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Abstract

We analyze the dynamics of a qubit-resonator system coupled with

a thermal bath and external electromagnetic fields. Using the evolu-

tion equations for the set of Heisenberg operators, that describe the

whole system, we derive an expression for the resonator field, account-

ing for the resonator-drive,-bath, and -qubit interaction. The renor-

malization of the resonator frequency, caused by the qubit-resonator

interaction, is accounted for. Using solutions for the resonator field,

we derive the equation describing qubit dynamics. The influence of

the qubit evolution during the measurement time on the fidelity of

a single-shot measurement is studied. The relation between the fi-

delity and measurement time is shown explicitly. Also, an expression
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1



describing relaxation of the superposition qubit state towards its sta-

tionary value is derived. The possibility of controlling this state, by

varying the amplitude and frequency of drive, is shown.

1 Introduction

The possibility of achieving quantum coherence in macroscopic Josephson
junction (JJ) circuits, envisioned by Leggett in the early 1980s [1]-[3], was
demonstrated experimentally almost 20 years later by Nakamura et al. [4].
Now, superconductive qubits are promising building blocks for the realization
of a quantum computer. Progress towards quantum computing depends on
the development of measurement schemes and readout devices. Each read-
out process requires a finite-time interval during which the system evolves
under the effect of the measuring device [5]-[7] and uncontrollable external
[8],[9] or intrinsic [10]-[14] noises. This requires improving the quality of the
Josephson contacts and effective isolation of qubit systems from the “elec-
tromagnetic environment”. There is stable progress toward the solution of
the first problems. (See, for example, Ref. [15].) The second problem is
fundamental in nature because, for example, it is impossible to isolate the
qubit system from vacuum zero-point oscillations or to avoid the influence of
the measurement device on qubit relaxation or decoherence.

In this paper, we study the simultaneous influence of external electro-
magnetic fields and a thermostat (bath) on the qubit. It is assumed that
this influence is not direct but via a resonator which is weakly coupled with
the qubit. Therefore, the resonator response on the microwave field depends
on the qubit state. In particular, by measuring the phase of a microwave
field reflected from the resonator, one can perform a nondestructive mea-
surement of the qubit state. The theoretical description of this scheme and
its practical implementation are elucidated in numerous publications [5]-[7],
[16]-[20]. At the same time, it should be emphasized that this kind of mea-
surement results in both the dephasing of the qubit wave function and partial
relaxation caused by the effects of drive and the thermostat during the mea-
surement. These effects decrease the measurement fidelity. By studying the
qubit dynamics, we are able to estimate the influence of drive and bath on
the fidelity.

Our further consideration is based on the equations of motion of the
Heisenberg operators. These operators describe the dynamics of both the
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qubit and resonator field. The solution of these dynamical equations will
allow us to estimate the upper limit of the measurement fidelity.

2 Model

We consider the system described by the following Hamiltonian:

H = −
1

2
h̄ωqσz + h̄ωr

(

a+a+
1

2

)

+
∑

n

h̄ωn

(

b+n bn +
1

2

)

+

igσy

(

a+ − a
)

+ ih̄
∑

n

fn

(

bna
+ − b+n a

)

+ ih̄f0

(

ca+ − c+a
)

, (1)

where the first, second, and third terms in the right side are Hamiltonians
of the noninteracting qubit, the resonator, and the bath, respectively. The
quantity, σz, is the Pauli operator. We use here the diagonal representation
for Hamiltonian of the isolated qubit. Different types of superconducting
qubits, for example, charge qubit [5]-[7] or flux-biased phase qubit [13] can
be used in practice.

The quantities a+, b+n , c
+ are the creation operators of the resonator, bath,

and drive excitations, respectively. The quantities a, bn, c are the correspond-
ing annihilation operators. Usually, the drive variables, c+ and c, are consid-
ered to be the classical quantities, c∗ and c, with given dependences on time:
c∗, c ∼ e±iωdt in which ωd is the frequency of microwave field.

The fourth, fifth, and sixth terms are the resonator-qubit, -bath, and
-drive ineractions, respectively. The constants g, fn, and f0, describe the
corresponding interaction strengths. ωq is the transition frequency between
qubit levels. The quantities, ωr and ωn, are the frequencies of the resonator
(cavity) and bath oscillators, respectively. The resonator Hamiltonian de-
scribes the parallel connection of the local capacitance, C, and the induc-
tance, L (ωr = (LC)−1/2). At the same time this lumped-element circuit
can represent a transmission (microstrip) line if we deal with signals whose
characteristic frequencies are sufficiently close to one of the eigenfrequencies,
ωr, of the line. More details can be obtained, for example, in [5] and [22].

Similar to papers [21],[22], we model the bath as an infinite set of har-
monic oscillators with frequencies, ωn. (Absorption and scattering of the
resonator mode and the drive field can also be described by an interaction
with the corresponding bath of harmonic oscillators [23],[24].)
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The qubit-resonator interaction Hamiltonian depends on the product of
qubit and resonator variables, ∼ σy(a

+ − a). This differs from the model
used in Refs. [25]-[27], where the inductive qubit-resonator coupling was also
linear in the qubit variable (σz) but quadratic in the resonator variables,
a+, a. The dispersive readout of the flux qubit in [25]-[27] was based on the
nonlinearity of the resonator inductance dependent on the qubit state. A
superconducting quantum interference device (d.c. SQUID) was used as a
nonlinear element. The experiments with two consecutive measurements of
the qubit showed the large correlations between the results of both. This
demonstrates almost nondemolition nature of the readout method used in
[25]-[27].

For the Hamiltonian, considered here, the presence of the bath is im-
portant even at zero temperature. In this case, only terms describing the
annihilation of resonator excitations and the creation of bath excitations
appear. At finite bath temperatures, there are fluxes of enegy in both direc-
tions: into and out of the bath. There is no unique description of the effect of
the bath on the qubit-resonator system. For example, the model of a direct
qubit-bath interaction is used in Ref. [28].

The resonator-bath as well as the resonator-drive interactions affect the
qubit state due to the qubit-resonator interaction. This situation is very
similar to the case considered in [8] in which semiclassical noise of the biased
current causes qubit decoherence and relaxation.

3 Evolution of the resonator field

Using the Heisenberg representation for the operators in Eq. 1, we can
express the time derivative of a as

ȧ =
1

ih̄
[a,H ] = −iωra+

g

h̄
σy +

∑

n

fnbn + f0c. (2)

Here, the dependences of σy and bn on time are not yet specified. To de-
termine the explicit dependences of σy(t) and bn(t), we will use an iterative
procedure that assumes that all interaction parameters are small quantities.
As in Eq. 2 we have

σ̇y = −ωqσx, (3)

σ̇x = ωqσy + i2
g

h̄
σz(a

+ − a).
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¿From these equations we can obtain relationships for the more convenient
variables σ± ≡ 1

2
(σx ± iσy):

σ̇± = ∓iωqσ± + i
g

h̄
σz(a

+ − a). (4)

Eqs. 4 can be rewritten in the equivalent form as

σ±(t) = σ±(t0)e
∓iωq(t−t0) + i

g

h̄

∫ t

t0
dt′e∓iωq(t−t′)[σz(a

+ − a)]t′ . (5)

Further analysis is facilitated by assuming the qubit-resonator detuning is
small:

|ωqr| << ωq, ωr, ωqr ≡ ωq − ωr.

(We assume this inequality is satisfied throughout the paper.) At the same
time the detuning should be large compared to the interaction parameter g :

g

h̄|ωqr|
<< 1. (6)

In many papers (see, for example, Refs. [5]-[7]), the quantity in the left side
of Eq. 6 is also considered as small parameter. In this case, the dynamics of
the system can be analysed using a simpler (renormalized) Hamiltonian.

Considering σz(t
′)a+(t′)e−iωrt′ and σz(t

′)a(t′)eiωrt′ as slowly varying func-
tions of t′, we can integrate over t′ in Eq. 5. The result is

σ+(t) = σ̃+(t) −
g

h̄

σz(t)a(t)

ωqr

, (7)

σ−(t) = σ̃−(t) −
g

h̄

σz(t)a
+(t)

ωqr
,

where σ̃± = σ±(t0)e
∓iωq(t−t0). In the course of integration, we have assumed

that t− t0 → ∞.
Using Eqs. 7 we can express σy(t), which appears in Eq. 2, in terms of

σ̃±(t), σz(t), a
+(t), and a(t). The dependences of b+n , bn on time can be also

expressed in terms of a+ and a. As in Eqs. 4, we have

ḃn = −iωnbn − fna, (8)

or

bn(t) = b̃n(t) − fn

∫ t

t0
dt′e−iωn(t−t′)a(t′), (9)
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where b̃n(t) = bn(t0)e
−iωn(t−t0).

Multiplying both sides of Eq. 9 by fn and summing over n we obtain

∑

n

fnbn(t) =
∑

n

fnb̃n(t) −
∫ t

t0
dt′

∑

n

f 2
ne

−iωn(t−t′)a(t′). (10)

Using a simple approximation for the sum in the integrand of Eq. 10

∑

n

f 2
ne

−iωn(t−t′) = κδ(t− t′), (11)

(see Refs. [21],[22]), we can rewrite Eq. 10 in a simple form:

∑

n

fnbn(t) =
∑

n

fnb̃n(t) −
κ

2
a(t). (12)

Then using Eqs. 7 and 12, the equation for a(t) reduces to

[

∂t + i
(

ωr − χσz

)

+
κ

2

]

a = f0c+
∑

n

fnb̃n − i
g

h̄

(

σ̃+ − σ̃−

)

− iχσza
+, (13)

where χ ≡ g2/(h̄2ωqr).
The quantity, ωr − χσz, is the resonator frequency renormalized by the

qubit-resonator interaction. This renormalization effect can be derived from
the Jaynes-Cummings Hamiltonian using a unitary transformation, assuming
that g/(h̄ωqr) is a small parameter.

The parameter, κ/2, appearing in the bath-resonator interaction, is an
important characteristic of the resonator. It can be seen from the structure
of Eq. 13 that κ/2 describes the field dissipation caused by this interaction.
The ratio ωr/κ is the resonator quality factor, Q. Usually, high-Q resonators
are used for qubit measurements.

The solution of Eq. 13 (in which the influence of the initial condition or
transient stage is ignored) is given by:

a(t) =
if0c(t)

ω̃dr + iκ/2
+

∑

n

ifnb̃n(t)

ω̃nr + iκ/2
+
g

h̄

σ̃+(t)

ω̃qr + iκ/2
, (14)

where ω̃ir ≡ ωi − ωr + χσz , i = d, n, q. In the course of solution of Eq. 13,
explicit dependences of c, b̃n, σ̃± on t were used. Also, the contribution of
terms with σ− and a+ was neglected. This approximation is accurate when
χ, (g/h̄) << ωr.
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The value for a+ can be obtained from Eq. 14 using hermitian conjuga-
tion. It is given by

a+(t) =
if ∗

0 c
+(t)

ω̃rd + iκ/2
+

∑

n

if ∗
n b̃

+
n (t)

ω̃rn + iκ/2
−
g

h̄

σ̃−(t)

ω̃rq + iκ/2
. (15)

Using Eqs. 14, 15, and 11, we can easily show that the standard com-
mutation relations between operators a and a+ are fulfilled with an accuracy
valid up to a small value of the order g2/(h̄2ω2

qr) if the drive variables are con-
sidered as classical quantities. The deviation of [a, a+] from unity is within
the accuracy of perturbation procedure used here.

It follows from Eqs. 14 and 15 that the effect of bath is represented
by the second (“noise”) terms and the imaginary summand, iκ/2, in the
denominators. The effect of drive on the resonator field critically depends
on the detuning ω̃dr = ωd − ωr + χσz . The field amplitude and the photon
number in the cavity, nr = a+a, are the largest when the detuning is of the
order of k/2. If the drive frequency is fixed, the detuning depends on the
qubit state. For the upper and lower states, the resonant conditions can
be very different when χ > κ/2. This circumstance is commonly used for
measuring qubit states by means of microwave fields (see, for example, Ref.
[17]).

To estimate the importance of the different terms in Eqs. 14 and 15,
we will calculate the average (over bath variables) photon number in the
resonator, nb

r, considering the qubit to be in the excited (σz = −1) or ground
(σz = 1) state. (The frequency, ω̃dr, is equal to ωd − ωr ∓ χ for σz = ∓1,
respectively.) Using Eq. 11 and the relationship

σ−σ+ =
1

2
(1 − σz), (16)

we obtain

nb
r =

|f0c|
2

ω̃2
dr + κ2/4

+ 〈b+n bn〉ωn=ωr
+

g2

2h̄2

1 − σz

ω̃2
qr

, (17)

where correlations between different bath modes were ignored (〈b+n bn′〉 ∼
δn,n′). In the course of derivation of the second term in Eq. 17, we have
considered that the average 〈b+n bn〉 depends on n via ωn only. Then using
Eq. 11 we were able to sum up over bath modes as:

∑

n

f 2
n〈b

+
n bn〉

ω̃2
nr + κ2/4

=
∑

n

∫ ∞

−∞
dωδ(ω − ω̃nr)

f 2
n〈b

+
n bn〉|ωn=ω+ωr−χσz

ω2 + κ2/4
≈
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〈b+n bn〉|ωn=ωr

∫ ∞

−∞

dω

ω2 + κ2/4

∫ ∞

−∞

dτ

2π

∑

n

f 2
ne

i(ω−ω̃nr)τ = 〈b+n bn〉|ωn=ωr
.

The remarkable peculiarity of Eq. 17 is that the direct contribution of
bath does not depend on the interaction constant, fn. This is in contrast to
Eqs. 14 and 15 for the resonator field.

For thermal equilibrium, the average occupancy of the bath modes is
given by the Bose-Einstein distribution function nBE

〈b+n bn〉 = nBE(ωn) ≡
(

e
h̄ωn
kBT − 1

)−1

(18)

Therefore, in the absence of the drive and the qubit, the number of photons
in the resonator is equal to that in the corresponding bath mode. In other
words, the bath and resonator temperatures are equal in this (equilibrium)
case.

Eq. 17 shows explicitly when the driving field dominates the noisy in-
fluence of the bath. Besides that, it follows from Eq. 17 that the qubit
“delivers” an almost negligible portion of photons to the resonator (the last
term in Eq. 17) even in the most favorable case, σz = −1. The physical
reason for this is in the qubit-resonator detuning. The detuning decreases
the probability of qubit excitations to “penetrate” into the cavity.

Eqs. 14 and 15 can be used to study the fluctuations of photon numbers
in the resonator. These fluctuations are responsible for qubit decoherence
(more details can be obtained, for example, in Ref. [6]).

In the next Section, we will use Eqs. 14 and 15 to describe the qubit
dynamics. Drive- and thermostat-induced variations of the qubit state during
the measurement time will be studied. These variations are responsible for
reducing the measurement fidelity of the qubit state.

4 Qubit evolution

The time variation of qubit states occupancies can be expressed in terms
of the average value of the operator σz. When the qubit is in the state
ψ(t) = α(t)|0〉 + β(t)|1〉, the average value of σz is:

〈σz〉〉t = 〈ψ(t)|σz|ψ(t)〉 = |α(t)|2 − |β(t)|2.

If we know 〈σz〉t, the occupancies of the levels can be obtained from:

|α(t)|2 =
1

2
(1 + 〈σz〉t), |β(t)|2 =

1

2
(1 − 〈σz〉t).
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We will replace 〈σz〉t by 〈σz(t)〉, where σz(t) is defined in the Heisenberg
representation and averaging is over the initial state, ψ(t0). Therefore, the
evolution of the occupancies can be obtained from the temporal dependence
of the operator σz(t).

To obtain σz(t), we use, as previously, the equations of motion for the
corresponding operators. The time variation for σz(t) is:

σ̇z =
1

ih̄
[σz , igσy(a

+ − a)]. (19)

We can express σy(a
+ − a) as −i(σ+a

+ + σ−a) in the spirit of rotating-wave
approximation. Then Eq. 19 reduces to

σ̇z ≈ −i
2g

h̄
(σ+a

+ − aσ−). (20)

In the next step, we will express the right-hand side of Eq. 20 in terms
of σz(t). Similar to the consideration in the previous Section, we use the
equation of motion for the operators σ+a

+, σ−a. Thus we have

(∂t+ iωqr)σ+a
+ = i

g

h̄
σza

+(a+−a)+ i
g

2h̄
(1−σz)+σ+

(

f0c
+ +

∑

n

fnb
+
n

)

. (21)

Using Eq. 12 and neglecting the term containing a+a+, we can rewrite Eq.
21 as
(

∂t + iωqr +
κ

2

)

σ+a
+ = −i

g

h̄
σz

(

a+a+
1

2

)

+ i
g

2h̄
+σ+

(

f0c
+ +

∑

n

fnb̃
+
n

)

. (22)

Using Eqs. 7 and 14, we obtain from Eq. 22
(

∂t + iωqr +
κ

2

)

σ+a
+ = σ̃+

(

f0c
+ +

∑

n

fnb̃
+
n

)

− i
g

h̄

[

σz

(

a+a+
1

2

)

−
1

2

]

+

gσz

h̄ωqr

(

f0c

ω̃dr + iκ/2
+

∑

n

fnb̃n
ω̃nr + iκ/2

)(

f0c
+ +

∑

n′

fn′ b̃+n′

)

. (23)

Let us average both sides of Eq. 23 over the thermostat variables. Then
again considering σz as a slowly varying function of time, we can easily
obtain 〈σ+a

+〉bath from Eq. 23 in the form

〈σ+a
+〉bath =

ig
(

e(−iωqr−κ/2)t − 1
)

h̄(iωqr + κ/2)

{[

σz

(

nb
r +

1

2

)

−
1

2

]

+
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i
σz

ωqr

(

|f0c|
2

ω̃dr + iκ/2
+

∑

n

f 2
n〈bnb

+
n 〉

ω̃nr + iκ/2

)}

, (24)

where we have neglected the initial (at t = 0) correlations of the operator σ+

with the operators a+, c+. The value of nb
r is given by Eq. 17 in which the

last term, representing the contribution of qubit, can be omitted due to its
small value.

The expression for 〈aσz〉bath can be derived in a similar manner. Then
the equation for σz is:

σ̇z =
2g2

h̄2ω2
qr

{[

2ωqr sin(ωqrt)e
−κ

2
t + κ

(

1− cos(ωqrt)e
−κ

2
t
)][

1

2
− σz

(

nb
r +

1

2

)]

−

σz
|f0c|

2

ω̃2
dr + κ2/4

[

2ω̃dr

(

1 − cos(ωqrt)e
−κ

2
t
)

+ κ sin(ωqrt)e
−κ

2
t
]}

. (25)

Because ωqr >> κ/2, we can omit in Eq. 25 the oscillating terms that are
proportional to κ and ω̃dr. Thus, the rate equation reduces to

σ̇z =
2g2

h̄2ω2
qr

{[

2ωqr sin(ωqrt)e
−κ

2
t+κ

][

1

2
−σz

(

nb
r+

1

2

)]

−σz
2ω̃dr|f0c|

2

ω̃2
dr + κ2/4

}

. (26)

In the absence of drive (f0 = 0), Eq. 26 describes small-amplitude
thermostat-induced Rabi oscillations with frequency ωqr. These oscillations
decay during the coherence time, ∼ 2/κ, of the resonator field. The oscilla-
tions are accompanied by a slow qubit relaxation to the stationary value

σst =
(

1 + 2〈b+n bn〉|ωn=ωr

)−1

. (27)

(See, for example, Ref. [29].) The amplitude of oscillations depends on:
the occupancies of the bath states, 〈b+n bn〉|ωn=ωr

, the cavity losses, κ/2, and
the qubit-resonator detuning, ωqr. In the case of an equilibrium bath, σst

coincides with the equilibrium value known in the literature. It can be derived
in an alternative manner using the density matrix formalism.

The case of f0 6= 0 is more interesting in view of the possibility of using
the drive to measure (control) the qubit. The preferred setup is realized if
the microwave field is in resonance with the cavity-qubit system in which the
qubit is in a given eigenstate (for example, in the excited state: ωd = ωr +χ).
(This is the case for which the last term in braces of Eq. 26 vanishes.) The
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measuring device can resolve the resonator frequencies ωr ±χ, corresponding
to the different eigenstates of the qubit, only if the measurement time, τ ,
is greater than (2χ)−1. At the same time, τ should be as small as possi-
ble to provide rapid control. Moreover, during the measurement time, the
qubit evolves as described by the rate equation (26), thus decreasing the
measurement fidelity F . As a consequence of the measurement, an arbitrary
superposition qubit state collapses to one of the eigenstates with σz = ±1.
The characteristic time of the collapse (defined here as the decoherence time)
is assumed to be considerably shorter than τ . Therefore, the fidelity of the
measurement, F , for the qubit in the post-collapse state, |1 >, is defined as

F =
1

τ

∫ τ

0
dt|β(t)| =

1

τ

∫ τ

0
dt

(

1 − σz

2

)1/2

≈ 1 −
g2(nb

r + 1)

h̄2ω2
qr

(

1 −
sin(ωqrτ)

ωqrτ

)

.

(28)
For simplicity, we have considered the case τ < 2/κ in which σz is given by

σz(t) ≈ −1 +
8g2(nb

r + 1)

h̄2ω2
qr

sin2
(

ωqrt

2

)

.

The oscillating term indicates that there is a small probability of the qubit
to be in the ground state. Taking into account ωqrτ >> 1, we have

F ≈ 1 −
g2(nb

r + 1)

h̄2ω2
qr

, (29)

where in contrast to σz(t) the fidelity does not display the oscillating behav-
ior. This is because the value of σz is averaged over the interval τ which is
greater than the oscillation period, τ >> |ωqr|

−1.
Eq. 29 illustrates the effect of the Rabi oscillations, generated by the

external drive and bath, on the fidelity. For longer measurement times,
τ > 2/κ , all terms in Eq. 26 should be used to calculate σz(t) and F (τ).

It seems from Eq. 29 that the fidelity can be improved for smaller inter-
action parameters. But decreasing g will decrease χ = g2/(h̄2ωqr). In view
of the inequality τ > (2χ)−1 and using Eq. 29, we obtain

τ >
nb

r + 1

2(1 − F )ωqr

. (30)

It follows from Eq. 30 that if we want a higher fidelity, F , the increase of
the measurement time is required. This corresponds to the results of papers
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[30] and [31] where the problems of charge qubit readout and quantum state
tomography on the qubit were studied.

We have described theoretically a single-shot measurement in which the
initial qubit was assumed to be in either the excited or the ground state. The
evolution of the superposed state can be investigated experimentally by the
repetition of many single-shot measurements. The rate equation for 〈σz(t)〉
[the averaging is over the initial state, ψ(t = 0)], corresponding to this kind
of the experiment, can be derived in a manner similar to Eq. 26. It is given
by

〈σ̇z〉 =
κg2

h̄2ω2
qr

[

− 〈σz〉(ϕ
+ + ϕ−) + ϕ− − ϕ+ + 1

]

, (31)

where the initial (oscillatory) stage of evolution is ignored;

ϕ± ≡ ϕ(σz = ±1), ϕ(σz) = nb
r +

1

2
+

2ω̃dr

κ

|f0c|
2

ω̃2
dr + κ2/4

. (32)

In the derivation of Eq. 31 the following identities were used:

ϕ(σz) =
1

2
[(1 + σz)ϕ

+ + (1 − σz)ϕ
−].

and

σzϕ(σz) =
1

2
[(1 + σz)ϕ

+ − (1 − σz)ϕ
−]. (33)

The solution of Eq. 31 is given by

〈σz(t)〉 = σst +
(

〈σz(t = 0)〉 − σst

)

e−γt, (34)

in which the stationary value, σst, and the relaxation constant, γ, are given
by

σst =
ϕ− − ϕ+ + 1

ϕ− + ϕ+
, γ =

kg2(ϕ− + ϕ+)

h̄2ω2
qr

. (35)

In the limiting case f0 = 0, σst reduces to the previous result given by Eq.
27. In the limit of dominating drive in Eq. 17 (nb

r >> 1 for the resonance
conditions, ωd = ωr ± χ), the qubit relaxes to the ground or excited states,
respectively. In the case of large resonator-drive detuning, |ωdr| >> χ, the
last term in Eq. 32 can dominate. Then 〈σz〉 relaxes to zero.
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5 Conclusion

We have described a qubit-resonator system with an external drive and ther-
mostat. Our consideration is based on the equations of motion of the op-
erators in the Heisenberg representation. This is in contrast to the widely
used density matrix approach. Considering the resonator-bath, resonator-
drive, and resonator-qubit interactions as weak perturbations, we have de-
rived expressions for the resonator field including the renormalization of the
resonator frequency caused by the qubit-resonator interaction. A weak qubit-
environment interaction is a necessary condition for reliable isolation of the
qubit from the “external wold.

Also, we have derived the rate equation for the qubit variable, σz, describ-
ing the occupancies of the qubit levels. The solution of this rate equation
enables us to calculate the measurement fidelity, F , and to determine the
dependence of F on the measurement time, τ : increasing fidelity requires
increasing the measurement time. (See Eq. 30.) Both quantities are very
important parameters in view of the practical implementations of qubits.
Therefore, the optimal choice of F and τ should be carried out considering
their interdependency given by inequality 30.

The qubit relaxation, caused by the interactions with the bath and the
drive, can be used to control the final qubit state. In particular, it follows
from Eqs. 31-35 that, by varying the frequency and amplitude of the drive
as well as the interaction time, t, we can get a qubit with a predetermined
probabilities to be in the ground or excited state.
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