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As a means of realizing oscillatory pairing between fermions, we study superfluid pairing be-
tween two fermion “spin” species that are confined to adjustable spin-dependent trapping poten-
tials. Focusing on the one-dimensional limit, we find that with increasing separation between the
spin-dependent traps the fermions exhibit distinct phases, including a fully paired phase, a spin-
imbalanced phase with oscillatory pairing, and an unpaired fully spin-polarized phase. We obtain
the phase diagram of fermions in such a spin-split trap and discuss signatures of these phases in
cold-atom experiments.
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The idea that Cooper pairing in the presence of a density imbalance of two interacting fermion species naturally
yields oscillatory pairing correlations in real space was put forth decades ago. However, to date, this phenomenon,
known as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing [1, 2], has not been conclusively observed. (Related effects
have been clearly seen in superconductor-ferromagnet hybrid systems where the proximity-induced pair correlations
in the ferromagnet exhibit oscillations [3].) In recent years, atomic physics experiments have explored paired fermion
superfluidity in cold atomic gases [4–6], a new setting for the observation of FFLO pairing correlations under a density
imbalance between the two “spin” species – a possibility that has inspired a large amount of recent theoretical and
experimental activity [7]. Much of the excitement follows from the extreme tunability of cold-fermion experiments,
which exhibit several experimentally-adjustable parameters including the interactions, the densities of the different
species, and the trap geometry. Of late, attention has focused on one-dimensional (1D) systems with global spin
imbalance [8–14] or spin-dependent potentials [15, 16], where the parameter regime occupied by the FFLO state
is predicted to be significantly wider than in the 3D case [17–19]. Indeed, recent experiments [20] on quasi-1D
spin-imbalanced fermionic gases have observed a partially polarized state, although associated oscillatory pairing
correlations have yet to be confirmed.

In this Letter, we propose a new 1D setup to achieve FFLO pairing in cold atomic gases: a balanced mixture of
two hyperfine species of attractively interacting fermionic atoms that are separately trapped in a controllable way,
as illustrated in Fig. 1(a) – a situation we shall call a “spin-split trap”. This setup provides an effective spatially-
varying chemical potential difference between the two spin states due to the separate trapping potentials and yields
an alternate, dynamically controllable route to achieving oscillatory FFLO-like pair correlations in cold atomic gases,
controlled not by an imposed global population imbalance but, rather, by the separation between the two traps and
the ensuing local imbalance.

The spin-split trap, whose 3D counterpart was studied in Ref. [21], is described by the spin-dependent potentials

Vσ(z) =
1

2
mω2

z(z − σd)2, (1)

where ωz is the trapping frequency, m is the atomic mass and σ = ± correspond to the two hyperfine species. Thus,
the centers of the two traps are separated by a distance 2d. For d→ 0, the ground state is a singlet s-wave superfluid
with a vanishing spin imbalance everywhere in the cloud. As argued below using local density arguments and a
Bogoliubov-de Gennes (BdG) treatment, for nonzero d, however, the split traps promote a local spin imbalance.
We find that beyond a critical separation, d > dc, the split-trap geometry displays oscillatory pairing correlations,
as depicted in Fig. 1(b), which shows the local pairing amplitude ∆(z), total density ρ(z) = ρ↑(z) + ρ↓(z), and
magnetization (spin imbalance) M(z) = ρ↑(z) − ρ↓(z).

An intuitive understanding of the spin-split-trap system can be found using the local density approximation (LDA)
along with the known behavior of the homogeneous spin-imbalanced gas derived using the Bethe ansatz [9, 10]. The
phase diagram, shown in Fig. 2, displays three phases as a function of the net chemical potential µ = (µ↑ + µ↓)/2
versus the chemical potential imbalance (magnetic field) h = (µ↑ − µ↓)/2, namely a fully paired (FP) state, a fully
polarized (FPo) state, and a partially polarized (PP) state. The PP state is expected to be of the FFLO type, having
an oscillatory pairing amplitude [8, 13], as corroborated by our studies below.

Within LDA, the trapping potential in our system enters as a spin-dependent spatially-varying chemical potential,
µσ(z) = µ0 − Vσ(z), where µ0 is the global chemical potential of the system. For the harmonic trap of Eq. (1), µ and
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FIG. 1: (Color Online) (a) Illustration of our proposed spin-split trap setup showing separate trapping potentials for two
fermion species, ↑ and ↓. (b) Numerically-determined spatial profile of the pairing gap ∆(z) (solid blue curve, axis on left-hand
side of graph), total density ρ(z), and spin imbalance M(z) (dashed light-brown and solid red curves, respectively, axis on
right-hand side of graph, normalized by maxz[ρ]), showing oscillatory pairing along with a local imbalance.
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FIG. 2: (Color Online) The local properties of the system in the spin-split trap can be understood using the phase diagram of
the uniform imbalanced system, taken from Ref. [9], showing a fully paired (FP), partially polarized (PP), and fully polarized
(FPo) phase as well as the vacuum. (Here µ and h are measured in units of mg2/4~

2, where g is the 1D coupling constant.)
The red curves A, B, and C represent the LDA trajectories followed as a function of z by the spin-split system for d < dc,
d = dc and d > dc, respectively.

h are then related through µ = µ0 − h2/(2mω2
zd

2), which corresponds to downward facing parabolas in the µ versus
h phase diagram. In Fig. 2, we show three curves corresponding to different values of the separation d. One can see
that they traverse different phases from the center z = 0 (where h = 0) to the edges of the trap. For small separation
d, the system is described by a tight parabola and is thus confined to the fully paired phase. But with increasing d,
the parabola broadens and, beyond a critical separation dc, traverses all three phases as a function of position. In
this case, at small z, the local potential imbalance h remains small enough that the system is (locally) fully paired.
At larger z, the local h exceeds a critical value such that (locally) the system enters the PP phase. At even larger z,
near the edges of the trap, the system is (locally) in a fully polarized normal phase. Thus, the system concurrently
hosts all three phases. Note that, in contrast, in the case of a globally spin-imbalanced system with a single trap, the
system traces a vertical line in the phase diagram, yielding two regions – a partially polarized core and either fully
polarized or fully paired edges [9].

We now model the spin-split system using a microscopic description which enables a more detailed analysis, confirms
the salient features described above, and shows a direct correspondence between local spin imbalance and oscillatory

pairing. We study two species of fermions, ψ̂↑,↓(z), in a 1D harmonic potential characterized by the trapping frequency
ωz. In atomic systems, this limit can be achieved in a highly anisotropic trap with a transverse trapping frequency
ωr such that Nωz/ωr < 1 and N |as|/Rz ≪ 1 [4, 22]. Here, N is the number of fermions of each spin species,

Rz =
√

2N−1 ℓz (with ℓz =
√

~/mωz the oscillator length) is the classical radius of the free gas in the z-direction,
and as is the s-wave scattering length for the two-body interactions. The system is then described by the effective 1D
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FIG. 3: (Color Online)(a-d) Spatial profile of the gap, total density, and magnetization in the z ≥ 0 region (represented as in
Fig. 1(b)) at d = 0, 0.176, 0.182, and 0.9Rz , respectively. In addition, in (a), the gap function obtained by BCS plus LDA is
shown (dashed blue curve). In (b) and (c), the separations are just below and above the critical value dc for appearance of the
first node. Note the scale change on the z-axis in (d).
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FIG. 4: (Color Online)Phase diagram as a function of separation and temperature (N = 40, g/~ωzRz = 1). The solid line
separates the normal phase and the superfluid phase. In the superfluid phase, the dashed lines separate regions of the gap
functions with different number of nodes.

Hamiltonian,

H =

∫

dz
(

∑

σ

ψ̂†
σH

0
σψ̂σ + gψ̂†

↑ψ̂
†
↓ψ̂↓ψ̂↑

)

, (2)

where H0
σ = −(~2/2m)∂2

z + Vσ(z) − µ0 is the one-particle Hamiltonian. The 1D coupling constant is given as

g = 2~
2as/[mℓ

2
r(1 − 1.033as/ℓr)] with the transverse oscillator length ℓr =

√

~/mωr [23].
We analyze our system within the standard BdG treatment, which has been widely applied to the imbalanced

system [24], taking into account spin-dependent trapping. The mean-field Hamiltonian, which self-consistently incor-

porates the Hartree potential Uσ = g〈ψ̂†
σψ̂σ〉 and pairing gap ∆ = g〈ψ̂↓ψ̂↑〉, takes the form

HM =

∫

dz
[

∑

σ

ψ̂†
σ(H0

σ + Uσ)ψ̂σ + (∆ψ̂†
↑ψ̂

†
↓ + h.c.)

]

. (3)

We obtain the extended BdG equations in the quasi-particle eigenbasis by a spin-dependent Bogoliubov transforma-

tion, ψ̂σ(z) =
∑

n

[unσ(z)γ̂nσ − σv∗nσ(z)γ̂†n,−σ]. We use an iterative numerical procedure [25] to find self-consistent

solutions for ρσ(z) and ∆(z). Parity symmetry between the potentials of the two species, V↓(z) = V↑(−z), ensures
parity symmetry of the gap function; we find that the even-parity solution, ∆(z) = ∆(−z), is always energetically
favorable. The data presented in the following were obtained for N = 40 and g/~ωzRz = 1.

We first focus on the manner in which oscillatory pairing correlations emerge with increasing separation d. In
Fig. 3, we show the pairing gap ∆(z), total density ρ(z), and magnetization M(z) for a sequence of four spin-split-
trap systems with increasing d. Panel (a) shows the d = 0 case which is fully paired with M = 0 everywhere, as
expected. The non-monotonicity of ∆(z) roughly reflects the functional dependence of the 1D BCS gap on the local
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FIG. 5: (Color Online)(a) Density plot of the polarization P as a function of position z and separation d. The gray scale is
bounded by 0 and 1. The dashed white (black) contours correspond to P = 0.01 (0.99). The solid curves indicate positions of
the first four nodes. (b) Momentum distribution n(k) for d = 0 (solid blue curve) and 0.25Rz (dashed red curve), normalized
by n(0) at d = 0. (c) Fraction of pairs f0 within the central peak (see (b)) of n(k) (solid curve, axis on left-hand side of graph)
and positions of the first four nodes (dashed curves, axis on right-hand side of graph) vs d.

chemical potential µ, i.e., ∆(z) ∝ µ(z) exp[−
√

2~2π2µ(z)/(mg2)]. Panel (b) shows that a small separation, d < dc,
does not lead to qualitative changes of the pairing correlations and the magnetization. Here, the local h is small
enough everywhere that it is energetically favorable for the system to remain fully paired (i.e., the system is below
the Clogston limit). Panel (c) shows the system just beyond the critical separation dc, such that, near the edge of
the cloud where the local h is largest and of order ∆, the gap function ∆(z) exhibits a node and the magnetization
is finite. As d increases further, the region of oscillatory FFLO correlations increases and more nodes appear. The
progression of nodes is captured in Figs. 1(b) and 3(c,d). Initially the number of nodes increases as d increases, but
then, beyond a characteristic distance of the order of the cloud size, diminishes before the system fully separates and
becomes normal.

We find that the nodal structure is robust against finite temperature effects. This is illustrated in the global phase
diagram in Fig. 4, obtained using the parameter values specified above. Within the superfluid phase, regions with
different numbers of nodes in ∆(z) are indicated. We note that the transition temperature in the spatially modulated
phase is of the same order as in the fully paired phase. The number of nodes decreases with increase in temperature,
consistent with the shrinking of the FFLO region in globally imbalanced systems [26]. As for trends with variation of

the system parameters, we numerically find that the critical separation d̃c = dc/Rz is independent of N and linearly
dependent on g̃ = g/(~ωzRz) around g̃ = 1 (in the regime of numerical convergence), which is consistent with rough
estimates based on BCS combined with LDA.

Our results for the behavior of interacting fermions in the spin-split trap clearly show the intimate connection
between a nonzero polarization and oscillatory pairing correlations. In Fig. 5(a) we show the polarization, P (z) =
M(z)/ρ(z), as a function of position, z, and separation, d, along with the spatial position of the nodes in ∆(z). It
can be seen that the nodes only exist in the partially-polarized region, 0 < P < 1. The correlation between the
polarization and nodal structure indicates that this region is indeed of the FFLO type, and is surrounded by a fully
gapped superfluid for P → 0 towards the center of the spin-split trap and a fully polarized normal fluid for P → 1 at
the edges.

A direct measure of oscillatory pairing is the pair momentum distribution function defined as

n(k) =

∫

dz dz′eik(z−z′)
〈

ψ̂†
↑(z)ψ̂

†
↓(z)ψ̂↓(z

′)ψ̂↑(z
′)
〉

, (4)

which is experimentally measurable in dynamic-projection experiments [27]. In the homogeneous case, the FFLO phase
is characterized by a peak in n(k) at a characteristic nonzero wavevector k that depends on the spin-imbalance [11, 12].
Typical plots of n(k) in the spin-split trap are shown in Fig. 5(b) for the cases of d = 0 and d > dc. Due to the spatial
inhomogeneity of the potential imbalance h, the system does not possess a characteristic wavevector. However, n(k)
undergoes sudden changes with increasing separation as Cooper pairs are shifted to higher momenta. As shown in
Fig. 5(c), the weight under the central peak suddenly decreases each time a new node appears in ∆(z). Thus, n(k)
displays a striking signature of the modulated phase.

We now turn to the issue of experimentally realizing a spin-split-trap system. This setup can be achieved via
spin-selective trapping potentials [28, 29]. Additionally, a tunable spin-split trap may be achieved using a magnetic
field gradient [22, 30, 31], exploiting the distinct hyperfine-Zeeman states of the two fermion species. To see this, we
note that the competition between the Zeeman effect and hyperfine interaction leads to a nonlinear energy difference
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between the two spin states mF±. We use the Breit-Rabi formula [32] to find the spatially-varying part of the energy
difference ∆V (z) = V↑(z) − V↓(z) in the presence of a field gradient. Assuming a spatially-varying field of the form
B(z) = B̄+B′z and expanding the Breit-Rabi formula near the background field B̄, we obtain ∆V (z) = 2π~B′µ̃(B̄)z
with µ̃ the effective “magnetic moment” given by

µ̃(B̄) =
g

2
µB

∑

σ=±

σ
2mF σ

2I+1 + B̄
B0

√

1 + 4mF σ

2I+1
B̄
B0

+ B̄2

B2

0

. (5)

Here, µB is the Bohr magneton, I is the nuclear spin, B0 is the hyperfine field, and g ≃ 2.
Using Eq. (1), we see that a spatial separation d requires a field gradient B′ = 2mω2

zd/µ̃. In the case of interest, we
expect that B̄ is close to a Feshbach resonance (FR) in order to enhance Tc, and that B′ is small enough that as can be
treated spatially independent in the system. For 6Li (I = 1, B0 = 81G), using the hyperfine levelsmF± = − 3

2 (+ 1
2 ) [33]

near the FR at B̄ = 691G, we find µ̃Li ≃ 6 × 10−3µB. Assuming a typical trap frequency ωz ∼ 2π × 100Hz, a field
gradient B′

Li of the order of a few 100G/cm can achieve a separation d of a few ℓz. (The required field gradient for
the more commonly used two lowest hyperfine levels of 6Li is about an order of magnitude larger and, thus, much less
experimentally viable.) The most promising case is that of 40K (I = 4, B0 = −459G) with mF± = − 7

2 (− 9
2 ) near the

FR at B̄ = 202G. Here µ̃K ≃ 0.1µB and, for the same ωz as above, the required gradient B′
K ≃ 50G/cm.

In summary, we have proposed a novel setting, the spin-split trap, for observing FFLO-like oscillatory pairing
correlations, driven by a local density imbalance due to the separate trapping potentials of the two fermion species.
Our BdG calculations, supported by LDA, show that the competition between the tendency to pair and the tendency
towards forming a spin imbalance leads to a rich structure that is revealed in quantities such as the local pairing
amplitude and magnetization, as well as in the pair momentum distribution. Immediate future directions include
investigating the spin-split system through other techniques amenable to 1D, such as DMRG and quantum Monte
Carlo methods, and exploring the exciting prospect of coupling arrays of spin-split 1D systems.
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