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We study the problem of cooling a mechanical oscillator using the photothermal (bolometric) force.
Contrary to previous attempts to model this system, we take into account the noise effects due to
the granular nature of photon absorption. We achieve this by developing a Langevin formalism for
the motion of the cantilever, valid in the bad-cavity limit, which includes both photon absorption
shot noise and the noise due to radiation pressure. This allows us to tackle the cooling problem down
to the noise-dominated regime and to find reasonable estimates for the lowest achievable phonon
occupation in the cantilever.

I. INTRODUCTION

The optomechanics of deformable cavities was born in
the seventies from the seminal works of Braginsky [1].
In recent years the first successful observation of self-
cooling due to photothermal [2] and radiation pressure
[3–5] forces started a race to reach the quantum regime
of mechanical motion [6–17].

The self-cooling process usually involves an optical cav-
ity whose mirrors feel an optically-induced force propor-
tional to the cavity population. This force depends on the
mirror position because the cavity population depends on
the cavity length. If this dependence is delayed in time,
e.g., because the force depends on the position of the
mirror at an earlier time, then self-cooling of the mir-
ror motion can be achieved (given the right parameter
regimes [18]).

These optomechanical self-cooling schemes can be clas-
sified into different categories according to the nature of
the optically-induced force that dominates the cooling
process. The most commonly used self-cooling method
is the radiation pressure force that exploits the pressure
exerted by photons bouncing off the mirror. In this case,
the delay in the force is given by the cavity storage time;
that is, the time taken by the photon population inside
the cavity to adjust when the cavity length is modified.
The second kind of optically-induced force exploits the
thermal deformation of the mirror due to the absorption
of photons [19]. In this case, the delay is given by the heat
diffusion time through the mirror. This force, dubbed the
photothermal (or bolometric) force, has been observed in
multiple experiments and can be much stronger than the
radiation-pressure force in appositely designed systems
[2, 20, 21].

When either cooling mechanism brings the system to-
wards the quantum regime, it also becomes necessary to
consider (together with the dynamically-induced cooling
rate) the spontaneous heating rate given by the intrinsic
quantum noise. This is because photons are reflected,
or absorbed, one-by-one in both cooling schemes. In
the case of radiation-pressure-cooling, a quantum theory
exists [22–26] showing that, with the ideal parameters,
cooling to the ground state of the mirror motion is still

FIG. 1: (Color online) Schematic diagram of an optomechan-
ical system. The mechanical system, or cantilever, is fixed
on the (blue) left edge, and operates as a movable mirror
(right side, in orange) forming one half of an optical cavity
(shown by the red constriction). The grey disk is a non-
moveable (i.e., fixed) half-mirror. The optical and mechanical
modes are coupled via both radiation-pressure and photother-
mal forces. The optical cavity (bounded by the fixed grey disk
and the (orange) right edge of the cantilever) has equilibrium
frequency ωc, quality factor Qc, equilibrium length Lc, photon
lifetime Γc, and is pumped by an external laser with power
P and frequency ωp. The cantilever has thermal conductiv-
ity κ, length Lm, and surface area s. The cantilever mode
we consider for cooling has frequency ωm, effective mass m,
and quality factor Qm. The right edge of the cantilever ab-
sorbs photons at the rate α, and has a thermal deformation
coefficient χ.

possible. However, unlike the radiation pressure force,
until now the photothermal cooling process has not been
investigated in the quantum limit. This is due to the in-
trinsic difficulty in building a fully quantum theory of a
process that is fundamentally dissipative and involves a
macroscopic number of degrees of freedom (e.g., photon
absorption, heat diffusion, and thermal deformation).

Our goal in this paper is to construct a theory (albeit
a phenomenological one) rigorous enough to be able to
firmly answer questions of practical importance for ex-
periments that employ photothermal cooling. Mainly we
want to know whether it is possible to exploit photother-
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mal cooling to reach the quantum regime, and to identify
the bounds on parameters necessary to reach this regime.

The theory we construct uses the model of a cantilever-
mounted mirror [see Fig. 1] in order to be able to compare
with specific experiments. However, in principle one can
also apply our arguments to other systems, like microdisk
optomechanical systems [40, 41].

This paper is structured as follows: in Section II we
lay down our theory and analyze the results. After hav-
ing described the issue of residual heating due to photon
absorption in Section III, we will test our theory with nu-
merical data taken from a well documented experiment
in Section IV.

II. THEORY OF PHOTOTHERMAL COOLING

A. Basic approach

Our aim is to describe the process of self cooling of an
oscillation mode of a cantilever (see Fig. 1). In the follow-
ing, unless explicitly stated, we will always be considering
this specific mode. It is usually the fundamental (lowest
frequency) mode of the cantilever, but this depends on
the geometry of the optical cavity and the cantilever [21].

In the specific model we consider here, the cantilever
acts as one of the mirrors of a pumped photonic cavity.
The cantilever mode couples to the photonic field of the
cavity because the frequency of the cavity, and thus its
equilibrium population, depend on the cantilever posi-
tion. Assuming the pumping laser to be red detuned,
and referring to the coordinate axes as shown in Fig. 1,
we have that a shift of the cantilever toward positive x
will cause a lowering of the cavity frequency and thus an
increase in the photonic population (and vice versa).

Even with a very reflective coating there will always
be a residual photon absorption in the cantilever. When
a photon is absorbed in the cantilever it will create an
excess of heat (and thus an excess phonon population)
in the region of the cantilever that serves as the optical
cavity mirror. This heat will then diffuse through the
cantilever following normal rules of heat transfer.

Anharmonicity in the interatomic potential in the can-
tilever gives rise to the phenomenon of thermal defor-
mation [27]. As the average energies in the vibrational
degrees of freedom of the atoms (and thus the phonon
population) increase, the average interatomic distances
change. If this deformation is not uniform through the
whole cantilever, (e.g. if the cantilever is formed by layers
of materials with different thermal expansion coefficients)
then strains develop that exert an effective force on the
entire cantilever.

The number of absorbed photons, and thus the cor-
responding excess heat, is proportional to the total

photon population of the optical cavity. However the
deformation-generated-force is exerted only after the
heat has diffused through the cantilever. This implies

that the cantilever is subject to a force dependent on its
position at past times.

The cavity photons act on the cantilever also through
the well known radiation pressure effect, that is, they ex-
ert a force on the cantilever as they bounce on the mov-
able mirror. In usual radiation-pressure cooling experi-
ments the cavity response time is of the order of the can-
tilever mode frequency (the good cavity regime [23, 24]),
that is, the time the cavity population takes to adjust
to the new cantilever position is of the same order of the
cantilever period. This also results in a delayed force act-
ing on the cantilever. However, in the systems optimized
for photothermal cooling which we treat in this paper,
the cavity response time is much shorter than the can-
tilever oscillation period (the bad cavity limit) and we
can thus safely neglect the retarded nature of such force.

As mentioned in the introduction, to develop a mi-
croscopic quantum theory of the whole process is a
formidable task, due to the intrinsic many-body and dis-
sipative nature of the phenomena involved (photon ab-
sorption and heat transfer). However, given the time
scales of the cantilever motion and of the thermal de-
lay, we can assume that the quantized cantilever mode
is evolving under the action of a semi-classical delayed
feedback force. In other words, the whole system (with
thermal delay) effectively measures the cantilever posi-
tion (via the number of absorbed photons), stores it in a
classical signal (the heat) and transmits it to a classical
actuator (the cantilever deformation).

The cooling effect thus arises through a semi-classical
feedback or backaction effect, not different in principle
from electronically controlled active classical feedback
mechanisms used in quantum optics [19, 28–30]. In order
to better understand this parallelism it is worthwhile to
look at the orders of magnitude involved in usual pho-
tothermal experiments. For the cantilever in Ref. 20 the
cantilever is 220 µm long and its thermal diffusion time is
of the order of 0.5 ms. Comparing this with the lifetime
of phonons in silicon, which are in the picosecond scale
[31], it is easy to understand that no quantum coherence
survives through the effective feedback loop.

Here, we thus construct a Langevin description of the
cantilever under the action of the radiation pressure force
and of the time-delayed (effective feedback) photother-
mal force with an added noise source in the effective feed-
back loop due to the photon absorption shot noise.

B. Treatment of the photothermal force

It is well known that the photothermal force, in the
classical regime, can be modelled using a time-delayed
force, depending on the position of the cantilever at past
times. This approach has been proven to describe well
experiments not only in the cooling regime [2, 20] but
also in the regime where self-sustained oscillations de-
velop [34]. The force can thus be written as a time inte-
gral over a memory kernel of the instantaneous force due
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to the thermal deformation

Fph[x](t) =

∫

R

dτ h(t − τ)
dFdef(τ, x(τ))

dτ
, (1)

where the memory kernel associated to the thermal dif-
fusion delay τ is taken to be

h(t) = [1 − exp (−t/τ)] Θ(t), (2)

with Θ(t) the Heaviside function.
From Eqs. (1) and (2) we see that the instantaneous

force Fdef coincides with the actual photothermal force
Fph we would have for a vanishing delay time τ

Fdef(t, x) = lim
τ→0

Fph[x](t). (3)

As shown in Refs. 32 and 33, in a coherently pumped
optical system with a closed feedback loop, it is suffi-
cient to use a semiclassical theory in order to describe
the photon absorption shot noise. We limit ourselves to
a semi-classical description of the electromagnetic field
in a coherent state. The easiest way to do so is to start
from a quantum Hamiltonian for the pumped photonic
cavity [24]

Ĥc = ~ωc

(

1 − x

Lc

)

â†â + Eeiωptâ + Ee−iωptâ†, (4)

where â is the annihilation operator for a cavity photon,
ωc is the cavity frequency, Lc its equilibrium length, ωp

is the pump frequency, E is a pump term, and we assume
the loss rate of cavity photons to be given by Γc. Substi-
tuting c-numbers for the photonic operators (â → a), as
usual for coherent states, allows us to calculate the popu-
lation of the cavity. Given the large discrepancy between
the frequency of the cantilever ωm (usually in the kHz to
MHz range) and of the photonic cavity response time Γc

(usually in the GHz to THz range) we are not going to
consider explicitly the dynamics of the photonic mode,
but we will assume that it responds instantaneously to
any change in the position of the cantilever.

We thus obtain the instantaneous photon population
of the cavity as a function of the cantilever position x,

nc(x) =
E2

[ωc(1 − x
Lc

) − ωp]2 + Γ2
c/4

. (5)

Assuming that we have a well defined cavity frequency
ωc, we can find the relation between the pump term E
and the input power P by equating the number of in-
coming photons P/~ωp with the number of photons lost
ncΓc. We thus obtain

E =

√

ΓcP

4~ωp

, (6)

where Γc is the cavity photon lifetime.
In order to proceed in the derivation of a quantum

Langevin equation for the cantilever, which takes into

consideration photon shot noise, we need to fix the de-
pendence of the photothermal force upon the intensity of
the cavity field nc(x).

While the microscopic derivation of such a force would
be extremely complex and sample-dependent, we expect
it to be a function of the heat absorbed by the can-
tilever. In other words, the instantaneous photon energy
ωc(1− x

L
) times the current of absorbed photons Ic(x, t).

Here we will limit ourselves to the simple case of a lin-
ear dependence that, as we will see, gives good results
when compared with experiments. We will thus write
the instantaneous deformation force as,

Fdef(t, x) = χ~ωc

(

1 − x

Lc

)

Ic(x, t), (7)

where χ is a phenomenological deformation coefficient of
the cantilever with dimension of the inverse of a velocity.

We note that the current Ic of absorbed photons can
be written as the sum of two terms: an average com-
ponent and a fluctuating component due to shot noise;
the average being proportional to the number of photons
present in the cavity (itself a function of x), and the noise
to a coefficient times a stochastic noise term η(t) [32, 33]

Ic(x, t) = α nc(x) + δIc(t, x) (8)

= α nc(x) + N(x) η(t),

where α is the absorption rate of the cantilever.
In order to have a cooling effect, the noise term in

Eq. (8) needs to be small compared with the average
value. Assuming the cantilever oscillations to be much
smaller than the equilibrium cavity length Lc, we can
thus insert Eq. (8) into Eq. (7) and make a first-order
expansion both x and η. We thus obtain

Fdef(t, x) ≃ F0 + (∇F )x + N η(t). (9)

As the different absorption events are completely un-
correlated we can, in a time interval short enough for
neglecting the variation of x, consider the number of ab-
sorptions as a Poisson process. We thus define

np(t) =

∫ t

0

dt′Ic(x, t′), (10)

as the number of photons absorbed up to time t. Its
momenta are given by

〈np(t)〉 = t α nc(x), (11)

〈np(t)
2〉 = t2α2nc(x)2 + N2

∫ t

0

dt′
∫ t

0

dt′′ 〈η(t′)η(t′′)〉.

Imposing that np has Poissonian, time-independent
statistics over the time interval we consider here, we have

〈np(t)〉 = 〈np(t)
2〉 − 〈np(t)〉2. (12)

We thus arrive at the following condition for the correla-
tor of current fluctuations in the linear approximation

N2〈η(t′)η(t′′)〉 = α nc(0) δ(t′ − t′′). (13)
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The current Ic is thus characterized by a white noise
spectrum (as in the semi-classical treatment of optical
feedback [32, 33]) and can be written as

Ic(x, t) = α nc(x) +
√

αnc(0) η(t), (14)

where the white-noise term η(t) has the correlator

〈η(t′)η(t′′)〉 = δ(t′ − t′′). (15)

Putting together Eqs. (14), (5) and (7) and applying
basic analysis we find the following values for the coeffi-
cients ∇F and N

∇F =
nc(0)αχ~ωc

Lc

2ωc∆ − ∆2 − Γ2

c

4

∆2 +
Γ2

c

4

, (16)

N = χ~ωc

√

αnc(0),

where ∆ = ωc −ωp is the cavity detuning. In section IID
we use these terms directly in the equation of motion for
the cantilever.

C. Treatment of the radiation pressure force

The radiation pressure force lends itself to a micro-
scopic quantum treatment and it has been studied in
various publications [23, 24]. These works show that the
effect of radiation pressure cooling can be easily modelled
by an effective damping rate Γrp and an associated noise
term Frp.

The amplitude of Γrp, which is the cooling capacity
of the radiation pressure force, depends on the ratio be-
tween the cavity damping and the cantilever frequency
and thus becomes negligible in the bad-cavity regime we
consider here. The same is not true for the noise term,
which instead only depends on the intrinsic magnitude
of the force and thus leads to a nonnegligible equilibrium
noise population.

From Ref. 24 we find the following formulas for the
optical damping term and for the equilibrium noise pop-
ulation nrp

m

Γrp =
4nc(0)~Γcω

2
c

mL2
c

∆

(∆2 +
Γ2

c

4
)2

,

nrp
m =

∆2 +
Γ2

c

4

4ωm∆
. (17)

Having the damping rate Γrp and the noise population
nrp

m in this form, and because we have assumed the bad-
cavity limit, means that we do not have to explicitly con-
sider the dynamics of the optical cavity.

It is worthwhile to note that Eq. (17) has been derived
neglecting absorption and it could thus become inaccu-
rate if absorption becomes important (i.e., if a nonnegli-
gible fraction of the incident photons is absorbed by the
cantilever). However we neglect this possibility because,

as we will see in Sec. III, this would lead to an extreme
heating of the cantilever, making any cooling extremely
problematic (and dependent on the microscopic details
of the cantilever).

D. System dynamics: feedback in a quantum

Langevin equation

Using the results from the previous sections, we can
describe the dynamics of the system with a set of cou-
pled Langevin equations describing the cantilever mode
coupled to a thermal bath and evolving under the con-
junct effect of the photothermal and the radiation pres-
sure force

ẋ =
p

m
, (18)

ṗ = −mω2
mx − (Γm + Γrp)p + Fth + Fph[x] + Frp,

where Γm and Fth are the dissipation and the fluctuation
terms given by the coupling with the bath [35–37].

Using the expression for the linearized time-delayed
force from Eq. (9) in Eq. (18) we obtain the following
second-order dynamical equation

ẍ(t) + ω2
mx(t) + (Γm + Γrp)ẋ(t) =

Fth(t)

m
+

Frp(t)

m
(19)

+

∫

R

dt′h(t − t′)

[∇F

m

d

dt′
x(t′) +

N

m

d

dt′
η(t′)

]

.

This is an integro-differential equation, and the integral
has a convolution. It thus becomes an algebraic equation
in Fourier space

[

ω2
m − ω2 + iω(Γm + Γrp) − ∇F

m(1 + iωτ)

]

x(ω) =

Fth(ω)

m
+

Frp(ω)

m
+

Nη(ω)

m(1 + iωτ)
. (20)

As we see from Eq. (20), the photothermal force results
in a frequency-dependent damping and a renormalization
of the cantilever frequency (see also the discussion in Ref.
20). In the usual (rigid cantilever) regime in which the
frequency of the cantilever, renormalized by the constant
(ω = 0) part of the photothermal force,

ω̃m =

√

ω2
m − ∇F

m
, (21)

does not differ much from ωm, the essential part of the
dynamics takes place at ω = ωm, and we can thus take
the photothermal-induced damping to be

Γph =
τ∇F

m(1 + τ2ω2
m)

. (22)

Notice that, as explained in Ref. 20, the value at which
Eq. (21) vanishes corresponds to the onset of mirror in-
stability and sets an upper limit to the strength of the
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photothermal force

∇F

mω2
m

< 1. (23)

Neglecting quantum (zero-point) fluctuations in the
photothermal force we can thus calculate the phonon
equilibrium population due to the photothermal force
alone (i.e., neglecting both the coupling to the thermal
bath and the radiation pressure force in Eq. (20)) as

nph
m =

N2

2~ωmτ∇F
. (24)

In principle we can also derive the total equilibrium
phononic population due to the joint effect of the ther-
mal bath, the radiation pressure and the photothermal
effect by integrating Eq. (20) (under the rigid-cantilever
approximation). However it is easier to calculate this
total population via a simple rate equation, which gives

ntot
m =

Γmnth
m + Γrpnrp

m + Γphnph
m

Γm + Γrp + Γph

, (25)

where nth
m is the equilibrium population at temperature

T that, given the low frequencies of the cantilever modes,
can be approximated as kT/~ω̃m.

Inserting Eqs. (16), (17) and (22), into Eq. (25) and
remembering that we are working in a regime where
Γrp ≪ Γm ≪ Γph, we can rewrite Eq. (25) as

ntot
m = nC

m + nN
m, (26)

where

nC
m =

kTmω2
m

~ω̃mQm∇F

1 + ω2
mτ2

ωmτ
(27)

is the classical population due to photothermal cooling
and

nN
m =

[

Γc

α

ωc

χLc

1 + ω2
mτ2

ωmτ
+ χωcLc

∆2 +
Γ2

c

4

2ωmτ

]

(28)

×
[

2ωc∆ − ∆2 − Γ2
c

4

]−1

is the population due to noise effects. The first term
in Eq. (28) stems from the radiation pressure noise con-
tribution, and the second from the photothermal noise
contribution.

E. Analysis of the results: the quantum regime

From Eq. (27) we can, using Eq. (23) and optimizing
over ∇F , find (consistent with previously known results
[2, 20]) that the efficiency of classical photothermal cool-
ing is maximal for ωmτ = 1 and its ultimate value de-
pends on the quality factor of the cantilever

Qm =
ωm

Γm

. (29)

Reference Lm ωm Qm nth

m nC,min

m , Eq. (30)
Ref. 38 275 µm 6.5 MHz 1.5× 106 1.2× 106 5
Ref. 20 220 µm 46 KHz 2.2× 103 1.7× 108 6.4× 105

Ref. 39 3.9 µm 3.4 MHz 2.9× 103 2.2× 106 7.8× 103

TABLE I: Length Lm, frequency ωm, quality factor Qm, ther-
mal equilibrium population nth

m at 77 K and final population
nC,min

m from Eq. (30) for different cantilevers reported in the
literature.

The optimization of Eq. (27) gives us a lower bound on
the phonon population

nC,min
m ≥ 3

√
3kT

~ωmQm

. (30)

Thus our estimate for the minimal classical population
for the cantilever is proportional to its thermal, equilib-
rium occupation kT/~ωm divided by the quality factor
of the mechanical oscillator Qm. Given the rather low
frequencies of the mechanical modes involved, the condi-
tion of having an average occupation number lower than
one puts a rather harsh requirement on the mechanical
quality factor.

In Table I we compare some data taken from experi-
mentally realized cantilevers. We see that for the stressed
silicon cantilever studied in Ref. 38 the theory predicts,
assuming optimal parameters and liquid Nitrogen tem-
peratures, a thermal population almost in the quantum
regime. Note that only the cantilever in Ref. 20 has ac-
tually been used for photothermal cooling, and thus it
is the only cantilever for which we can estimate the de-
formation coefficient χ and the noise contribution to the
final population (see Section IV).

Assuming that we have a cantilever quality factor Qm

large enough to bring nC
m into the quantum regime,

we are thus confronted with the noise contributions in
Eq. (28). The noise in Eq. (28) depends on various pa-
rameters, and the two noise contributions (the radiation
pressure in the first line and the photothermal in the sec-
ond) often have inverse dependencies upon the parame-
ters. Thus naively minimizing one noise term can enlarge
the other. We are thus obliged to carefully optimize the
parameters in order to calculate the minimal noise pop-
ulation. We start by rewriting Eq. (28) as

nN
m =

[

Γc

α

1 + ω2
mτ2

ω2
mτ2

Q2
cA +

1

2A
(∆̃2 +

1

4
)

]

(31)

×
[

2Qc∆̃ − ∆̃2 − 1

4

]−1

,

where we have defined

A =
ωmτ

χωcLc

, (32)

and introduced the renormalized detuning

∆̃ = ∆/Γc, (33)
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and the cavity quality factor

Qc = ωc/Γc. (34)

The first term in the numerator of Eq. (31) is from the
radiation pressure noise, and the second is from the pho-
tothermal noise. Thus, the new parameter A encapsu-
lates the way in which the two noise terms are inversely
proportional to one another. Optimizing Eq. (31) over A
we obtain

nN
m =

√

2
Γc

α

1 + ω2
mτ2

ω2
mτ2

Qc

√

∆̃2 + 1
4

2Qc∆̃ − ∆̃2 − 1
4

, (35)

where the optimal value of A is given by

Aopt =

√

(

∆̃2 +
1

4

)

α

2ΓcQ2
c

ω2
mτ2

1 + ω2
mτ2

. (36)

This optimal value of A makes the two noise terms equal,
and minimum. The second factor in Eq. (35) can be
further optimized over Qc, yielding its minimum for large
Qc

nN
m =

√

Γc

α

1 + ω2
mτ2

2ω2
mτ2

√

1 +
1

4∆̃
. (37)

Choosing a large enough detuning ∆̃ we can thus ignore
the second factor in Eq. (37) and we obtain our final
estimate for the minimum noise population

nN,min
m ≥

√

Γc

α

1 + ω2
mτ2

2ω2
mτ2

. (38)

We see that, given a large enough cavity quality factor
Qc, and the optimal value for χ from Eq. (36), two fac-
tors determine the minimum noise population: the delay
parameter ωmτ and Γc/α. The second one, Γc/α, is the
ratio between the total photon loss rate (Γc, the sum
of the mirror absorbtion α and other radiative losses),
and the loss part due to absorption in the moving mirror
alone (thus this ratio is always larger than one).

Equation (38) shows us that, given appropriate param-
eters, it is indeed possible to reach the “quantum regime”
for the cantilever mode, characterized by a population
lower than one. In order to reach such quantum regime
it is necessary not only to limit all the losses other than
the cantilever absorption in order to lower Γc/α, but also
to design samples with rather large values of ωmτ . Fur-
thermore, while large values of ωmτ help lower the noise
population, Eq. (27) tells us that they correspondingly
reduce the classical cooling efficiency, thus increasing the
classical phonon population.

To reiterate, to reach the quantum regime we require
the following conditions:

• The feedback cooling term, Eq. (30), tells us that
we need a large cantilever quality factor Qm, large
cantilever frequency ωm, and low initial tempera-
ture T , so that Qm ≫ kT/~ωm.

• To simultaneously minimize the photothermal and
radiation pressure noises, we need a high quality
optical cavity Qc ≫ 1, a large enough detuning ∆,
and a deformation constant χ given by Eq. (36).

• These conditions give us Eq. (38), the final equilib-
rium phonon population due to noise, which is then
minimized by choosing Γc/α small. Again, this can
further be minimized by increasing ωmτ , at the cost
of reducing the feedback cooling efficiency, and thus
requiring a higher cantilever quality factor Qm.

III. RESIDUAL HEATING FROM PHOTON

ABSORPTION

Since the photothermal force is due to photon absorp-
tion, the same process that gives the cooling is simulta-
neously heating up the cantilever as a whole. This is a
rather intriguing aspect of photothermal cooling that we
have, until now, neglected.

This heating mechanism does not modify the funda-
mental bounds we derived, accounting simply for an in-
creased temperature in Eq. (27). However, the pho-
tothermal heating effect is important if we want to quan-
titatively fit our model with experimental data, as it can
noticeably influence the observed temperature.

The exact description of such residual heating on the
cantilever motion would depend on the microscopic struc-
ture of the cantilever and it is thus not within the scope of
this paper. Here we will limit ourselves to a phenomeno-
logical model, able to mimic the interesting physics for
realistic absorption/heating rates, and only depending on
one adjustable parameter. The simplest way to take into
account this phenomenon is to use, inside Eq. (27), not
the environmental temperature T , but an average equilib-
rium temperature under constant illumination (average
because the temperature profile will in general vary over
the cantilever).

We now consider a rectangular cantilever, character-
ized by a constant thermal conductivity (constant in
space and in temperature), ignoring radiative processes
and assuming that the absorption processes happen ho-
mogeneously over one of the surfaces (see Fig. 1 for a
schematic illustration). Calling s the cantilever surface,
Lm its length and κ its thermal conductivity, from our
approximations and Fourier’s law we obtain a linear tem-
perature profile,

T (y) = T +
αnc(0)~ωcy

sκ
. (39)

The effective temperature to be used in Eq. (27) will thus
be an average between T (0) and T (Lm), taking into ac-
count that the mechanical mode profile is not distributed
uniformly over y

T̄ = T +
αnc(0)~ωcLm

ǫsκ
, (40)
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where the adjustable parameter ǫ is of the order of unity
(ǫ = 2 for an arithmetic mean). We include this effect in
our estimates of χ in the next section.

IV. EXISTING EXPERIMENTS ON

PHOTOTHERMAL COOLING: ESTIMATING χ

In order to test our model and to gain some insight in
the value of the key parameter χ, we analyze the results
from Ref. 20 that, to the best of our knowledge, is the
only publication reporting the observation of photother-
mal cooling with enough experimental data to allow a
comparison with our theory. In Ref. 20 the temperature
of the cantilever mode is measured for different laser pow-
ers, and for temperatures between 300 K and 32 K. All
the material parameters, besides Γc/α, can be retrieved
directly from the aforementioned reference.

Fitting the temperature for each different laser power
allows us to fix an estimate for the value of χ around the
value 2× 10−5 s m−1. With these parameters, we obtain
a phonon noise population of 1.4× 104, that is a phonon
temperature of 5 mK.

V. CONCLUSIONS

In summary, we have extended the classical model of
photothermal cooling by Metzger et al. [2] to take into
account the effect of quantum noise on cooling efficiency.

Rather than build up a quantum model from a micro-
scopic Hamiltonian, we treated the complex many-body
thermal cantilever deformation effect as an effective time-
retarded force. As one cools the mechanical motion to the
ground state, noise due to both photon absorbtion and
radiation pressure begins to play a role, and we explic-
itly included these, and heating due to absorbtion, in our
model.

In the future it will be interesting to test the predictive
power of our model against a larger experimental data-set
than the one currently available.
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[4] S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G.

Langer, J. B. Hertzberg, K. C. Schwab, D. Buerle, M.
Aspelmeyer and A. Zeilinger, Nature 444, 67 (2006)

[5] A. Schliesser, P. DelHaye, N. Nooshi, K. J. Vahala and
T. J. Kippenberg, Phys. Rev. Lett. 97, 243905 (2006)
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