the power calibra-

tion, since the differential ac Stark shift for the 1S–2S tran-

sitions in H and D is negligible at our level of accuracy (it

is caused mainly by the difference in the reduced masses of

the two isotopes). We thus fit transition frequencies recorded

at different powers by two lines with the same slope and add

a 1 Hz uncertainty caused by non-linearity of our power cal-

ibration. Estimating the 2nd order Doppler shift at a typical

delay of 1410µs as described in Ref. [1] and adding an 11 Hz
uncertainty due to a possible isotope dependent pressure shift

(the basis for this estimate has also been discussed in [1]), we

finally obtain our uncertainty budget as given in Table I and

the 1S–2S isotope shift as

∆fexp = 670 994 334 605(15)Hz , (9)

which is a tenfold improvement over the 1997 result [2].

III. THEORY OF THE ISOTOPE SHIFT

A. Classification of Corrections

The hydrogen-deuterium isotope shift of the hyperfine cen-

troid of the 1S–2S transition, either measured experimentally

or calculated theoretically, is denoted as

∆Eiso = E(2S − 1S)|D − E(2S − 1S)|H = h∆fiso .
(10)

This is a positive quantity in the chosen convention (“deu-

terium minus hydrogen”), because deuterium has a larger

mass, and the reduced mass of the atomic deuterium system is

slightly larger. Consequently, the 1S–2S transition frequency

is slightly larger in deuterium than in hydrogen. The experi-

mental result ∆fexp for the isotope shift frequency ∆fiso is

given in Eq. (9). The theoretical expression for ∆fiso is the

sum of ∆fth given in Eq. (3) and of the mean nuclear-size

effect ∆fNS, which corresponds to Eq. (1), evaluated for the

isotope difference. As detailed below, the evaluation of ∆fth
can be broken down as follows,

∆fth = ∆fi + ∆fii + ∆fiii , (11)

where the three frequencies ∆fi, ∆fii and ∆fiii correspond to

different sets of physical effects.

For an individual atomic level, the frequency fNS corre-

sponding to the finite-size effect given in Eq. (1) is positive.

However, when evaluated for the isotope shift, the quantity

∆fNS given by

∆fNS = fNS(2S − 1S)|D − fNS(2S − 1S)|H (12)

is negative. Indeed, the finite-size effect shifts energy levels

upward by a shift proportional to 1/n3. This upward shift

of the lower level (ground state) involved in the transition

decreases the 1S–2S frequency in deuterium and therefore

leads to a negative contribution to the isotope shift defined

in Eq. (10).
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The following physical effects contribute to the iso-

tope shift: Set (i). Difference in the Dirac energy and

Barker-Glover [27] corrections. This difference depends on

the electron-to-proton and electron-to-deuteron mass ratios.

Set (ii). Difference in the Lamb shifts, and difference in the

radiative-recoil corrections which directly depend on the elec-

tron to nuclear mass ratio. Approximately, this ratio is 1/2000
for hydrogen, but 1/4000 for deuterium. Set (iii). Higher-

order corrections to the nuclear size effect (third Zemach mo-

ment of the nuclear charge distribution, relativistic correc-

tions, and self-energy and vacuum-polarization corrections

to the finite-size effect). These effects depend on the mean

square charge radii difference, but their absolute magnitude is

small enough so that they can be evaluated to sufficient accu-

racy based on existing data for the charge radii. Set (iv). Dif-

ference in the main, leading, nonrelativistic nuclear-size effect

as given in Eq. (12). Currrently, the most powerful way of an-

alyzing the experiment lies in first evaluating corrections (i),

(ii), and (iii), and then using the results in order to obtain the

difference in the mean square charge radii.

B. Fundamental Constants

Let us briefly discuss the physical constants, mass ratios

and the corresponding uncertainties that are useful for the

analysis of the isotope shift. According to Ref. [11], the

electron-proton mass ratio is

me

mp
= 5.446 170 217 7(24)× 10−4 , (13)

with a relative uncertainty of 4.3 × 10−10. The electron-

deuteron mass ratio is

me

md
= 2.724 437 109 3(12)× 10−4 , (14)

with a relative uncertainty of 4.2× 10−10. We also record the

deuteron-proton mass ratio,

md

mp
= 1.999 007 501 08(22) . (15)

Its relative uncertainty is 2.0 × 10−10. For the fine-structure

constant, we use the value from Ref. [28], which reads

α−1 = 137.035 999 084(51) , (16)

with a relative uncertainty of 6.9 × 10−10. This value is con-

sistent with the latest photon recoil measurement reported in

Ref. [29]. The Rydberg constant, expressed in frequency units,

is

R∞ c = 3.289 841 960 361(22)× 1015 Hz . (17)

Of these input data, only the Rydberg constant has sufficient

relative accuracy [6.6 × 10−12] to match the experimental re-

sult given in Eq. (9). Fortunately, the Rydberg constant can be

factored out in the theoretical calculations [see Eq. (19) be-

low]. The value of the 1S–2S transition is roughly given as

f1S−2S ≈ 3

4
R∞

mr

me
. (18)

Here, mr/me = 1/(1 + rN ) is the ratio of the reduced mass

of the system to the electron mass (rN = me/mN is the

electron-nucleus mass ratio). A simple Taylor expansion in

powers of rN reveals that the shift ∆f1S−2S,N of the f1S−2S

transition frequency due to reduced-mass effect can be ex-

pressed roughly as

∆f1S−2S,N ≈ −3

4
R∞ rN . (19)

Consequently, the uncertainty δf1S−2S due to the mass ratios

is

δfiso,N =
3

4
R∞





√

[

δ

(

me

md

)]2

+

[

δ

(

me

mp

)]2




= 662.0 Hz , (20)

for the isotope shift defined in Eq. (10). One may express the

reduced mass correction in terms of other mass ratios involved

in the experiment (like the proton to deuteron mass ratio), but

the final uncertainty is invariant. While Eq. (19) is not suffi-

ciently precise in order to predict the reduced mass correction

to the full isotope shift, it can nevertheless be used in order

to estimate the uncertainty of the final result due to the uncer-

tainty in the mass ratios. In general, the theoretical uncertainty

in the isotope shift due to the mass ratios exceeds the experi-

mental uncertainty recorded in Eq. (10) by a factor of 60.

One might question whether it is permissible to use a value

of the Rydberg constant which is derived using the experi-

mental value of the hydrogen 1S–2S frequency, as input for

the theoretical analysis of the 1S–2S hydrogen-deuterium iso-

tope shift. However, this question may easily be addressed.

Namely, for our theoretical analysis we need the Rydberg con-

stant only up to an accuracy of about 10−10 in order to match

the accuracy given for our theoretical value in Eq. (3). At this

level of accuracy, we may refer to a completely independent

determination of the Rydberg constant [30] via high-precision

spectroscopy of Rydberg states of hydrogen, in agreement

with Eq. (17), where a value of the Rydberg constant of rela-

tive accuracy 2.0× 10−11 is obtained without any recourse to

the 1S–2S frequency.

C. Evaluation of the Corrections

Set (i). We first investigate the Dirac theory contribution to

the isotope shift. (for the classification of the corrections, see

Sec. III A). According to Dirac theory, the energy level of a

two-particle system consisting of an infinitely heavy nucleus

and an orbiting electron of mass me, with the rest mass sub-
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tracted, is given as

E = mec
2[f(n, j) − 1] = mec

2

[

1
√

1 + ǫ(n, j)
− 1

]

,

ǫ(n, j) =
(Zα)2

(

n− j − 1
2 +

√

(

j + 1
2

)2 − (Zα)2
)2 . (21)

Let us now define

g(ǫ) ≡ 1√
1 + ǫ

− 1 = − ǫ√
1 + ǫ (1 +

√
1 + ǫ)

. (22)

Excluding Lamb shift and hyperfine effects, but including re-

duced mass corrections, the bound state energy of the two-

body Coulomb system is given by [31]

Enj = mr [f(n, j) − 1] − m2
r

2(me +mN )
[f(n, j) − 1]

2

= mec
2

{

1

1 + rN
g(ǫ(n, j)) − rN

2(1 + rN )3
[g(ǫ(n, j))]

2

}

,

(23)

where rN again denotes the electron-to-nucleus mass ratio.

This formula leaves the (n, j) degeneracy of the levels intact.

The representation on the right-hand side of Eq. (23) has the

additional advantage that the Rydberg constant can easily be

factored out. Indeed, the frequency corresponding to Enj is

fnj =
2Enj

α2mec2
R∞c . (24)

The analytic cancellation of the α2mec
2 factor in the first ratio

(in curly brackets) is immediate if we consider the definition

of g(ǫ) given in Eq. (22). The Barker–Glover corrections [27]

follow from the two-body Breit Hamiltonian,

EBG =
(Zα)4m3

r

2n3m2
N

(

1

j + 1/2
− 1

ℓ+ 1/2

)

(1 − δℓ0) , (25)

but they vanish for S states. The term proportional to δℓ0 in

Eq. (25) is the Darwin–Foldy (DF) term,

EDF = − (Zα)4m3
rc

2

2n3m2
N

(

1

j + 1/2
− 1

ℓ+ 1/2

)

δℓ0

=
(Zα)4m3

rc
2

2n3m2
N

δℓ0

=
2

3

(

mr

me

)3
(Zα)4mec

2

n3 λ2
C

(

3~
2

4m2
Nc

2

)

δℓ0 , (26)

which is due to the zitterbewegung term of the nucleus [32]. A

comparison of Eq. (26) and (1) reveals that the Darwin-Foldy

correction can be compensated by an addition to the mean-

square nuclear charge radius according to

〈r2〉 → 〈r2〉 +
3~

2

4m2
Nc

2
. (27)

In Ref. [33], the authors advocate to change the conventions

for the proton charge radius such as to include that Darwin-

Foldy term into 〈r2〉p. This convention is not followed here,

and it also is not used in Refs. [2, 11].

For non-S states, the Barker–Glover corrections lead to a

numerically small violation of the (n, j) degeneracy. For hy-

drogen and deuterium S states, using the input data for the

mass ratios given in Sec. III B, we obtain

∆fi = 671 004 071.29(66) kHz (28)

for the Dirac contributions to the isotope shift, where the sub-

script i is inspired by the identification of the corrections in

Sec. III A. The uncertainty of 0.66 kHz is due to the mass ra-

tios given in Eqs. (13) and (14); the uncertainty induced by the

fine-structure constant is negligible because we are expressing

all quantities in terms of the Rydberg constant.

Set (ii). We now turn to set (ii) of the correction accord-

ing to the classification presented in Sec. III A. These are

Lamb shift contributions to the isotope shift. The relevant re-

sults are as follows. For the isotope shift due to the one-loop

self-energy and vacuum polarization [see Eqs. (19)—(26) of

Ref. [11]], we obtain

∆ν1 = −5558.99 kHz . (29)

The isotope shift due to two-loop self-energy and vac-

uum polarization, and combined effects reads according to

Eqs. (29)—(46) of Ref. [11],

∆ν2 = −0.51 kHz . (30)

Due to three-loop self-energy and vacuum polarization, and

combined effects we calculate according to Eqs. (47)—(49)

of Ref. [11],

∆ν3 = −0.001 kHz . (31)

Isotope shift effects due to the Salpeter recoil correction [34]

given in Eqs. (11) and (12) of Ref. [11] sum up to

∆ν4 = 1032.65 kHz . (32)

The isotope shift due to the higher-order pure recoil terms

[Eq. (13) of Ref. [11]] is given as

∆ν5 = −3.41(32) kHz . (33)

The uncertainty estimate is due to an unknown higher-order

pure recoil term of order (Zα)7 ln(Zα) (me/mN),

δE5 = (Zα)7 ln[(Zα)−2]
m3

r

m2
e mN

mec
2

n3
, (34)

for which we assume a unit prefactor. This estimate of the

prefactor seems reasonable on the basis of the trend of the

coefficients of lower order for the recoil effect.

Radiative-recoil terms [see Eqs. (11)—(16) of Ref. [11]]

contribute

∆ν6 = −5.38(11) kHz . (35)
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Here, the uncertainty estimate is due to an unknown radiative-

recoil term of order

δE6 =
α

π
(Zα)6 ln[(Zα)−2]

m3
r

m2
e mN

mec
2

n3
, (36)

for which we again assume a unit prefactor.

Note that the theoretical result for ∆ν6 is valid provided

the following result for the radiative recoil correction E6 to

the energy levels is used:

E6 =
m3

r

m2
emN

α(Zα)5

π2 n3
mec

2δℓ0

[

6 ζ(3) − 2 π2 ln 2

+
35 π2

36
− 448

27
+

2

3
π(Zα) ln2 (Zα)−2 + · · ·

]

. (37)

The nonlogarithmic contribution is the sum of two results;

the first is obtained in Refs. [35, 36] for the electron-

line contribution, and the second is obtained in Ref. [37]

for the the vacuum-polarization term. The result listed here

in Eq. (37) agrees with the numerical value given first in

Ref. [38] for the entire set of radiative recoil correction of

order α(Zα)5(me/mN ) (sum of electron line and vacuum

polarization). The logarithmic contribution in Eq. (37) is ob-

tained in Refs. [39, 40]. The radiative recoil correction of or-

der α(Zα)5(me/mN) has been the subject of rather intensive

investigations [41–43], before agreement was reached with re-

spect to the numerical value of the correction.

The nuclear self-energy given in Eq. (57) of Ref. [11] leads

to a contribution of

∆ν7 = 2.98(10) kHz . (38)

Due to muonic and hadronic vacuum polarization, [Eqs. (27)

and (28) of Ref. [11]], a tiny contribution of

∆ν8 = 0.006 kHz (39)

is obtained. According to Eqs. (17) and (18) of Ref. [11], the

isotope shift due to nuclear polarizability reads

∆ν9 = 18.64(2) kHz . (40)

This value is based on the theoretical calculations of

Refs. [44–47]. In view of the absence of the zitterbewegung

term for spin-1 nuclei [e.g., the deuteron, see Ref. [48]], we

have an additional contribution to the bound-state energy for

deuterium energy levels, which for S states reads

∆E = −1

2

(

mr

mN

)2
(Zα)4mrc

2

n3
δℓ0 . (41)

This term is the negative of the Darwin-Foldy correction given

in Eq. (26), as it is absent for deuterium energy levels. The

corresponding contribution to the isotope shift,

∆ν10 = 11.37 kHz , (42)

is not listed explicitly in Ref. [11] as a nuclear-spin dependent

contribution to the Lamb shift.

This situation necessitates a few remarks. In Ref. [11], the

full Barker-Glover correction, as given in Eq. (25), is included

in the atomic level energies, irrespective of the nuclear spin

[i.e., even for deuterium, see Eq. (10) of Ref. [11]]. Still, the

absence of the Darwin-Foldy term for deuterium is consis-

tently taken into account in Ref. [11]. Namely, in an earlier pa-

per on CODATA adjustments—see Appendix A8 of Ref. [49],

in the text surrounding Eq. (A56)—it is stated that the Darwin-

Foldy correction has to be added to the mean-square deuteron

radius after all Lamb shift effects have been taken into ac-

count. This addition compensates the inclusion of the Darwin-

Foldy correction into the deuterium atomic energy levels [50].

The proton and deuteron charge radii given in Ref. [11] corre-

spond to the conventions used here and in Ref. [2].

In order to account for a conceivable anomalously large

contribution of multiphoton exchange diagrams to the nuclear

polarization effect [51], and in order to accommodate a con-

ceivable large nonlogarithmic part due to the Dirac form factor

of the proton we here add an extra uncertainty of

δν11 = 0.5 kHz , (43)

which replaces the sum of the uncertainty estimates for ∆ν7
and ∆ν9 given above in Eq. (38) and (40). Nevertheless, we

cite the uncertainties given in Ref. [11] for the given effects in

order to directly relate the discussion to that given in the cited

Ref. [11] in a directly reproducible way. The complete result

then is

∆fii =
10
∑

i=1

∆νi + δν11 = −4502.66(60) kHz , (44)

where we have added the uncertainties quadratically. This

concludes our evaluation of the corrections given by set (ii)

according to the classification in Sec. III A.

Set (iii). We now turn to set (iii), which are higher or-

der nuclear size corrections to the isotope shift. The general

paradigm is as follows. One separates the nuclear size correc-

tion to the hydrogen and deuterium energy levels into a main

effect, which is given in Eq. (1) and is directly proportional to

the mean square charge radius difference. Higher-order cor-

rections to this effect involve higher powers of Zα than four

and depend on other details of the nuclear charge distribu-

tion like the third Zemach moment [52–54], in addition to the

mean square charge radius. Numerically, the higher order cor-

rections are sufficiently small so that they can be evaluated

separately and their uncertainty does not affect the final result

for the mean square charge radius difference at the current

level of accuracy.

The nuclear finite-size effect is the sum of the following

terms: (a) main nonrelativistic effect, (b) third Zemach mo-

ment, (c) relativistic corrections, (d) self-energy corrections

to the finite-size effect, and (e) vacuum-polarization correc-

tions to the finite-size effect. As already explained, the first

of the indicated effects (the main nonrelativistic nuclear size

correction) is already given in Eq. (1) and forms the single en-

try of set (iv). A very concise discussion of these corrections,

together with a list of helpful literature references, is given in

Secs. IV.A.h and IV.a.i of Ref. [11].
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The third Zemach moment correction can be expressed as

ENS,(b) = ENS

(

−1

2
(Zα)

mr

me

〈r3〉(2)
λC 〈r2〉

)

= ENS

(

−Cη (Zα)
mr

me

√

〈r2〉
λC

)

, (45)

where the third Zemach moment 〈r3〉(2) is defined in

Refs. [52, 53], and λC is the Compton wavelength of the elec-

tron divided by 2π. The parameter

Cη ≡ 1

2

〈r3〉(2)
〈r2〉3/2

(46)

has been introduced in Eq. (52) of Ref. [11], in order to ex-

press the third Zemach moment as a multiplicative correc-

tion to the mean square charge radius. The value of Cη de-

pends on the shape of the nuclear charge distribution. The deu-

terium value Cη = 2.0(1) for the parameter Cη is taken from

Ref. [11]. For hydrogen, we also use the value Cη = 2.0(1).
This value is consistent with the model-independent determi-

nation of the third Zemach moment based on world scattering

data, as described in Ref. [52], and also with the reanalysis of

the third Zemach moment recently performed in Ref. [54].

According to Ref. [53] and Eq. (52) of Ref. [11], relativistic

corrections can be summarized as

ENS,(c) = − ENS (Zα)2

[

ln

(

mr

me

√

〈r2〉
λC

Zα

n

)

+ψ(n) + γE − (5n+ 9) (n− 1)

4n2
− Cθ

]

. (47)

Here, according to Ref. [11], the hydrogen value reads Cθ =
0.47(4) and the deuterium value is Cθ = 0.38(4). The self-

energy contribution to the nuclear finite-size correction is

ENS,(d) = α(Zα)ENS

(

4 ln(2) − 23

4

)

δℓ0 . (48)

Finally, according to Eq. (55) of Ref. [11], the vacuum-

polarization contribution to the nuclear finite-size correction

is an order-α correction to the main nonrelativistic finite-

nuclear-size energy ENS,

ENS,(e) =
3

4
α(Zα)ENS δℓ0. (49)

AddingENS,(b)+ENS,(c)+ENS,(d)+ENS,(e) and calculating

their contribution to the isotope shift, we find

∆fiii = −1.73 kHz , (50)

with an uncertainty below 0.01 kHz.ENS,(a) is the leading or-

der nuclear size effect which directly leads to the mean square

charge radius difference [see Eq. (1)].

IV. NUCLEAR RADIUS DIFFERENCE

Adding the results reported in Eqs. (28), (44) and (50), we

obtain the total theoretical result for the sets of contributions

i+ii+iii,

∆fth = ∆fi + ∆fii + ∆fiii = 670 999 566.90(66)(60) kHz ,
(51)

where the first uncertainty is due to the mass ratios and the

second uncertainty is due to nuclear polarization and higher

order QED effects. The combined uncertainty is 0.89 kHz. Fi-

nally, we arrive at the main nuclear size correction [Set (iv)],

which corresponds to the frequency given in Eq. (1),

fiv = fNS =
2

3

(

mr

me

)3
(Zα)4mec

2

hn3

〈

r2
〉

λ2
C

. (52)

The isotope shift frequency corresponding to fNS is ∆fNS, as

given in Eq. (12). Now, if we evaluate fNS using the charge

radii given in Ref. [11] add all contributions to the isotope

shift, we obtain fi+ii+iii+iv = 670 994 346(23) kHz which is

in agreement with the experimental result (9) but much less

precise. On the other hand, if we subtract the theoretical result

for fth given in Eq. (51) from the experimental result (3), we

obtain

∆fNS = −5232.29(89) kHz (53)

for the contribution to the isotope shift due to the main nuclear

size effect. Solving for the mean square charge radii difference

with the help of Eq. (52), we obtain
〈

r2
〉

d
−
〈

r2
〉

p
= 3.82007(65) fm2 . (54)

This is more accurate than the corresponding result
〈

r2
〉

d
−

〈

r2
〉

p
= 3.8212(15) fm2 given in Ref. [2] and also more ac-

curate than the result
〈

r2
〉

d
−
〈

r2
〉

p
= 3.8213(12) fm2 given

in Sec. 16.1.6 of Ref. [10] (where for the latter result, we have

added the individual uncertainties given in Ref. [10] quadrati-

cally).

Our value for the deuteron structure radius defined accord-

ing to Eq. (11) of Ref. [2] is

〈

r2
〉

str
=
〈

r2
〉

d
−
〈

r2
〉

n
−
〈

r2
〉

p
− 3~

2

4m2
p c

2
, (55a)

rstr = 1.97507(78) fm , (55b)

where
〈

r2
〉

n
= −0.114(3) fm2 is the neutron charge ra-

dius [55, 56]. The last term on the right-hand side of Eq. (55a)

corresponds to the Darwin-Foldy correction for the proton.

The connection of the Darwin-Foldy correction to atomic en-

ergy levels, and of the Darwin-Foldy term in the nuclear ra-

dius, is explained in Eqs. (26) and (27).

V. CONCLUSIONS

In this paper, we have discussed the essential improvements

which have led to an increase in the accuracy of the 1S–2S
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isotope shift frequency of the latest measurement [1] as com-

pared to the 1997 measurement [2] (see Sec. II). Contribu-

tions to the theoretical expression for the isotope shift have

been listed in Sec. III. A detailed listing of the corrections

which contribute at the current level of accuracy is impor-

tant as it enables theorists and experimentalsts to compare the

proton-deuteron radius difference derived from high-precision

spectroscopy of hydrogen to scattering data [14–16], based

on a transparent listing of theoretical contributions. Finally, in

Sec. IV, we derive the nuclear radius difference of proton and

deuteron from the experimental data for the isotope measure-

ment.

The main results of the current paper are the deuteron-

proton rms charge radius difference (54)
〈

r2
〉

d
−
〈

r2
〉

p
=

3.82007(65) fm2
as well as the deuteron structure radius

rstr = 1.97507(78) fm. Moreover, our radius difference (54)

is in agreement with the difference of the individual 2006 CO-

DATA values for the proton and deuteron radii [11]. Further-

more, the radius difference derived from our experiment and

the 2006 CODATA value of the deuteron radius are in agree-

ment with the proton radius derived from the latest Mainz mi-

crotron experiment [17].

The agreement of the deuteron–proton charge radius dif-

ference with the 2006 CODATA values for the individual

radii [11] is important for a number of reasons. The primary

one is a recent measurement in muonic hydrogen which has

led to a different proton radius, or alternatively to an interest-

ing disagreement of theory and experiment [3].
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