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We develop a model for predicting the thermal emission spectrum of a 2D metallic photonic crystal
for arbitrary angles based on coupled-mode theory. Calculating the appropriate coupled-mode
parameters over a range of geometrical parameters allows one to tailor the emissivity spectrum to
a specific application. As an example, we design an emitter with a step-function cutoff suppressing
long-wavelength emission, which is necessary for high-efficiency thermophotovoltaic systems. We
also confirm the accuracy of the results of our model with finite-difference time-domain simulations.

PACS numbers: 42.70.Qs, 44.40.+a

I. INTRODUCTION

The spectral emissivity of a blackbody is the upper
limit that any material can achieve. However, in cer-
tain applications it is desirable to have an emitter that
radiates only within a certain frequency bandwidth, a
selective emitter. Photonic crystals, metallo-dielectric
structures with periodic wavelength-scale refractive in-
dex modulations, are well-suited for creating a selective
emitter by virtue of possessing photonic bandgaps [1–
5]. Using metals introduces more flexibility in creat-
ing a selective emitter; below the plasma frequency of
the metal, electromagnetic fields are strongly attenuated
[6, 7], which assists broadband frequency selectivity [6–
14]. However, the high infrared reflectivity of metals im-
plies via Kirchhoff’s law, a low emissivity [15] and there-
fore requires a modification of the surface, by a 1D ar-
ray of grooves [8] or a 2D array of holes [9–11, 14], to
enhance emission at those frequencies. The surface peri-
odicity allows light to couple to grazing, diffracted plane
waves or surface plasmons, if they are present. Moreover
if the grooves or holes are large enough they will support
waveguide resonances that couple to one another provid-
ing another mechanism for enhancing thermal emission
by increasing the interaction time of light with the ma-
terial. While previous work [8–10, 14] has demonstrated
that the peaks due to waveguide resonances occur at fre-
quencies corresponding to the isolated waveguide reso-
nant frequencies, the mechanism and quantitative pre-
diction for the amplitude of the peaks were missing. Here
we show that matching the radiative and absorptive rate
of the photonic crystal resonances dictates the emissivity
spectrum, and by tuning a small number of geometri-
cal parameters, tailoring a broadband, selective thermal
emitter becomes possible.

In particular, one such application of a selective broad-
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FIG. 1: Emissivity spectrum of flat, bulk tungsten (blue)
and an ideal selective emitter (green) designed to match the
0.6 eV/~ bandgap of InGaAs.

band emitter is in thermophotovoltaics (TPV). In TPV,
the emitter, such as a slab of tungsten, is heated to a
high temperature, radiating the majority of its energy
in the infrared and onto a photovoltaic (PV) cell with a
bandgap designed to lie in the infrared [16, 17]. InGaAs,
for example, possesses a bandgap of 0.6 eV/~ [10, 18].
However, low efficiency and power density are obtained
since the typical greybody has low emissivity in the in-
frared; this is remedied with the selective emitter.

II. LOSS RATES OF WAVEGUIDE
RESONANCES

Consider the emissivity spectra illustrated in Fig. 1.
The ideal selective emitter should only emit photons
above a cutoff frequency. Here, the cutoff frequency cor-
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FIG. 2: A periodic array of cylindrical holes with period a,
depth d, and radius R etched into a slab of tungsten. The
hole depth is less than the tungsten slab thickness.

responds to the electronic bandgap of InGaAs. Tungsten,
which has a high melting point and low emissivity beyond
the cutoff frequency, is far from an ideal selective emitter.
However, the introduction of a periodic array of holes, il-
lustrated in Fig. 2, can greatly improve its selectivity via
the creation of extra states on the surface that couple to
external radiation.

Intuitively the radiative and absorptive rates of
these coupled waveguide resonances should depend more
strongly on the hole radius R and depth d than on the
period a, therefore consider first a single, isolated hole
(a→∞). Because the field can penetrate into tungsten,
the resonant mode within an isolated hole will be a linear
combination of HE and EH-like modes. Only resonances
with angular number ν = 1 will be considered since only
those resonances in a periodic array of holes couple to
plane waves at normal incidence. In addition, for the
R and d values considered here for Q-matching, ν = 1
yields the lowest resonances. The hole resonances expe-
rience three types of losses: radiation through the top,
absorption on the side walls and bottom, and absorption
on the front tungsten surface. Since the last mechanism
is a second-order effect dependent on the radiative rate,
it is neglected. If the two remaining loss rates are not too
large compared to the resonant frequency, then each can
be calculated in the absence of the other [19]. From each
loss rate a quality factor Q = ωoτ/2 is calculated, where
ωo is the resonant mode frequency and τ is the lifetime (or
inverse loss rate) associated with a particular loss mech-
anism. The quality factor is a dimensionless lifetime:
after Q periods a resonance decays by exp (−2π). When
these two loss rates are equal– the Q-matching condition,
complete absorption of incident radiation occurs.

The loss rate due to absorption can be closely approx-
imated by closing the top with a perfectly conducting
metal. A perfect magnetic conductor cover, correspond-
ing to a electric field maximum at the opening, could just
as well be employed since the absorptive rate does not de-
pend much on which boundary condition is used. Finite-

difference time-domain (FDTD) simulation is used to
simulate the closed hole [20, 21]. A point source is placed
in the cavity, and resonant modes are excited whose loss
rates are extracted by a filter-diagonalization method
[22]. The resonant frequency ωoa/2πc and absorptive
quality factor Qabs = ωoτabs/2 are plotted in Fig. 3(a)
and Fig. 3(b) as functions of the cavity radius and depth
for the first three hole resonances. The general trend of
Qabs decreasing towards the left can be understood from
an equivalent definition of Q, Qabs = ωoU/Pabs. Decreas-
ing the hole volume reduces the total field energy U of
the mode and forces a larger value of the electric field on
the tungsten surface thereby raising Pabs.

The radiative quality factor Qrad = ωoτrad/2, plotted
in Fig. 3(c) as a function of R and d, is obtained by
replacing tungsten with a perfect conductor in simula-
tions. The lack of an intrinsic length scale implies that
Qrad will depend only on the ratio d/R and is manifested
in Fig. 3(c) as lines emanating from the origin. It can be
shown to leading order in d/R that

Qrad ∝
(
d

R

)3

(1)

through Qrad = ωoU/Prad. The stored field energy

(a)

(b)

(c)

FIG. 3: (a) Resonant mode frequency in units of 2πc/a with
a = 1 µm, (b) Qabs, and (c) Qrad of the lowest three modes.
The absorptive and radiative Q are plotted on the same color
scale. Q-matching of the first resonance is indicated by the
white line.
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is approximately the product of the hole volume and
the electric field intensity at the hole center, U ≈
ε0R

2d|Ecenter|2. The radiated power is the product of
the Poynting field at the cavity opening and the area
of the opening, Prad ≈ R2|Eopening|2/(cµ0). From nu-
merical simulations of holes with R and d varied sep-
arately one obtains |Eopening|/|Ecenter| ≈ 2R/d, which
gives Qrad ∝ ωod

3/(cR2). Expressing the resonant fre-
quency ωo in terms of the geometric parameters yields
the desired result to leading order in d/R. FDTD simu-
lations confirm Eq. 1, but with an exponent slightly less
than 3.
Q-matching is attained wherever the two surfaces,

Qabs(R, d) and Qrad(R, d), intersect. For the first res-
onance this occurs on the white line in Fig. 3(c). Above
the line Qrad is too large, the hole is under-coupled to ex-
ternal radiation. Below itQrad is too small and the hole is
over-coupled to external radiation, power can effectively
couple into the hole, but it’s trapped for too short a time
to be absorbed. Critical coupling is achieved by tuning
the radius to increase Qrad to a high enough value.

III. EFFECT OF PERIOD

The optimal dimensions for a periodic array of holes
may not be the same as for an isolated hole. Since the far
field of neighboring holes can destructively interfere Qrad

may increase. Moreover, Q-matching has been achieved
for spherical waves converging onto the hole. The pe-
riod’s effect on Qrad can be determined through a field-
matching formalism described in Ref. 23. In this for-
malism, the field above the perfect conductor slab is ex-
panded in a plane wave basis, the field inside the holes
is expanded as a linear combination of waveguide modes,
and boundary conditions are imposed to produce a set
of linear equations for the field amplitudes. It is found
that Qrad is typically larger than that of an isolated hole
due to partial, destructive interference of the far field.
The period can change Qrad by about 50% relative to
the isolated hole Qrad. Most of the variation in Qrad

occurs near periods where there exists diffracted plane
waves that are resonant with a waveguide mode. During
this resonance it is possible for Qrad to be less than that
of the isolated hole value. Qabs, on the other hand, is
not expected to change by more than a few percent for
holes that are separated by a skin depth or more since
that coupling is exponentially dependent on the separa-
tion [24]. Nonetheless, the Q-matching condition of the
isolated holes can serve as a guide towards the optimal
hole parameters for the photonic crystal slab.

Using the previously built intuition we simulate a tung-
sten photonic crystal with hole dimensions predicted to
satisfy Q-matching: R = 0.5 µm, d = 1.89 µm, and pe-
riod a = 4.8µm. A normally incident, linearly polarized
plane wave is directed at the tungsten photonic crystal
slab. Perfectly matched layers (PML) terminate the com-
putational cell above the slab and periodic boundary con-

FIG. 4: Absorption spectrum for the tungsten photonic crys-
tal slab with a = 4.8µm, R = 0.104a, and d = 0.394a.
Diffraction appears as sharp peaks and resonant peaks due
to photonic crystal modes appear at approximately 2.7 and
3.4 2πc/a.

dition (k‖ = (kx, ky) = 0) on the sides. (PML is unnec-
essary below since the slab is opaque to radiation.) The
absorptivity spectrum is calculated from the reflectivity
spectrum A(ω) = 1−R(ω). The emissivity spectrum, for
normal emission, is obtained from the absorptivity spec-
trum via Kirchhoff’s law which states that for a body
in thermal equilibrium, emissivity and absorptivity must
match at each frequency, wave vector, and polarization
[15, 25, 26]. Due to the large period, the emissivity spec-
trum of the a = 4.8µm crystal, Fig. 4, is essentially that
of flat tungsten with sharp peaks due to grazing plane
waves or Bragg-diffracted surface plasmons and broad-
ened photonic crystal resonances superimposed. Because

FIG. 5: Absorption spectra for photonic crystal slabs with
various a but R and d fixed at 0.5 and 1.89 µm, respectively.
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FIG. 6: A multimode resonator with resonant frequencies
ωi, absorptive and radiative lifetimes τabs,i and τrad,i, respec-
tively. Resonances radiatively couple to each other with rate
1/τij .

the holes occupy a small fraction of the surface, coupling
into the photonic crystal resonances from normal inci-
dence is weak. (However, Qrad of the first isolated hole
and photonic crystal resonance is 14.3 and 12.7, respec-
tively.) To realize a stronger frequency selectivity it is
necessary to adjust a; plotted in Fig. 5 are the emissivity
spectra for various a. As a is decreased, the first reso-
nant peak eventually appears below the diffraction limit,
ωa/2πc = 1. Further reduction of a pushes the diffraction
limit above additional resonances, increasing the band-
width of the high emissivity region. This can be contin-
ued up to a = 2R at which point the hole resonances are
strongly coupled to each other through the tungsten side
walls in addition to the nonradiative coupling via evanes-
cent plane waves. Clearly for small enough periods, such
as for a = 0.75µm, the photonic crystal resonances can
no longer be described as coupled waveguide resonances.
Note that at wavelengths much larger than a, different
absorptivities occur due to the varying ratios of air hole
to tungsten side wall volumes. In the long wavelength
limit the free electron density makes the dominant con-
tribution to the permittivity and effective medium theory
is valid. Decreasing the tungsten fraction decreases the
free electron density. This lowers the effective plasma
frequency which increases the absorption rate.

IV. COUPLED-MODE THEORY

We now focus on the a = 1.2µm emissivity spectrum
below the diffraction limit and understand it through
temporal coupled-mode theory [27–29]. The tungsten
photonic crystal can be thought of as a multimode res-
onator, illustrated in Fig. 6, with only three resonances
below the diffraction limit. Associated with each res-
onance is a resonant frequency ωi, absorptive lifetime
τabs,i, radiative lifetime τrad,i. In addition they can ra-
diatively couple to each other with a lifetime τij (i 6= j)
on the order of τrad,i [30]. The coupled-mode equations
for the multimode resonator are,

da
dt

= (iΩ0 − Γ)a +DT s+ (2)

s− = Cs+ +Da, (3)

where a is a three-component vector describing the reso-
nant mode amplitudes, Ω0 is a 3 × 3 diagonal matrix of
the resonant mode frequencies, Γ is a 3×3 matrix of decay
rates, s± are the incoming/outgoing channel amplitudes,
C is the direct pathway scattering amplitude, and D is
1 × 3 matrix of the resonance-channel coupling ampli-
tudes. The reflectivity is R = |s−/s+|2. The decay rate
matrix Γ can be separated into a radiative contribution
Γr and an absorptive contribution Γa with Γr,ii = 1/τrad,i

and Γa,ii = 1/τabs,i. The resonance-resonance coupling
rates, 1/τij , are given by the off-diagonal part of Γr

which are dependent on the radiative rates Γr,ii. The
dependence comes about through the matrix constraint
2Γr = D†D, which is a consequence of energy conser-
vation and reciprocity. In addition, the direct pathway
scattering matrix constrains the phases of D via the re-
lation CD∗ = −D. Since the front surface absorption is
neglected, the front surface is approximated as a perfect

FIG. 7: Absorptivity spectrum for a = 1.2µm calculated via
FDTD simulation (blue) and coupled-mode theory (red).
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conductor and C is set to −1. The phase of the elements
of D depend in part on how many ways the photonic crys-
tal resonances can couple to each other [30]. For instance,
in the case of hole depth equal to slab thickness, the pho-
tonic crystal resonances couple via the top and bottom
openings. If the resonances have with opposite parity,
then the resonances will not couple, i.e., τij →∞. Here,
the hole depth is less than the slab thickness by more
than a couple skin depths eliminating one of the chan-
nels, and so all resonances will radiatively couple to one
another. This also implies that the resonance-channel
coupling amplitudes will have the same phase.

From FDTD simulations we obtain ωi, τabs,i, and τrad,i

for each resonance. In particular, τrad,i is obtained from
simulating a unit cell of the photonic crystal with the
radius widened by a skin depth. The resulting emissiv-
ity spectrum is compared with the emissivity spectrum
obtained from the full FDTD simulation in Fig. 7. Since
coupled-mode theory is a perturbation theory, it is most
accurate for resonances with total Q � 1; here the res-
onances have total Q of 8.0, 4.4, and 6.3, respectively,
and unsurprisingly, the spectra display some differences.
The resonances above the diffraction limit are not taken
into account, doing so requires not only their resonant
frequencies and lifetimes, but also modifying the couple-
mode equations to include the extra channels that cor-
respond to diffracted plane waves. Accounting for the
first order diffraction at normal emission would in gen-
eral require s± to be a 10×1 vector (a channel for s- and
p-polarization at each reciprocal wavevector), D a 10×3
matrix, and C a 10×10 frequency-dependent matrix. For
frequencies much less than the cut-off frequency where
the absorption is due primarily to the front surface of
tungsten the coupled-mode equations here will not work.
In principle it can be accounted for in the coupled-mode
equations by considering the front surface absorption as
another channel [30]. Since the absorptivity spectrum is
accurately reproduced with only the coupled-waveguide
resonances, surface plasmons due to tungsten’s permit-
tivity can apparently be ignored. Surface plasmon res-
onances for flat tungsten would appear at a frequency
just under the diffraction threshold; at least for shallow
holes (corresponding to d/a < 0.1 in Ref. 4, 31), this re-
mains true. However, this portion of the absorption spec-
trum is well-reproduced with the coupled-waveguide res-
onances whose decay rates are matched. In cases where
surface plasmons are important, they could be included
into the coupled-mode equations once their decay rates
are known.

Off-normal emission (k‖ 6= 0) can be handled with this
framework as well. The absorptive Q will not change
much with k‖ as long as the holes are separated by at
least a few skin depths [24]. The mode-matching formal-
ism described earlier can be used to obtain the resonant
frequency and radiative Q for non-zero k‖. It is found
that the resonant frequency changes little with k‖; this
reflects the fact that the resonant peaks are due to cou-
pled hole resonances. The emissivity spectrum calculated

FIG. 8: Absorptivity spectrum for the same structure as in
Fig. 7, but with k‖a/2π = (0.1776, 0.1056). Peaks in the
emissivity would correspond to polar angles of 18 and 15◦

and azimuthal angle of 31◦.

by FDTD and coupled-mode theory for an arbitrary k‖ is
plotted in Fig. 8. It should be noted that the normal and
off-normal spectra display little difference, in particular
the first and second resonances retain nearly perfect emis-
sivity at polar angles of 18 and 15◦, respectively. This
high selectivity continues nearly unchanged up to the
diffraction threshold where new channels open and the
radiative Q drops in value. Once the diffraction thresh-
old is crossed it’s necessary to solve the coupled-mode
equations again. The direct-pathway scattering matrix
C can be obtained from the formalism of Ref. 23 by re-
ducing the depth of holes to eliminate the resonances.
The square of the magnitudes of the elements of D can
be obtained from the fraction of power radiated by each
resonance into each channel and the radiative Q. Finally,
the phases of the elements of D can obtained from solving
the equation CD∗ = −D.

V. APPLICATIONS AND CONCLUSIONS

Demonstrating that it is possible to predict the emis-
sivity spectra with only a few input parameters– the op-
tical constants of tungsten, a, R, and d, attention can be
directed towards applications. In TPV and solar TPV
(STPV), the radiated photons from a high temperature
radiator are captured and converted into electron-hole
pairs via a photovoltaic cell [16, 17]. In the case of
STPV, concentrated sunlight is used to heat the tan-
dem absorber-emitter structure which then radiates onto
a photovoltaic cell [32, 33]. In both cases, the emitter is
heated to over 1000 K. The selective emitter described
here can dramatically improve both the efficiency and
power density of the TPV/STPV system by enhancing
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the emission of above bandgap energy photons that di-
rectly generate electron-hole pairs in the PV cell, and
suppressing emission of low-energy photons that would
only heat the photovoltaic cell. Evidently, Fig. 8 shows
that this remains true even for large polar angles. More-
over retaining the low-energy photons contribute toward
keeping the emitter hot [34]. One such realistic structure
would be the tungsten photonic crystal in Figs. 7 and
8 which has a cutoff frequency of 0.67 eV/~. It can be
made to better match the 0.6 eV/~ bandgap of InGaAs
[18] by slightly widening the holes.

In conclusion we have demonstrated how Q-matching,
via the geometrical parameters, can be used to tailor
the emissivity spectrum of 2D metallic photonic crystals.
One advantage of this approach compared to FDTD or
finite-element methods is that the emissivity spectra can
be calculated much more quickly. This becomes impor-
tant when one considers that thermal radiation is inco-
herent, and the emissivity at all k‖ is needed. Once the

reflectivity spectrum as a function of frequency, polariza-
tion, and k‖ is obtained, the radiated power at a given
temperature can be obtained by averaging the emissivi-
ties over polarization, weighing by the Planck distribu-
tion, and integrating over k‖ and frequency.
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