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The Hong-Ou-Mandel interference dip is caused by an entangled state, a delocalized bi-photon
state. We propose a method of detecting this entanglement by utilizing inverse Hong-Ou-Mandel
interference, while taking into account vacuum and multi-photon contaminations, phase noise, and
other imperfections. The method uses just linear optics and photodetectors, and for single-mode
photodetectors we find a lower bound on the amount of entanglement.

PACS numbers:

I. INTRODUCTION

Quantum interference effects that arise when single photons impinge on a beam splitter are crucial to linear-optics
quantum computing schemes [1–3], with the other indispensable nonlinear ingredient provided by photon-counting
measurements. One such linear-optics quantum interference effect was observed for the first time in 1987, by Hong,
Ou, and Mandel, and it still carries their name [4]. In the Hong-Ou-Mandel interference (HOMi) effect, two photons
in otherwise identical modes impinge on two different input ports of a 50/50 beam splitter, and, thanks to bosonic
interference, always emerge together in one of the two output ports. More precisely, the output state can be expressed
in Fock states as

|Ψ〉AB = (|0〉A |2〉B − |2〉A |0〉B)/
√

2. (1)

Here A and B denote the two output modes, with identical polarizations, frequencies, and transverse spatial quantum
numbers, and differing only in their propagation directions. Great progress has been made recently in building
waveguide circuits on chips, with which high-visibility interference fringes involving multi-photon states with high
purity such as |Ψ〉 can be observed [5].

The aspect of the output state |Ψ〉AB that interests us here is that it, provided the modes A and B are spatially
separated, is entangled. For instance, the pure state |Ψ〉 can be shown to violate Bell-type inequalities [6]. What
concerns us in particular, is how one could verify the entanglement of noisy versions of the ideal state, containing,
e.g., phase noise and contaminations with states with different numbers of photons (no photons at all, one photon in
total, or more than two photons in total). As it turns out, standard measurements and operations used in, e.g., [5]
to characterize and manipulate few-photon states are indeed sufficient for entanglement verification, provided (but
this is a far from trivial proviso) all photo detectors detect photons only in particular modes. That is, if we assume
our detectors are sensitive only to one particular polarization, spectral profile, and transverse spatial mode, then
the method we present here will unambiguously detect entanglement even if the actual input state (with arbitrary
numbers of photons in it) has a multi-mode character. Moreover, in this case we can construct lower bounds on the
amount of entanglement as well. The reason is, that such a detection scheme is equivalent to a protocol where a
filtering operation is applied to the input state that keeps only photons in the desired modes. Since this operation is
local, the amount of entanglement of the resulting filtered state cannot be larger, on average, than the entanglement
present in the input state.

On the other hand, if we drop the assumption about the single-mode character of our detection devices, then the
problem of verifying entanglement of a delocalized two-photon state becomes much more involved, also when compared
to the similar problem of verifying entanglement of a delocalized single photon [7, 8]. We will give the essential reason
for this difference and present solutions for the multi-mode multi-photon entanglement verification problem that will
work if the state under investigation is sufficiently close to a single-mode entangled state.

It may be interesting to compare our entanglement verification scheme to a scheme proposed in Refs. [9, 10],
which likewise uses the HOM interference effect (but in its fermionic version) to detect entanglement. The latter
scheme detects entanglement between electrons, and assumes the number of electrons in each input port of a 50/50
beamsplitter is fixed and known, whereas we do not assume a fixed photon number. Indeed, such an assumption
is perfectly fine for first-quantized electrons, but not for second-quantized photons. Moreover, we use the inverse
HOM effect to detect entanglement in a state: ideally, we have either two photons or no photons in each input mode,
whereas Refs. [9, 10] consider, in the ideal case, one electron in each input mode, and then use the proper HOM effect
for entanglement detection.
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Finally, we recall that the (proper) HOM effect has been used to detect entanglement between two input photons
(see, e.g., Ref. [11] and references therein). It’s still true that the assumption that there is exactly one photon in each
input port is not warranted in general, but, for entanglement verification, it is an allowed filtering operation, as it
is local. In contrast, filtering on having two photons in total in the two input ports (which operation we would like
to perform for our case) would be nonlocal. Also note that in our case, the output of the inverse HOMi experiment
would ideally be a product state of two photons.

II. ENTANGLEMENT VERIFICATION FOR SINGLE-MODE STATES

A. Defining “single mode”

Let us first consider so-called single mode states, by which we mean states where any photons present are in the same
transverse spatial, spectral, and polarization modes, with the understanding that they can differ in their direction
of propagation (there are two such modes in our case, spatially separated, which we call modes A and B). Since
experiments typically must be repeated in time, we do allow the spectral mode functions φ(ω) to differ by a phase
factor exp(iωT ) with T a known delay time, without the photons losing their single-mode character.

We could, in principle, perform tomography on the full state to determine its density matrix and from this calculate
a measure of entanglement, e.g., the concurrence or negativity of the state, and thus determine whether the state is
entangled. However, since we shouldn’t assume anything about the Hilbert space that the state lives in (since we want
be able to verify the entanglement on noisy versions of our ideal state), we would have an infinite number of matrix
elements to determine. Even if we were to make restrictive assumptions about the Hilbert space of the state, it would
still require numerous measurements to fully determine the state. For example, if we assumed that the state did not
contain more than two photons, this would still leave a 6x6 density matrix to determine. If we are not interested in
fully characterizing the state, but merely in verifying its entanglement we do not need to do so much work. Instead
of trying to exactly calculate a measure of entanglement of the state, we can instead calculate a lower bound which
will allow verification of entanglement of the state with far fewer measurements.

B. Local filtering

Let the state whose entanglement we are trying to verify be called ρ. A bound on the entanglement can be found
in the following way. Suppose we were to apply the following local filtering operations: we ask about each of the two
spatially separated modes A and B two questions

Filter “1′′ : Is there exactly 1 photon in the mode?
Filter “2′′ : Are there more than 2 photons in the mode?

We consider this filtering a success if the answer is “no” to both questions [cf. Eq. (1)]. The probability then of
successful filtering is P̃ = P0,0 + P0,2 + P2,0 + P2,2, where Pi,j is the probability to find i photons in mode A and
j photons in mode B in the unfiltered state ρ. This filtering collapses our state to one living in the smaller Hilbert
space spanned by |0〉A|0〉B , |0〉A|2〉B , |2〉A|0〉B , and |2〉A|2〉B . At this point we have a state represented by a density
matrix with up to 16 nonzero elements. To simplify calculations we can further bound the state’s entanglement by
assuming we apply another local operation, which in addition requires classical communication:

Local operation + CC : “phaseshift′′ :
apply the same random phase shift to both modes

thus destroying any coherence between states with different numbers of photons and reducing the number of nonzero
matrix elements to at most 6.

C. Entanglement criterion

The end result of filtering is of the (normalized) form

ρ̃ =
1
P̃

 P0 0 0 0
0 P0,2 d 0
0 d∗ P2,0 0
0 0 0 P2,2

 (2)
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Since concurrence is an entanglement monotone and ρ̃ is the result of only local operations and classical communication
applied to ρ, the concurrence of ρ̃ bounds the concurrence of ρ: P̃C(ρ̃) ≤ C(ρ). The concurrence of ρ̃ is

P̃C(ρ̃) = max[ 0, 2|d| − 2
√
P0P2,2 ] (3)

which is greater than zero when

P0P2,2 < |d|2. (4)

Thus ρ̃ is provably entangled if ineq. (4) holds true, and so too is ρ. Similarly, since negativity is also an entanglement
monotone, the negativity of ρ̃ bounds the negativity of ρ in the same way: P̃N (ρ̃) ≤ N (ρ). But calculating the
negativity of ρ̃ results in exactly the same bound as found by calculating the concurrence: the state is provably
entangled if P0P2,2 < |d|2.

Now we must find a way to bound |d|2. Since d = P̃ 〈02|ρ̃|20〉 = 〈02|ρ|20〉 we don’t need to physically perform any
of the filtering mentioned above, as we can determine the needed information, d, from the unfiltered state ρ. To do
this, consider placing the two modes of ρ on the two input ports of a lossless 50/50 beamsplitter. We will label the
input modes A and B, and the output modes C and D. The transformation between input mode creation operators
and output creation operators can be written as follows (after adding, for convenience, a π/2 phase shift to mode D
to compensate for the π/2 phase shift upon reflection)

a† → c† + d†√
2

and b† → c† − d†√
2

(5)

which allows us to calculate photo-detection probabilities Qi,j for the output modes, where Qi,j is the probability to
find i photons in mode C and j photons in mode D. It can be shown that

Q1,1 =
1
2

(P2,0 + P0,2 − d− d∗) , (6)

which gives (
Q1,1 −

P2,0 + P0,2

2

)2

=
(
d+ d∗

2

)2

= <(d)2 ≤ |d|2. (7)

So when

P0P2,2 <

(
Q1,1 −

P2,0 + P0,2

2

)2

(8)

the state can be said to be provably entangled. Figure 1 plots both sides of our inequality (8) for many randomly
picked separable states, to show how this criterion indeed verifies entanglement. Moreover, the figure caption identifies
the states lying on the borderline between separable and verifiably entangled.

D. An additional phase shift

Our condition (8) will not detect entanglement in an input state, even when it is in fact present, when d is largely
or purely imaginary. But if one were to apply a phase shift to one of the modes before placing the state on the beam
splitter and vary that phase until Q1,1 was maximized (the same local operation with classical communication as
performed in [5]), this would maximize <(d)2, thus making ineq. (4) equivalent to (8). In other words, such states
then can be detected by our criterion. Take, for instance, the state

ρ1 :=
1
6
|00〉 〈00|+ 1

3
(|20〉+ i |02〉)(〈20| − i 〈02|) +

1
6
|22〉 〈22| . (9)

For this state |d|2 = 1
9 and P0P2,2 = 1

36 so by ineq. (4) the state is in fact entangled. However <(d)2 = 0, so ineq. (8)
will not detect the entanglement. But if we apply a phase shift of exp(iπ2 ) to one of the modes then d will become
purely real (and so Q1,1 will be maximized), and ineq. (8) will detect the entanglement. As Figure 2 (top) shows, for
this state with a phase exp(iφ) applied to the first mode, entanglement will be detected when φ is between 1

6π and
5
6π or between 7

6π and 11
6 π. A similar, but more noisy state,

ρ2 :=
1
3
|00〉 〈00|+ 1

4
(|20〉+ i |02〉)(〈20| − i 〈02|) +

1
6
|22〉 〈22| , (10)

will have a smaller range of detectable entanglement, specifically when φ is between .39π and .61π or between 1.39π
and 1.61π (see Figure 2, bottom part).
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FIG. 1: (Color online)Scatter plot of the right-hand side vs the left-hand side of our entanglement criterion (8). Red dots lie on
the boundary of entanglement vs separable, and correspond to pure separable states of the form (|0〉A +a|2〉A)⊗ (|0〉B + b|2〉B)
where a and b are real. Blue triangles corresponds to mixtures of two randomly generated separable states of the form
(|0〉A + a1|1〉A + a2|2〉A)⊗ (|0〉B + b1|1〉B + b2|2〉B) (with complex coefficients).

FIG. 2: (Color online)
ˆ
Q1,1 − 1

2
(P2,0 + P0,2)

˜2
, that is, the right-hand side of inequality (8), for the state ρ1 (top), defined in

(9), and the more noisy ρ2 (bottom), defined in (10), as a function of a phase shift exp(iφ) applied to the first mode. The
shaded region represents for which values of φ entanglement will be detected by ineq. (8) [both states are entangled for any
value of φ].

E. Asymmetric beamsplitters

To bound d we placed our state on a 50/50 beamsplitter, but it is easy to generalize our analysis to beam spitters
which are not equally balanced. Suppose our beam splitter has a (real) reflection coefficient r and a (real) transmission
coefficient t =

√
1− r2 such that the input creation operators transform as

a† → rc† + td† and b† → tc† − rd† (11)
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Following the same analysis as before we find that if

P0P2,2 <

(
Q1,1 + P1,1(t2 − r2)

4r2t2
− P2,0 + P0,2

2

)2

(12)

the state is provably entangled.

F. Losses

We conclude this Section by noting that it is straightforward to take into account the influence of losses and
inefficient photo detectors. Namely, all our measurements boil down to counting photons in the end (with the results
being typically 0 or 1, sometimes 2, and rarely 3). Provided all loss rates and detector inefficiencies are known, one can
infer the actual photon number distributions [to be used in inequalities (8) or (12)] from the measured distributions
by inversion.

III. CONSIDERATIONS CONCERNING MULTI-MODE MULTI-PHOTON STATES

We made the assumption at the beginning of our analysis that any photons present are in the same transverse
spatial, spectral, and polarization mode. However if our detectors only detect a certain single mode we can drop the
assumption that the photons being in the same mode as this is equivalent to a local filtering. That is, using single
mode detectors is equivalent to an additional filtering performed on each of the spatially separated modes, filtering
out all photons not in the single mode of interest before detection takes place. What if we drop the assumption of
single-mode detectors?

Suppose we have an input state in which the photons present are not all in the same transverse spatial, spectral,
and polarization mode. The entanglement verification scheme described above did assume that the two photons in the
filtered state (after the local filtering operations “1” and “2”) are in the same mode, because of the explicit assumption
that there is interference (of the “inverse HOM” type) taking place on a beam splitter. But this assumption does
affect how we interpret the results of the measurements: in particular, the quantity Q11 (which we would like to be
large) could be dangerously contaminated with contributions from those input states that lead to larger values of Q11

for photons in different modes than for photons in the same modes. For example, if we start with an output state
with one photon in each output port, but of different colors, then applying the inverse beam-splitter transformation
yields an input state that has this undesired property. The question is to what extent we can avoid or correct for the
presence of such input states.

A. A corrected entanglement criterion

One way of correcting for these unwanted states is to subtract the contribution from the worst possible kind of
state, i.e., one that maximizes the right hand side of Eq. (8) without HOM entanglement, such as the state mentioned
above

(|10〉red + |01〉red)⊗ (|10〉blue − |01〉blue) /2 (13)

While this state has twice as much entanglement as the HOM state, it is not the type of entanglement we are interested
in trying to detect here. A state such as this with a probability P o2 of detecting two photons of different color will
contribute at most 3P o1,1/2 to the quantity being squared on the rhs of Eq. (8), so we will compensate for this possible
contribution by subtracting 3P o1,1/2. For states close to the ideal state the contamination of different colored photons
will be small and thus the correction will be small. We can also construct a bound that does not rely on measuring
the probability of detecting two photons of different colors, since it is always less than or equal to the probability of
detecting two photons of any color(P o1,1 ≤ P1,1.) Using this, our (conservative) condition for entanglement becomes

P0P2,2 < (max[Q1,1 − P1,1 − P2/2 , 0 ])2 (14)

B. Nonexistence of local filters for sameness of modes

It would be nice if we could find a local filtering operation that checks whether two input photons propagating in
one direction are in the same mode with respect to the other quantum numbers or not. There is certainly no von



6

Neumann measurement that achieves that goal, as the target states are not all orthogonal. But, surprisingly, we
cannot even construct a POVM that does the trick: the reason is that even if we start with a state that contains
two photons in orthogonal modes, say described by creation operators a†1 and a†2, then we can view the same state as
a superposition of two states, each with the two photons in identical modes, as described by the creation operators
a†± = (a†1 ± a

†
2)/
√

2. This results from the identity

a†1a
†
2 =

(a†+)2 − (a†−)2

2
. (15)

This is then the essential difference between single-photon states and multi-photon states, which makes entanglement
verification much harder for two-photon states than for single-photon states! Moreover, this also illustrates a difference
between bosons and fermions: in the case of two fermions there is an antisymmetric subspace, and, e.g., we can
certainly perform a measurement that checks whether two spin-1/2 systems have different spins (singlet state!) or
not.

C. An alternative local operation

All is not quite lost, as we can still apply other sorts of local operations that are useful for the analysis of entan-
glement of the input state. In particular, suppose that our input state is some coherent superposition of, e.g., the
desired state |0〉A |2〉B − |2〉A |0〉B and an unwanted state |1〉A1

|1〉A2
|0〉B (with photons in different modes). There is

a local operation that transforms this superposition into an incoherent mixture of these two states: for each pair of
orthogonal modes Ak and Bk (picked from some fixed basis: that’s the essential difference from the no-go statement
from the preceding subsection) apply a random k-dependent phase shift, and then forget the precise phase shifts ap-
plied. This operation will only preserve the coherence of superpositions of photons in the same spectral, polarization
and transverse modes in A and B. That is, by a local operation we can transform the input state into a state of the
form

ρ = Psρ
s + (1− Ps)ρ⊥, (16)

where the first term denotes states that do display (inverse) HOM interference, and the second term states that do
not; Ps is the probability of observing HOM interference, given ρ. The point is that we have now separated the input
state in two parts, the first part of which is the state for which our method demonstrates entanglement (see below for
further elaborations of this point). The second term has no entanglement, since any superpositions in that term have
been destroyed. Its presence could imply the state ρ is not entangled, even if ρs is, namely if 1− Ps is too large. We
will not solve the (hard) general problem of identifying for what values of Ps and for what states ρs, entanglement of
the latter still implies entanglement of ρ.

Let us return to the statement that ρs is entangled, if our verification method succeeded. We still have to discuss the
fact that our method assumed that both photons are in one particular mode, whereas for photons in ρs we only know
they are in the same mode, but not in which one. This does have consequences for the amount of entanglement (see
[12] for extensive discussions of this issue), but not for the bare fact that the state is entangled. We can demonstrate
this by showing that the state ρs can be distilled (the following protocol is far from optimal, and one can easily
improve its efficiency; here its point is only an existence proof): just take two copies of ρs; first determine a particular
mode such that the projection of ρs onto that mode is entangled; then perform on each of the A and B modes a
joint measurement that counts how many photons in that particular mode there are in total in the two copies. If the
answer is “2” for both A and B, we have an entangled state in that one particular mode. In this highly inefficient
protocol the average amount of entanglement decreases (unless only a single mode is occupied), but it stays nonzero.
Hence ρs must be entangled.

For clarity, let us add that the point of the distillation protocol is not that it would be used in an actual entanglement
verification experiment. Instead, it is just a theoretical construct used to show that ρs must be entangled, by showing
it contains a nonzero amount of distillable entanglement. For that limited theoretical purpose, it is sufficient to
consider any suitable ideal protocol, including one that uses single-mode photo detectors.

IV. SUMMARY

We demonstrated how the inverse HOMi effect can be used to verify the mode entanglement present in a state of
the form (|0〉 |2〉− |2〉 |0〉)/

√
2, and noisy versions thereof. If the photons in the state are all “single-mode”, that is, all

have the same polarization, the same transverse mode profile and the same spectral profile, then our method easily
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bounds the amount of entanglement from below. That directly gives a criterion, inequality (8), which, when satisfied
for a given single-mode state, is sufficient to prove entanglement. We analyzed how the applicability of the criterion
can be improved simply by applying an additional phase shift to one of the two modes. The operations needed to
verify entanglement can be implemented with linear optics, and are just those demonstrated in the experiment of [5].

We discussed how the problem of verifying entanglement in the delocalized two-photon state with the inverse
HOMi effect becomes more “interesting” (a euphemism for “complicated”) without this single-mode assumption [more
precisely, when both the input state and one’s photo detectors are multi-mode], and why a delocalized single-photon
state does not suffer from these complications. On the other hand, the interpretation of violating a Bell inequality
with unbalanced homodyne measurements [6] is immune to the single-mode or multi-mode character of the input
state, at the small cost of requiring phase-locked local oscillators, thus showing an advantage of Bell inequalities in
the context of entanglement verification.

We gave a simple solution to the full problem of inverse HOMi multi-mode multi-photon mode entanglement, based
on bounding the deviation of the actual state from a single-mode state. This solution works well when that deviation
is sufficiently small. It yields an entanglement criterion (14), similar to, but more conservative than (8).

This material is based upon work supported by the National Science Foundation Graduate STEM Fellows in K-12
Education Program under Grant No. DGE-0742540.
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