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Long-range charge-transfer excitations pose a major challenge for time-dependent density func-
tional approximations. We show that spin-symmetry-breaking offers a simple solution for molecules
composed of open-shell fragments, yielding accurate excitations at large separations when the accep-
tor effectively contains one active electron. Unrestricted exact-exchange and self-interaction-corrected
functionals are performed on one-dimensional models and the real LiH molecule within the pseu-
dopotential approximation to demonstrate our results.

PACS numbers:

Although time-dependent density-functional theory
(TDDFT) has had resounding success in predicting accu-
rate excitation spectra in a wide variety of systems [1, 2],
difficulties still plague its application to certain areas.
The problem of charge-transfer (CT) excitations has
drawn especially significant attention in recent years [3–
9], due to its relevance for biomolecules, molecular con-
ductance, solar cell design; these are systems for which
TDDFT would be particularly attractive due to its fa-
vorable system-size scaling. However, it has been chal-
lenging to find a satisfactory universal solution to the
CT problem: ab initio approaches based on modeling
the exact kernel appear impractical, while practical ap-
proaches tend to involve empirical parameters. Here
we present a new approach to calculate CT excitations
in TDDFT for certain cases, based on spin-symmetry-
breaking. We show that accurate excitations are ob-
tained when the acceptor is an effectively one-electron
system, e.g. an element in Group 1 of the periodic ta-
ble treated in the pseudopotential approximation, and
justify why this is so. For large separations, the leading
order behavior is captured solely from Kohn-Sham (KS)
orbital energy differences. Results are given for model
systems and for the LiH molecule, and suggest a type of
Koopmans’ concept for one-electron systems.

The usual approximations in TDDFT notoriously un-
derestimate CT excitations between fragments at large
separation R. To leading order in 1/R, the exact answer
for the lowest CT frequency is:

ωexact
CT → ID − AA − 1/R (1)

where ID is the ionization energy of the donor, AA is
the electron affinity of the acceptor and −1/R is the
first electrostatic correction between the now charged
species. (Atomic units are used throughout). It is
well-understood why TDDFT severely underestimates
CT [3–6]: In TDDFT, the first step is to compute the
Kohn-Sham (KS) orbital energy differences between oc-
cupied (i) and unoccupied (a) orbitals, ωS = ǫa − ǫi. In
a second step, these frequencies are corrected to the true

excitations via the Hartree-exchange-correlation kernel,
fHXC[n0](r, r

′, ω), which shifts and mixes the KS excita-
tions within a matrix formulation. The kernel is a func-
tional of the ground-state density n0(r), with matrix ele-
ments

∫

d3rd3r′φi(r)φa(r)fHXC(r, r′, ω)φi′(r
′)φa′ (r′). For

CT excitations, the vanishing spatial overlap at large
separations between occupied donor and unoccupied
acceptor orbitals sitting on different nuclei means that
the TDDFT predictions for CT excitations reduce to the
KS orbital energy difference, ǫa − ǫi when using usual
semi-local functional approximations for fHXC. With
approximate ground-state functionals the highest occu-
pied molecular orbital (HOMO) energy, ǫH, underesti-
mates the true ionization energy, while the lowest un-
occupied molecular orbital (LUMO), ǫL, lacks relaxation
contributions to the electron affinity. The last few years
have seen many methods to correct the underestima-
tion of CT excitations, e.g. Refs. [7–9]; most modify the
ground-state functional to correct the approximate KS
HOMO’s underestimation of I , and mix in some degree
of Hartree-Fock, and most, but not all [8, 9] determine
this mixing via at least one empirical parameter. Funda-
mentally, staying within pure DFT, both the relaxation
contributions to A and the −1/R tail in Eq. 1 come from
fHXC, which must exponentially diverge with fragment
separation [5, 6]. Worse, in the case of open-shell frag-
ments, not covered by most of the recent fixes, addition-
ally the exact fXC is strongly frequency-dependent [6].

The major reason for the awkward kernel structure in
the case of open-shell fragments lies in the KS ground-
state description: the HOMO (and LUMO) are delocal-
ized over the whole molecule, quite distinct from the
Heitler-London-like nature of the true wavefunction. In
either the case of the exact or semi-local approxima-
tions, their orbital energy difference tends to zero as the
molecule is pulled apart, and so fHXC must be responsi-
ble for the entire CT energy [6]. It is long-recognized
that this static correlation error [10] is the root of the
problem of poor ground-state energies, studied exten-
sively in molecules like H2 [11], and that a simple way



out is to allow the system to break spin-symmetry. An
unrestricted calculation with an approximate functional
run on a diatomic molecule, leads, at a critical internu-
clear separation, to the spin-polarized solution obtain-
ing the lowest ground-state energy. Albeit having incor-
rect spin-symmetry, accurate ground-state energies are
achieved essentially because the KS description is ren-
dered to have one electron on each atom.

Although less discussed, the same physics applies for
heteroatomic molecules composed of open-shell frag-
ments [12], and suggests that symmetry-breaking could
be a means to obtain its CT excitations. If the exact
functional were used, the lowest-energy state remains
correctly spin-unpolarized at any R, but at the cost
of stark step and peak features in the bonding region,
and strong-frequency-dependent structure in fHXC, dif-
ficult for approximations to capture. If instead, correct
spin-symmetry is imposed on any existing approximate
density-functional, the ground-state displays unphysi-
cal fractional charges at large R, delocalized HOMO and
LUMO orbitals, and again poor CT energies [6, 12].

The following examples show that remarkably accu-
rate CT excitations can indeed be obtained from TDDFT
via spin-symmetry breaking when the acceptor contains
effectively one active electron; for large enough separa-
tions, these are contained in simply the bare KS exci-
tations. We present first one-dimensional models that
enable us to compare with highly accurate numerically-
exact solutions (computed using a Runge-Kutta differ-
ential equation solver as implemented in the octopus
code [14]), and to then analyze and understand in de-
tail why the CT in symmetry-broken TDDFT is accurate
via the underlying potentials. For the DFT calculations
we study the exact-exchange (EXX) and local spin den-
sity approximation(LSD) [13] with self-interaction cor-
rection (SIC). We shall see their correct long-range be-
havior yields the correct R-dependence at large separa-
tions. We stress that this long-rangedness must be com-
bined with symmetry-breaking in order to get accurate
CT excitations: restricted calculations using these func-
tionals fail [15]. The functionals are implemented in oc-
topus within the KLI approximation to OEP [16]. Af-
ter studying the models, we then turn to the real LiH
molecule. In our first model, the nuclear potentials are
represented by short-range wells, at separation R:

vext(x) = −UL/ cosh2(x) − UR/ cosh2(x − R) , (2)

where the strengths UL = 5.5 au, and UR = 6au. We
place two electrons interacting soft-Coulombically via

vee(x, x′) = 1/
√

1 + (x − x′)2 . (3)

into this heteroatomic molecule. The unrestricted KS
calculation yields a spin-unpolarized solution until a
separation of about R ∼ 2.3a.u. (coinciding with an
avoided crossing in the potential energy surfaces [12])
where it begins to break symmetry: the eigenvalues for
the up and down spin in the ground-state begin to sep-
arate and slowly approach those of the isolated wells as

the molecule is pulled further apart and each electron
settles in a different well. In contrast to Ref. [17], local-
ization of orbitals is in fact achieved within KLI: for two
electrons KLI is equivalent to full OEP, but even for sys-
tems of more than two electrons (not shown here) KLI
yielded spin-polarized localized orbitals.

Figure 1 plots the lowest orbital excitation energies of
the model Eq. (2)-(3). The KS energy differences, es-
pecially those of EXX, capture the exact CT excitations
throughout with remarkable accuracy!
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FIG. 1: (color online). Charge-transfer excitation energies for
the model Eq. (2)-(3) using unrestricted SIC and EXX. The ex-
act converge onto the asymptotic Eq. 1 (blue dashed lines)
soon after the symmetry-breaking point.

Why this is so can be seen by studying the underlying
KS potentials. Consider first the limit R → ∞, where
symmetry-breaking has placed, say, the spin-up(down)
electron in the left(right) well in the ground state. The
left well is the donor for the following discussion. Fig. 2
plots the KS potential for the ↑-spin:

vS,↑[n↑, n↓] = vA
ext + vD

ext + vH[n↑] + vH[n↓] + vXC,↑[n↑, n↓]
(4)

and its components at a separation of R = 50a.u.

In Eq. 4, v
A(D)
ext refers to the atomic acceptor(donor)

potential (i.e. the right(left) well), and vH[n](r) =
∫

d3r′n(r′)/|r− r
′| is the Hartree potential generated by

density n(r). As R → ∞, in the vicinity of the donor
vC,↑ = 0 and vX,↑ = −vH[n↑], so vS,↑ = vD

ext: the system
is essentially a one-electron system in this limit and lo-
cal excitations of the ↑-electron are, correctly, just excited
states of the donor. In the vicinity of the acceptor, where
only a ↓-electron lives, vX,↑ → 0 in the limit R → ∞, and

v∞
S,↑(r ∼ acceptor) = vA

ext + vH[n↓] + vC,↑[n↑, n↓] . (5)

The Hartree potential generated by the ↓-electron and
a small correlation contribution (the two dips in the
red curve) result in a net upward shift of vext: the un-
occupied ↑-electron states living in the right-hand-well
are shifted up in energy compared with those of the ↓-
electron (i.e. those of vext). An approximate affinity level
is thereby induced in the right-hand-well. So the bare
KS orbital energy-differences yield accurate CT excita-
tions: first, the HOMO for the ↑-electron is the low-
est orbital in the left-hand-well, for which ǫH = −ID,

2



the exact ionization potential, due to Koopmans’ the-
orem [18], since both EXX and SIC are exact for one
electron. Second, and more significantly, the LUMO
approximates the affinity level of the right-hand-well,
ǫL ≈ −AA, sensing the presence of the ↓-electron, i.e.
Hartree-correlation relaxation contributions to the affin-
ity are already incorporated at the bare KS level. We
call this eigenstate of Eq. 5, and the corresponding state
of vS,↓, for which entirely analogous analysis holds, the
“induced affinity” levels of the right and left atoms re-
spectively. In the limit of infinite separation, they con-
verge onto the lowest state for the unoccupied spin of
the isolated one-electron atom. A key point is that vS,↑

and vS,↓ are different: in any restricted calculation where
these are the same, unoccupied levels are excitations (of
the same N -electron system), not affinities.

 δ δvc  (r) =   Ec[n   = 0, n  = n]/  n  (r)

vH

vxc

vext

The two−dips of
vc   can be reproduced by

In 3D, this gives a single well.

vs

po
te

nt
ia

ls
 (H

ar
tre

es
)

R(atomic units)
−6

−4

−2

 0

0  25  50

FIG. 2: (color online). The KS potential vS,↑ (blue) and its
components, as indicated (dashed black line is vext, solid blue
line is vS,↑, dotted green line is vH and dash-dotted red line is
vXC,↑).

How well does the induced affinity level approxi-
mate the true affinity generally? DFT theory tells us
that the exact affinity of an N -electron atom is A(N) =
E(N)−E(N+1) = −ǫH(N+1) where the middle expres-
sion is computed from total energy differences while the
third expression is computed from the highest occupied
KS eigenvalue of the relaxed (N+1)-electron system (see
eg. [19]). Let us then consider the KS potential of a two-
electron atom. Because the density is localized, an unre-
stricted calculation yields a spin-unpolarized result. De-
noting the two-electron ground-state density n2(r),

vS[n2] = vext + vH[n2/2] + vC[n2] (6)

where vext is the nuclear potential and we have noted
that, for exact exchange, vX[n2] = −vH[n2]/2 =
−vH[n2/2]. First, neglecting correlation, Eq. 6 is very
close to Eq. 5 if n2 ≈ 2n↓, i.e. if, when a second electron
is added to a well in which there is already one elec-
tron, there is little density relaxation. This is the case
in the model example above, since the dominant part of
the energy of the electrons is from the external poten-
tial. In such a case, Eqs. 5 and 6 then imply that the in-
duced affinity level approximates the true affinity well.
It will be a lower bound (i.e. |ǫL,↑| ≤ |ǫH(N = 2)|), be-
cause electron repulsion leads to vH[n2/2] being a little

weaker than vH[n↓]. This was borne out in all the EXX
results of different models we considered. Correlation
tends to raise the induced affinity, sometimes bringing
it higher than the true affinity: certainly using LSD-SIC,
vC,↑[n↑ = 0, n↓ = n] forms a deeper negative well than
vC[n2]. Shortly we will discuss examples in which the
density relaxation is important, so that n2 is not very
close to 2n↓, and there the affinity level is not such a
good approximation to the true affinity; consequently
the charge-transfer excitations are not as accurate (but,
as we will argue, the approach can still be useful).

The arguments above hold only for one-electron ac-
ceptors: if the acceptor already has an electron of the
transferring spin in it, then excitations of that spin are
the usual constant-number excitations of TDDFT, not
approximate affinity levels. The donor however may
contain any number of electrons: similar models that
have, for example, three electrons in one well and one
in another again showed excellent CT excitations from
the former to the latter, under spin-symmetry-breaking.

We now extend the discussion following Eq. 4 to the
case of an N -electron donor and 1-electron acceptor, at
finite but large separation. For ease of notation, assume
again the acceptor carries a ↓-electron in the molecular
ground state. First consider Eq. 4 near the N -electron
donor. For external (nuclear) potentials that decay
Coulombically, the (N -electron), vS,↑ ∼ vD

S
+ O(1/R3),

where vD
S

is the KS potential of the donor atom. At
the acceptor, vS,↑ ∼ v∞

S,↑ − 1/R + O(1/R3) (noting that

vD
ext cancels vH[n↑] ≈ ND/R, while vX,↑ ∼ −1/R). So,

to leading order in R, for the ↑-electron, ǫH = ǫD
H and

ǫL = ǫ∞L − 1/R where ǫ∞L is the induced affinity level of
the acceptor in the infinite separation limit. Therefore,

ωS = ǫL − ǫH = ǫ∞L − ǫD
H − 1/R , (7)

as in Eq. 1, with ID ≈ −ǫD
H and AA approximated by

the induced affinity level. (For short-ranged potentials
as in Eq. 2, the arguments lead instead to ǫH = ǫD

H + 1/R
and ǫL = ǫ∞L ). Therefore, a long-ranged exchange-
correlation as in EXX or SIC, once symmetry-broken,
yields good CT excitations, from just its bare KS orbital
energies, as a function of R, for large R. Note the impor-
tance of correct asymptotics of the functional used for
correct R-dependence, as well as for accurate ionization
potentials and induced affinities.

For an accurate CT asymptote the density relaxation
upon the addition of an electron must be small. But
even when density relaxation effects are significant,
symmetry-breaking can still be useful as we now ex-
plain. In a practical sense, the infinite-separation limit
itself is not so much a problem for TDDFT, because
total ground-state energy differences computed from
DFT [20] can often yield reliable values for I and A
in Eq. 1. Rather it is intermediate but large distances
that are the challenge, where CT energies deviate from
the asymptotic formula Eq. 1. Our symmetry-breaking
approach can capture these deviations, going beyond
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Eq. 1. The procedure is to compute the (symmetry-
broken) KS HOMO and LUMO energy difference, but,
when density-relaxation is large, shift it by

ID − AA − (ǫ∞,A
L − ǫD

H ) (8)

where I and A are computed from total ground-state
DFT energy differences. In this way, asymptotically, the
curves approach Eq. 1 accurately, but for intermediate to
large distances, contain correct physical deviations from
Eq. 1 due to polarization. To illustrate this, we now con-
sider soft-Coulomb nuclear wells:

Vext = −1/
√

x2 + aL − 1/
√

(x − R)2 + aR (9)

and Fig. 3 takes aR = 0.7 and aL = 1.2. The more dif-
fuse densities of these wells makes them more polariz-
able so deviations from Eq. 1 are more evident, as shown
in Fig. 3: at intermediate separations, the (exact) CT en-
ergies fall shy of the asymptotic Eq. 1, shown as the solid
black curve, due to the local polarization of the CT state
towards the positive charge at the other nucleus. After
applying the shift of Eq. 8 the unrestricted SIC results
approach the exact results well, and capture this attrac-
tive shift; this holds also for CT in the other direction
(not shown). (The dashed blue curve is the asymptote
for the unrestricted SIC prediction, but also shifted ac-
cording to Eq. 8).
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FIG. 3: (color online). CT from the left to the right well of
model Eqs. (3)- (9). Exact: I

D
= 0.6206H and A

A
= 0.1199H.

Unrestricted SIC: I
D

= ǫ
D
H = 0.6206H, A

A
= 0.1355H, and

ǫ
∞,A
L = 0.2183H.

So far, we have discussed CT excitations obtained
from bare KS excitations alone and argued why these
work so well, as demonstrated by the model examples.
The second step of TDDFT is to apply fHXC to correct
the KS excitations towards the exact ones; there are both
“diagonal” terms which shift each KS excitation, as well
as “off-diagonal” ones that mix them. For the systems
so far discussed we expect both these effects are small,
because (i) the diagonal term involves overlap of the oc-
cupied and unoccupied orbitals in the excitation, which
vanish exponentially at large distances, and (ii) there is
little mixing with other excitations in the system. Mix-
ing and shifting of KS excitations will be important at
small and intermediate distances, leading to further de-
viations from the asymptotic Eq. 1, especially for real
molecules, given their higher density of states.

Turning now to a real molecule, LiH: Using a pseu-
dopotential for the Li atom renders it an effectively one-
electron atom, and our method captures CT in both
directions. In Fig. 4 we plot the lowest potential en-
ergy surfaces of the LiH molecule, computed with unre-
stricted SIC, with the Troullier Martins pseudopotential
coded in octopus [14], compared to the highly-accurate
configuration-interaction (CI) calculations of Ref. [21].
The induced affinity level of H is 0.0726H while that
computed from ground-state DFT energy-differences is
0.0264H, closer to the experimental (0.0277H), so we
have applied the shift of Eq. 8 for R ≥ 12. As accu-
rate energies are unavailable for CT from H to Li, we
do not show this curve here. The excellent agreement of
the unrestricted approach with CI, even at the bare KS
level (i.e. no fHXC applied), can be contrasted with spin-
restricted SIC calculations, whose collapse at smaller R
is due to the near-degeneracy of the HOMO and LUMO
mentioned earlier; the latter leads to convergence dif-
ficulties for larger separations. The symmetry-broken
SIC predicts the separation at which there is a crossing
between the ionic curve and the Li(3s) curve very accu-
rately (R ≈ 22a.u., although it appears more as a direct
crossing rather than an avoided one, at least in the bare
KS orbital energy difference.
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FIG. 4: (color online). Potential energy surfaces of the LiH
molecule. Even the (shifted) bare KS energy-differences of un-
restricted SIC are close to the CI ones of Ref. [21].

In summary, we have shown that symmetry-breaking
is a simple non-empirical way to obtain CT excitations
from KS orbital energies alone, for acceptors that contain
effectively one electron, and explained why. Strikingly
good results were obtained for model systems as well as
for real molecule LiH and further studies are underway.
Applying the TDDFT kernel should improve the accu-
racy at intermediate distances, capturing mixing of CT
and local excitations, while these fHXC corrections will
vanish asymptotically.

Conceptually, the observation that for one-electron
systems, the levels of the unoccupied spin approximate
affinity levels can be interpreted in an extended Koop-
mans’ sense. Koopman’s theorem in DFT states that
I = −ǫH exactly, while generalized Koopman’s theorem
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applies to Hartree-Fock where I ≈ −ǫHF
H and A ≈ −ǫHF

L ,
leading to the use of hybrid functionals for CT, men-
tioned earlier [7, 8]. Although the LUMO in exact DFT
represents an excitation of the N -electron system, rather
than the (N + 1)-electron one, our results show that
when N = 1 in spin-DFT, the levels of the unoccu-
pied spin can be interpreted in a generalized Koopmans’
sense, as they approximate affinity levels.

We acknowledge support from MEC (FIS2007-65702-

C02-01), ACI-promociona (ACI2009-1036), Grupos Con-
solidados UPV/EHU del Gobierno Vasco (IT-319-07),
e-I3 ETSF project (Contract No. 211956), the National
Science Foundation (CHE-0647913), the Cottrell Scholar
Program of Research Corporation and a grant of com-
puter time from the CUNY High Performance Comput-
ing Center under NSF Grants CNS-0855217 and CNS-
0958379.

[1] Time-Dependent Density Functional Theory eds. M.A.L.
Marques et al., (Springer, Berlin, 2006).

[2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997
(1984).

[3] A. Dreuw, J. Weisman, and M. Head-Gordon, J. Chem.
Phys. 119, 2943 (2003).

[4] D. Tozer, J. Chem. Phys. 119, 12697 (2003).
[5] O. Gritsenko and E.J. Baerends, J. Chem. Phys. 121 655,

(2004); J. Neugebauer, O. Gritsenko and E.J. Baerends, J.
Chem. Phys. 124, 214102 (2006).

[6] N.T. Maitra, J. Chem. Phys. 122, 234104 (2005); N. T.
Maitra and D.G. Tempel, J. Chem. Phys. 125, 184111
(2006).

[7] Y. Tawada et al., J. Chem. Phys. 120, 8425 (2004); O.
A. Vydrov et al. J. Chem. Phys. 125, 074106 (2006); Y.
Zhao and D. G. Truhlar, J. Phys. Chem. A. 110, 13126
(2006); M.A. Rohrdanz, K.M. Martins, and J.M. Herbert, J.
Chem. Phys. 130, 054112 (2009); Q. Wu and T. van Voorhis
J. Chem. Theor. Comp. 2, 765 (2006); J. Autschbach,
ChemPhysChem 10, 1757 (2009).

[8] T. Stein, L. Kronik and R. Baer, J. Am. Chem. Soc. 131,
2818 (2009).

[9] A. Hesselmann, M. Ipatov, A. Görling, Phys. Rev. A. 80,
012507 (2009);

[10] P. Mori-Sanchez, A. J. Cohen, W. Yang, Phys. Rev. Lett.
102, 066403 (2009).

[11] O. Gunnarson and B. I. Lundquist, Phys. Rev. B. 13, 4274
(1976); J. Perdew, A. Savin and K. Burke, Phys. Rev. A. 51,
4531 (1995).

[12] D. G. Tempel, T. J. Martinez, N.T. Maitra, J. Chem. Th.
Comput. 5, 770 (2009).

[13] M. Casula, S. Sorella, and G. Senatore, Phys. Rev. B. 74,
245427 (2006).

[14] http://www.tddft.org/programs/octopus; M.A.L. Mar-
ques, A. Castro, G. F. Bertsch, A. Rubio, Comput. Phys.
Commun. 151, 60 (2003).

[15] M.E. Casida et al., J. Chem. Phys. 113, 7062 (2000).
[16] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A. 46, 5453

(1992).
[17] T. Körzdörfer, M. Mundt, and S. Kümmel, Phys. Rev. Lett.
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