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We analyze the effect of position dependent excitation phase on the properties of entanglement between two

qubits formed in atomic systems. We show that the excitation phase induces a vacuum mediated quantum inter-

ference in the system that affects the dynamical behavior of entanglement between the qubits. It is also found

that the quantum interference leads to a coherent population transfer between the symmetric and antisymmetric

states which can considerably modify the dynamics of two-qubit entanglement and can even prevent finite time

disentanglement (sudden death) under certain conditions.
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I. INTRODUCTION

Quantum interference (QI), an intriguing consequences of

the superposition principle has led to numerous fascinating

phenomena such as coherent population trapping [1], las-

ing without inversion [2], electromagnetically induced trans-

parency [3], and quantum entanglement [4–6]. The applica-

tion of QI in generation of bipartite entanglement both in dis-

crete [7, 8] and continuous-variable [9, 10] settings has been

the focus of current investigation. Note that bipartite entan-

glement involving two atoms, extensively used for implemen-

tations of various quantum information protocols [11–16], is

known to be quite fragile in the face of decoherence [11, 17].

In view of this, in the past few years considerable effort has

been devoted to the study of dynamical aspect of two atom en-

tanglement in presence of decoherence [18–26]. In one such

study [18] it was found that in contrary to the adverse effect

of spontaneous emission on atomic entanglement [24], coop-

erative spontaneous emission in two atom systems can gen-

erate entanglement among the atoms. It is worth mention-

ing here that the problem of cooperative spontaneous emis-

sion first addressed by Dicke [27] is known to exhibit sev-

eral counter-intuitive phenomena in two atom systems [28]

namely, directed spontaneous emission [29], Lamb shift [30],

single photon Dicke superradiance [31] and others. In re-

cent times, with the discovery of atom like behavior of semi-

conductor quantum dots [33–35] and their utilization towards

solid state quantum computing [33–36], we have a new class

of systems where the phenomenon of cooperative spontaneous

emission can be of immense importance from the context of

quantum information sciences.

Recently, Ooi et al. [37] studied the effect of position

dependant excitation phase on the population dynamics, in-

tensity and spatial and angular correlations for two two-level

atoms interacting via their dipoles. The results show that the

excitation phase considerably modifies the dynamics of the

system. Later, Das et al. [38] investigated the effect of the

position dependent excitation phase on the Dicke cooperative
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emission spectrum. A strong quantum correlation among the

atoms was reported in presence of the excitation phase. This

was attributed to a vacuum mediated QI generated in the two

atom system in presence of the position dependent excitation

phase. The result of [38] qualitatively indicates that the spa-

tial variation of the excitation phase can affect the generation

and evolution of entanglement in the system. It may be added

that, such vacuum mediated QI and its effect has been ear-

lier studied in atomic systems [28, 39–41]. Further, a recent

work has predicted how one can use such QI to protect bipar-

tite entanglement [42]. While these earlier works utilize the

quantum interference that comes about due to the configura-

tion of the atomic system, we are motivated at studying the

effect of quantum interference induced by the position depen-

dent excitation phase.

To understand the effects of such QI on the two atom en-

tanglement, we in this paper perform a systematic study of

the time evolution of entanglement measure for two strongly

dipole coupled atoms undergoing a cooperative spontaneous

emission. We consider various initial quantum states in which

the two atoms can be prepared and explore the effects on the

dynamical behavior of entanglement that results as a conse-

quence of the quantum interference. We explicitly take into

account the position dependent excitation of the atoms by in-

troducing timed Dicke basis [29]. It is important to understand

that the entanglement in a two atom system crucially depends

on the cooperative decay rates, the initial conditions, and the

dipole-dipole interactions [21], all of which gets modified due

to the quantum interference. It is worth mentioning here that

QI arising from position dependent phase in such timed Dicke

basis was explored in a recent study in context to population

dynamics and photon correlation studies in two atom systems

[37]. We however in this current work are interested in investi-

gating the effect of such QI on the entanglement of two atoms.

For instance, for the system initially prepared in the symmet-

ric timed Dicke state, a coherence between the symmetric and

antisymmetric states is dynamically generated as a result of

the QI between the two pathways to the ground state. This

coherence leads to considerably slow decay of entanglement.

The organization of the paper is as follows. In Sec. II we

discuss our model and write down the dynamical equation for

our system using a master equation approach. Then in Sec. III

we discuss the entanglement measure and derive generalized
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analytical expressions in the timed Dicke basis for the two

atom system. In Sec. IV, we then consider two initial condi-

tions: for the atoms prepared in pure states and mixed state

and show explicitly that the vacuum mediated QI induced by

excitation phase can lead to considerable modification of two

atom entanglement behavior. We provide analytical and nu-

merical results in support of our propositions. Finally, we

summarize our results in Sec. V.

II. MODEL AND EQUATIONS OF EVOLUTION

We consider a system of two qubits formed by the excited

states |ei〉 and ground states |gi〉 (i = 1, 2) of two identical

two level atoms. The qubits are fixed at positions r1 and r2

and the inter-atomic distance is less than the wavelength of

the radiation field, λ. We further assume that the qubits are

coupled to one another by a dipole-dipole interaction and are

coupled to the environment via an interaction with a common

vacuum reservoir. The time evolution of the density operator

for such a two-qubit system can be treated in a master equation

framework and is given by [28]

d

dt
ρ = −iω0

2
∑

i=1

[σz
i , ρ] − i

2
∑

i6=j

Ωij [σ
†
i σj , ρ]

−
2

∑

i,j=1

γij(ρσ†
i σj + σ†

i σjρ − 2σjρσ†
i ), (1)

where ω0 is the atomic transition frequency, σz
i = (σ†

i σi −
σiσ

†
i )/2 is the energy operator with σ†

i (σi) being the raising

(lowering) operator for ith atom, Ωij and γij for i 6= j are

respectively, the dipole-dipole interaction term and the coop-

erative decay rate given by

Ωij =
3

2
γ

[

(1 − 3 cos2 θ)

(

sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3

)

− (1 − cos2 θ)
sin(k0rij)

k0rij

]

(2)

and

γij =
3

2
γ

[

(1 − cos2 θ)
sin(k0rij)

k0rij

+ (1 − 3 cos2 θ)

(

cos(k0rij)

(k0rij)2
− sin(k0rij)

(k0rij)3

) ]

, (3)

where 2γ ≡ 2γ11 = 2γ22 = 2|~℘eg|2ω3/3πε0~c3 is the spon-

taneous decay rate of the individual qubits. ~℘eg is the dipole

moment, k0 = 2π/λ with λ being the wavelength of the emit-

ted radiation and θ is the angle between the direction of the

dipole moment and the line joining the ith and the jth qubits,

and rij = |ri − rj | is the interqubit distance. In this paper we

assume that the orientation of the dipole moment is random

and hence Eqs. (2) and (3) simplifies considerably and take

the form

Ωij = −γ cos(k0rij)/k0rij , (4)

γij = γ sin(k0rij)/k0rij . (5)

We next consider the preparation of initial state of the

qubits. For this purpose we assume that the qubits interacts

with a very weak laser field (almost at a single photon level)

propagating with a wave-vector k0. The interaction with the

weak field can lead to a resonant single photon absorption pro-

cess. It is important to note that we consider the direction of

the wave-vector to be different to that of the inter-qubit axis.

This thus generate a position dependent excitation phase of

the qubits when ever a photon is absorbed. The excitation pro-

cess, with the laser field treated classically and in the rotating

wave approximation, can be described by the Hamiltonian

V = −~Ω
2

∑

j=1

(σ+
j eik0·rj e−i(ν0−ω0)t + adj.), (6)

where Ω = de1g1
·E/~ = de2g2

·E/~ is the Rabi frequency and

ν0 is the angular frequency of the incident radiation. Note that

the position dependent phase factors in the Hamiltonian would

substantially affect the dynamical behavior of the correlation

in the two qubit system. We except that this in turn will lead

to modification of entanglement among the qubits. The inves-

tigation of any such modification in the entanglement feature

is the key focus of this paper. In order to investigate the ef-

fect of position dependent excitation phase on the dynamics it

proves to be convenient to work in a basis defined by the phase

factors. Such a basis was introduced in Ref. [29] in context

to directed spontaneous emission from an ensemble of atoms

and is also known as the timed Dicke basis. To this end, for

our system of two qubits there are four timed Dicke states:

|e〉 = |e1e2〉eik0·r1+ik0·r2 , (7)

|s〉 =
1√
2
(|e1g2〉eik0·r1 + |g1e2〉eik0·r2), (8)

|a〉 =
1√
2
(|e1g2〉eik0·r1 − |g1e2〉eik0·r2), (9)

|g〉 = |g1g2〉. (10)

In terms of this basis the equations of evolution for the ele-

ments of the density operator are:

ρ̇ee = −4γρee, (11a)

ρ̇es = − [3γ + γ12 cosϕ + i(ω0 − Ω12 cosϕ)]ρes

+ i sinϕ(γ12 − iΩ12)ρea, (11b)

ρ̇ea = − [3γ − γ12 cosϕ + i(ω0 + Ω12 cosϕ)]ρea

+ i sinϕ(γ12 + iΩ12)ρes, (11c)

ρ̇eg = −2(γ + iω0)ρeg, (11d)



3

FIG. 1: (Color Online)Energy level diagram for two two-level atoms in bare basis (a) and in the timed Dicke basis (b). The frequency shift

∆ = Ω12 cos ϕ occurs as a result of dipole-dipole interaction between the two atoms. The collective states |s〉 and |a〉 decays at a rate of Γ+

and Γ− respectively, where Γ± = 2(γ ± γ12 cos ϕ).

ρ̇ss = − 2(γ + γ12 cosϕ)ρss − i sinϕ(γ12 + iΩ12)ρas

+ i sinϕ(γ12 − iΩ12)ρsa + 2(γ + γ12 cosϕ)ρee,
(11e)

ρ̇aa = − 2(γ − γ12 cosϕ)ρaa − i sinϕ(γ12 − iΩ12)ρas

+ i sinϕ(γ12 + iΩ12)ρsa + 2(γ − γ12 cosϕ)ρee,
(11f)

ρ̇as = − 2(γ − iΩ12 cosϕ)ρas + i sinϕ(γ12 + iΩ12)ρss

+ i sinϕ(γ12 − iΩ12)ρaa − 2iγ12 sin ϕρee, (11g)

ρ̇gs = − [γ + γ12 cosϕ − i(ω0 + Ω12 cosϕ)]ρgs

+ i sinϕ(γ12 − iΩ12)ρga

+ 2(γ + γ12 cosϕ)ρse + 2iγ12 sinϕρae, (11h)

ρ̇ga = − [γ − γ12 cosϕ − i(ω0 − Ω12 cosϕ)])ρga

− i sinϕ(γ12 − iΩ12)ρgs

− 2(γ − γ12 cosϕ)ρae + 2iγ12 sin ϕρse, (11i)

ρ̇gg =2(γ + γ12 cosϕ)ρss + 2(γ − γ12 cosϕ)ρaa

+ 2iγ12 sin ϕ(ρas − ρsa), (11j)

where ϕ = k0 · (ri − rj) = 2π
λ rij cos ξ with ξ being the angle

between the laser propagation direction and the line joining

the two atoms.

Inspection of Eqs. (11b) and (11c) shows that the pres-

ence of atom-atom interaction gives rise to collective level

shift (Lamb shift) which is as a result of repeated emission

and absorption of short-lived virtual photons [30–32]. The

level shift arises due to the atom-atom interaction only occurs

in states |s〉 and |a〉. The other collective states |e〉 and |g〉 do

not see any level shift due to this interaction as per Eq. (11d).

That is, the energy difference between the |e〉 and |g〉 remain

2ω0. The state |s〉 is shifted up while the state |a〉 is shifted

down by an equal amount ∆ = Ω12 cosϕ from the single

photon resonance line as shown in Fig. 1b. It is interesting to

note that one can manipulate the level shift by only orienting

the laser field appropriately with respect to the line joining the

two atoms. For example, ϕ = π/2, i.e., when the angle be-

tween the laser propagation direction and the line joining the

two atoms is ξ = π/3 and the interatomic distance equal to

half of the radiation wavelength, r12 = λ/2, the level shift

vanishes. Thus it is possible to control the level shift by ap-

plying a laser field in a particular direction without turning off

the dipole-dipole interaction.

Further, we note that the transition probability from the ex-

cited state |e〉 to the one photon states, |s〉 and |a〉, is the sum

of the probability of each transition. Since it is the probabil-

ity, and not the probability amplitudes that adds up we don’t

expect quantum interference phenomenon to occur. However,

the transition probability from the one photon states, |s〉 and

|a〉 to the ground state |g〉 is obtained by squaring the sum of

the amplitude of each transition. When there is a coherence

between the two states (|s〉 and |a〉), this can lead to quantum

interference yielding coherent population transfer between |s〉
and |a〉. Indeed, the populations in |s〉 and |a〉 is coupled to

the coherence ρas as per Eqs. (11e)-(11g). It is worth to note

that this coupling disappears when the direction of propaga-

tion of the laser field is perpendicular to the interqubit axis

ξ = π/2 (ϕ = 0). Therefore, we see that in the presence of

a position dependent excitation phase ϕ quantum interference

is induced in the system. In this paper we hence explore to

what extent the quantum interference developed in the system

affects the dynamical properties of the bipartite entanglement

between the two qubits.

III. ENTANGLEMENT MEASURE

In general a state of a quantum system is said to be entan-

gled when the density operator of the composite system can-

not factorize into that of the individual subsystems. There are

several entanglement measures for two-qubit system in the lit-
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erature. However, we use the concurrence, a widely used en-

tanglement monotone, for our purpose. The concurrence, first

introduced by Wooters [43], is defined by

C(t) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (12)

where λ1 > λ2 > λ3 > λ4. {λi} are the eigenvalues of the

matrix ρρ̃ in which ρ̃ = σy ⊗ σyρ∗σy ⊗ σy with σy being the

Pauli matrix. The concurrence takes values ranging from 0 to

1. For maximally entangled state C(t) = 1 and for separable

state C(t) = 0.

In general, for a dissipative system, without any external

driving field, the density matrix of the qubits system has the

form

ρ(t) =







ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44






(13)

in the following basis set

|1〉 = |e1e2〉eik0·(r1+r2)

|2〉 = |e1g2〉eik0·r1

|3〉 = |g1e2〉eik0·r2

|4〉 = |g1g2〉. (14)

Note that for a quantum state initially prepared in a block form

of (13), the time-evolved density matrix will have the same

block form, i.e., the zeros remain zero and the nonzero com-

ponents evolve in time [21, 26]. We next proceed to calculate

the concurrence for the qubits system initially prepared in the

form of (13). To do so, one has to determine the matrix ρ̃
in the basis where ρ is expressed. Using the definition of the

density matrix ρ̃, we obtain

ρ̃(t) =







ρ44 0 0 ρ14

0 ρ33 ρ23 0
0 ρ32 ρ22 0

ρ41 0 0 ρ11






. (15)

Thus the square root of the eigenvalues of the matrix ρρ̃ are:

{
√

λi} = {√ρ22ρ33 ± |ρ23|,
√

ρ11ρ44 ± |ρ14|}. (16)

There are two possible expressions for the concurrence, de-

pending on the values of the eigenvalues. The first case is that

when |ρ23|+
√

ρ22ρ33 be the largest eigenvalue. This leads to

a concurrence

C1(t) = 2(|ρ23| −
√

ρ11ρ44). (17)

While if |ρ14| +
√

ρ11ρ44 is the largest eigenvalue then the

concurrence takes the form

C2(t) = 2(|ρ14| −
√

ρ22ρ33). (18)

Depending on the initial condition used, one of the con-

currence expressions suffices to measure the entanglement

present in the qubits system. Further, inspection of (17) and

(18) shows that C1(t) would be positive and hence the mea-

sure of entanglement when the one photon coherence is larger

the square root of the product of the populations in the excited

and ground states. On the other hand, for C2(t) to be a mea-

sure of entanglement for the system the two photon coherence

should be greater than the square root of the product of the

population in one photon excited states.

In order to gain insight into the physics it is convenient to

express the concurrences in terms of timed Dicke basis intro-

duced earlier. To do so, one has to apply a unitary transforma-

tion UρU † on the density matrix given by (13). The matrix U

is given by

U =









1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1









. (19)

The elements of the density matrix UρU † is related to that of

ρ by

ρee = ρ11

ρeg = ρ14

ρaa =
1

2
(ρ22 + ρ33 − (ρ23 + ρ32))

ρss =
1

2
(ρ22 + ρ33 + ρ23 + ρ32)

ρas =
1

2
(ρ22 − ρ33 + ρ23 − ρ32)

ρsa =
1

2
(ρ22 − ρ33 − (ρ23 − ρ32)). (20)

Therefore the concurrence can be expressed in terms of the

timed Dicke basis as

C(t) = max(0, C1(t), C2(t)), (21)

where

C1(t) =
√

(ρss − ρaa)2 + 4[Im(ρas)]2 − 2
√

ρeeρgg (22)

C2(t) = 2|ρeg| −
√

(ρss + ρaa)2 + 4[Re(ρas)]2. (23)

This expression for concurrence will be used in the following

section to study the dynamical evolution of entanglement in

the two-qubit system by considering various initial conditions.

IV. ENTANGLEMENT DYNAMICS OF TWO IDENTICAL

QUBITS

Using the entanglement measure introduced in the previ-

ous section we study the effect of the position dependent ex-

citation phase by considering pure and mixed state as initial

conditions.
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FIG. 2: (Color online) A scheme illustrating a proposed method to prepare symmetric timed Dicke state |s〉. A similar scheme has been

proposed to excite one atom in a cloud of N atoms [29]. The nonlinear crystal (NLC) down converts the a pump photon into signal-idler pair.

A click on detector (D1) indicates generation of the pair and hence no click on the second detector (D2)–assuming a perfect detector–means

the other photon (k0) conditionally excite one of the atoms.

A. Initial pure states

In the two-qubit system one might consider a pure sepa-

rable or entangled state as an initial condition. For instance,

for pure separable state, one can take the two atom excited

state, |e〉. Even though this is unentangled state at the ini-

tial time, the interaction of the atoms with the environment

leads to weak transient entanglement [18, 21]. The effect of

quantum interference induced by position dependent excita-

tion phase is unimportant in this case and thus we rather focus

on pure entangled state as an initial condition.

We take the initial state of the two-qubit system to be the

symmetric state |s〉. This state is a pure maximally entan-

gled state and can be prepared using correlated pair of pho-

tons generated from a parametric down conversion process in

which one of the photons is sent to a detector (D1) and the

other is directed towards the atoms. A click on the detector

(D1) tells us that the other photon is sent to the atoms. If the

second detector (D2) registrars a count then no atom is ex-

cited. However, if D1 shows a click and D2 does not then

we know that one of the atoms is excited, but we don’t know

which one (see Fig. 2). This leads to a superposition state

|s〉. Recently, Thiel et al. [44] proposed a method to prepare

all the symmetric states using a linear optical tools. We seek

to investigate the dynamics of entanglement of the two qubits

as they interact with the environment and with each other via

their electric-dipoles.

In terms of the timed Dicke basis the initial density matrix

has only one nonzero element namely ρss(0) = 1; all the rest

of matrix elements are zero. Since there is no initial two pho-

ton coherence ρeg(0) = 0, according to Eq. (11d), it remains

zero all the time. As a consequence the expression given by

(23) will be negative and hence cannot be used as entangle-

ment measure. Moreover, it is easy to see that for initial con-

dition we considered, ρee(t) = 0. In view of this expression

(22) takes the form

C1(t) =
√

(ρss − ρaa)2 + 4[Im(ρas)]2 > 0 (24)

and thus the concurrence can be written as

C(t) = max(0, C1(t)). (25)

This expression shows that the concurrence is unity at t = 0
as it should be.

Disregarding the relative phase shift (ϕ = 0) the solutions

of the elements of the density matrix in Eq. (24) turn out to be

ρss(t) = exp[−2(γ + γ12)t], ρaa(t) = 0, and ρas = 0, which

leads to

C(t) = max(0, e−2(γ+γ12)t). (26)

We immediately see that the concurrence depends only on the

symmetric state population, ρss(t). As there is no single pho-

ton coherence generated in this case, population transfer be-

tween the |s〉 and |a〉 does not occur. As a result the initial

entanglement experiences an enhanced decay due to the col-

lective decay rate (γ12) and goes asymptotically to zero as

t → ∞. For nonidentical atoms, however, even though the

entanglement has the same behavior as identical atoms at the

initial time, it exhibits revival at later times [18]. Here the de-

tuning plays an important role in creating coherence between

the symmetric and antisymmetric states, which is the basis for

entanglement in the two-qubit system. In the following we

rather show, by taking into account the spatial phase depen-

dence of the atomic states, that quantum interference in the

system leads to a population transfer between the symmetric

and antisymmetric states and hence generation of coherence

(ρas).

The phase shift that an atom experiences during the exci-

tation process contain physical information about the excited

atom. For example, in the phase factor associated with an ex-

cited atom exp(ik · rj) the term k · rj = ω0n̂ · rj/c ≡ ω0ti
indicates that the atom located at position rj is excited at dif-

ferent times ti. This has been discussed in the context of di-

rected spontaneous emission and collective Lamb shift in re-

cent years [29, 30]. Here we present how this phase factor can

be used to improve the entanglement at later times.

In one photon subspace [ρss(0) = 1] and for nonzero spa-

tial excitation phase the important equations read [38]

ρ̇ss = − 2(γ + γ12 cosϕ)ρss − i sinϕ(γ12 + iΩ12)ρas

+ i sin ϕ(γ12 − iΩ12)ρsa, (27)

ρ̇aa = − 2(γ − γ12 cosϕ)ρaa − i sinϕ(γ12 − iΩ12)ρas

+ i sin ϕ(γ12 + iΩ12)ρsa, (28)

ρ̇as = − 2(γ − iΩ12 cosϕ)ρas + i sinϕ(γ12 + iΩ12)ρss

+ i sinϕ(γ12 − iΩ12)ρaa. (29)
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These equations fully describe the dynamical behavior of the

population transfer between the symmetric and antisymmet-

ric states and the coherence developed between them under

the given initial condition. We particularly note that the co-

herence critically depends on the spatial excitation phase (ϕ).

It is not difficult to see from these equations that for a laser

propagating perpendicular to the interqubit axis (ϕ = 0) there

will be no coherence, which in turn implies the initial popula-

tion in the symmetric state directly decays to the ground state

without ever being transferred to the antisymmetric state. In

this decay process the maximum entanglement present at the

initial time will be washed out in short time. Therefore, for

this particular initial condition, one has to play around with

the spatial excitation phase to avoid enhanced decay of the

entanglement.

Using the analytical solutions of the Eqs. (27)-(29) the con-

currence can be expressed as

C(t) = max(0, C1(t)), (30)

where

C1(t) =e−2γt[(cos ϕ cosh 2γ12t − sinh 2γ12t)
2

+ sin2 ϕ cos2 2Ω12t]
1/2. (31)

Inspection of (31) shows that the presence of the excitation

phase brings in the dipole-dipole interaction (Ω12) into the

dynamics. This is in contrast with the case where ϕ = 0 in

which the concurrence is independent of the interatomic inter-

action. Note that it is the initial preparation of the state that

determines the dynamical behavior of the two-qubit system.

To better understand to what extent the excitation phase mod-

ifies the concurrence and hence the entanglement between the

qubits, we graphically present the concurrence in Fig. 3.

In Fig. 3 we show the evolution of the concurrence as a

function of the angle between the direction of propagation of
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FIG. 3: (Color online) Plots of the time evolution of concurrence

C1(t) with initial condition ρss(0) = 1, for interatomic distance

r12 = λ/8 (γ12/γ = 0.9, Ω12/γ = −0.9) for different values of

ξ-the angle between the direction of propagation of the laser and the

line joining the two atoms. The inset shows the populations in the

symmetric and antisymmetric states for ξ = 0(ϕ = π/4).
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FIG. 4: (Color online) Plots the imaginary part of coherence be-

tween the symmetric and antisymmetric states ρas with initial con-

dition ρss(0) = 1, for interatomic distance r12 = λ/8 (γ12/γ =
0.9, Ω12/γ = −0.9) and for ξ = 0.

the laser and the line joining the two atoms (ξ) for the two-

qubit system prepared initially in the symmetric state |s〉 and

for interatomic distance r12 = λ/8. As we have discussed ear-

lier the concurrence corresponding to ϕ = 0 exhibits a sharp

decrease and ultimately goes to zero for t → ∞. The situa-

tion for nonzero excitation phase is different; the concurrence

sharply diminishes during the decay time of the symmetric

state [2γ + γ12 cosϕ]−1 and shows a bit of revival and decays

slowly before it goes to zero at t → ∞. This can be under-

stood by looking at the inset of the Fig. 3, where we plotted

the time evolution of populations in the symmetric and anti-

symmetric states. As can be clearly seen from this inset that

for ϕ 6= 0(ξ = 0), quantum interference leads to coherent

transfer of population from the initially populated state |s〉 to

antisymmetric state |a〉 [37] and hence generation of coher-

ence between these levels as illustrated in Fig. 4. This co-

herence is responsible for the entanglement observed between

the qubits.

B. Initial mixed state

We next consider the two qubits initially prepared in a

mixed entangled state [24] given by the density matrix

ρ(0) =
1

3
(a|1〉〈1| + (1 − a)|4〉〈4| + (b + c)|Φ〉〈Φ|) (32)

in which |Φ〉 = 1√
b+c

(
√

b|2〉 + eiχ
√

c|3〉) and the normaliza-

tion condition reads (1 + b + c)/3 = 1. Here a, b, c and χ
are independent parameters which determine the initial state

of the two entangled qubits. Note that the above state is a

form of generalized Werner state. The initial condition given

by (32) can be written in the basis of (13) as

ρ(0) =
1

3







a 0 0 0
0 b z 0
0 z∗ c 0
0 0 0 1 − a






(33)
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FIG. 5: (Color online)Plots of the time evolution of concurrence C(t)
with initial condition b = c = |z| = 1 and for a = 0.6, r12 = λ/8,

and for different values of the initial phase χ

where z =
√

bc eiχ is some initial single photon coherence

in the system and χ is the respective phase of the coherence.

Now applying the transformation given by (20), the initial

density matrix elements for b = c = |z| = 1 become

ρee(0) = a/3, ρaa(0) = (1 − cosχ)/3, ρgg(0) = (1 − a)/3

ρss(0) = (1 + cosχ)/3, ρas(0) =
i

3
sin χ.

Since ρes(0) = ρea(0) = ρgs(0) = ρga(0) = 0, the form

of the initial density matrix remain the same, i.e., all the zero

elements remain zero and the all the rest evolves in time. Un-

der this scenario the expression given by (23) will be negative

and hence cannot be an entanglement measure for the qubit

system. Therefore, (22) is the only candidate left to quantify

the entanglement between the qubits. For ϕ = 0 the system

of equations governing the dynamics of the two qubits can be

solved analytically. Using these solutions, solved under the

initial condition (33), the expression that describes the entan-

glement between the qubits, C1(t), turns out to be

C1(t) =
2

3
e−2γt

{[

(cosχ cosh 2γ12t − sinh 2γ12t + aη1(t))
2

+ sin2 χ cosh 2Ω12t
]1/2 −

√

3a(1 − η2(t))
}

, (34)

where

η1(t) =
(γ2 + γ2

12)

γ2
12 − γ2

sinh 2γ12t

+
2γγ12

γ2
12 − γ2

(e−2γt − cosh 2γ12t), (35)

η2(t) =
a

3
e−4γt +

2

3
e−2γt

[

cosh 2γ12t − cosχ sinh 2γ12t

+ a
(γ2 + γ2

12)

γ2
12 − γ2

(e−2γt − cosh 2γ12t)

− a
2γγ12

γ2
12 − γ2

sinh 2γ12t)
]

. (36)
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FIG. 6: (Color online)Plots of the time evolution of concurrence with

initial condition b = c = |z| = 1 and for χ = π/2, r12 = λ/8
(γ12/γ = 0.9, Ω12/γ = −0.9), for different values of the initial

populations a.

We immediately see from this result that the concurrence de-

pends on the parameters a, which characterizes the initial pop-

ulations of the doubly excited state i.e. when both the qubits

are excited and on the phase parameter χ which determines

the initial populations in the symmetric and antisymmetric

states as well as the coherence between them. If we con-

sider that the qubits are coupled independently to their respec-

tive vacuum environment (γ12 = 0) and are well separated

in position (r12 ≫ λ) so that the dipole-dipole interaction

(Ω12 → 0), C1(t) reduces to

C1(t) =
2

3
e−2γt

[

1 −
√

a(1 − a + 2α2 + α4a)
]

where α(t) =
√

1 − exp(−2γt). Note that C1(t) is indepen-

dent of the initial phase χ. This coincides with the earlier

results of Yu and Eberly [24].

In the following we study the dependence of the concur-

rence and hence the entanglement between the qubits on vari-

ous system parameters. Figure 5 shows the time evolution of

the concurrence for r12 = λ/8 and a = 0.6 and for different

values of the initial phase, χ. We observe from this figure that

the initial entanglement between the qubits vanishes and ex-

hibits revival. The amplitude of revival and the revival time

(the time at which the entanglement revive in the system) are

directly related to the initial coherence in the system. The

higher the initial coherence the higher the amplitude of re-

vival and the shorter the revival time is. Not surprisingly the

magnitude of revival diminishes when the initial coherence

decreases. Now keeping the initial coherence at its maximum

value (χ = π/2), we investigate the influence of the popu-

lation distribution between the excited and ground states on

the concurrence. Figure 6 shows the evolution of the concur-

rence for χ = π/2 and for different values of a. This figure

indicates that when the initial population in the excited state

grows the transient entanglement falls sharply and even disap-

pears for a = 0.8 (ρee(0) ≈ 0.27) in the short time window.

The entanglement then shows revival and a slowly damping
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FIG. 7: (Color online)Plots of the evolution of concurrence with ini-

tial condition b = c = |z| = 1 and for r12 = λ/8 (γ12/γ =
0.9, Ω12/γ = −0.9), χ = π/2 and for the direction of propagation

of the laser field perpendicular (ξ = π/2) and parallel (ξ = 0) to the

line joining the two atoms.
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a = 0.6
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FIG. 8: (Color online)Plots of the imaginary part of the one photon

coherence ρas with initial condition b = c = |z| = 1 and for r12 =
λ/8 (γ12/γ = 0.9, Ω12/γ = −0.9), χ = π/2 and for the direction

of propagation of the laser field perpendicular (ξ = π/2) and parallel

(ξ = 0) to the line joining the two atoms.

behavior afterwards for all values of initial populations.

We next analyze the evolution of entanglement in the sys-

tem by introducing the spatial excitation phase ϕ into the dy-

namics. By comparing the previous results for ϕ = 0 with

the numerical plots for ϕ 6= 0, we discuss the effect of the

excitation phase on the entanglement dynamics. Our results

are summarized in Figs. 7 and 8. In Fig. 7, we present

a comparison of concurrence taking into account the spatial

excitation phase ϕ = π/4 (ξ = 0) and in the absence of

excitation phase, ϕ = 0 (ξ = π/2) for interatomic dis-

tance less than the radiation wavelength, r12 = λ/8. Re-

call that ϕ = (2π/λ)r12 cos ξ, where ξ is the angle between

the laser propagation direction and the line joining the two

atoms. These plots clearly show that the excitation phase ef-

fectively protects the initial entanglement from experiencing

a sudden death and even enhances the entanglement from its

initial value during the revival period. The amount of entan-

glement then drops gradually and approaches zero at t → ∞.

It is worth noting that the spatial excitation phase creates ad-

ditional coherence and hence improves the revival magnitude

over that observed for the case ϕ = 0. This enhanced coher-

ence, as shown in Fig. 8, is a signature of stronger entangle-

ment between the qubits

V. CONCLUSION

We have investigated the effect of quantum interference in-

duced by position dependent excitation phase on the dynam-

ical behavior of entanglement between two interacting qubits

coupled to a common vacuum reservoir. We have considered

both pure and mixed entangled states for our analysis. Our

results show that for the atoms initially prepared in a sym-

metric state, the excitation phase induces quantum interfer-

ence in the two-qubit system that leads to coherent popula-

tion transfer between the symmetric and antisymmetric states.

This thus creates a coherence which in effect slows down the

otherwise fast decay of two-qubit entanglement considerably.

Hence we find that the evolution of entanglement crucially

depends on the coherence between the symmetric and anti-

symmetric states. Furthermore, when the qubits are prepared

in a Werner type mixed entangled state the entanglement is

known to suffer sudden death. However, if one takes into ac-

count the excitation phase into the dynamics the entanglement

exhibits revival. This revival is attributed to strong coherence

developed between the symmetric and antisymmetric states.

A viable candidate for realization of our findings would be

semiconductor quantum dots. Note that coupled quantum dots

with interdot distance less than the radiation wavelength has

already been investigated in context to quantum gates [45] and

photoluminescence spectra [33]. As a future perspective, one

can further study the effect of virtual processes on the dynam-

ics of the system as these processes are known to influence the

evolution of the symmetric and antisymmetric states.
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