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Ultra-cold atom experiments offer the unique opportunity to study mixing of different types of
superfluid states. Our interest is in superfluid mixtures comprising particles with different statistics–
Bose and Fermi. Such scenarios occur naturally, for example, in dense QCD matter. Interestingly,
cold atomic experiments are performed in traps with finite spatial extent, thus critically destabilizing
the occurrence of various homogeneous phases. Critical to this analysis is the understanding that the
trapped system can undergo phase separation, resulting in a unique situation where phase transition
in either species (bosons or fermions) can overlap with the phase separation between possible phases.
In the present work, we illustrate how this intriguing interplay manifests in an interacting 2-species
atomic mixture – one bosonic and another fermionic with two spin components – within a realistic
trap configuration. We further show that such interplay of transitions can render the nature of the
ground state to be highly sensitive to the experimental parameters and the dimensionality of the
system.

PACS numbers: 67.85.Pq, 67.85.-d, 67.85.Lm

I. INTRODUCTION

Ultra-cold trapped-atom experiments offer the unique
possibility to understand many-body physics beyond
what can be explored in typical condensed matter set-
tings [1]. Essentially, they provide clean many-body sys-
tems in which attributes like density, dimensionality and
interactions, may be controlled with commendable pre-
cision [2–5]. As a result, from a theoretical perspective,
there are broadly two kinds of challenges: (1) investi-
gate configurations appropriate for emulating many-body
theory models, thereby allowing for a systematic verifi-
cation of claims made in the condensed matter context,
and (2) investigate new configurations extremely difficult
to realize in material settings. While the former pro-
gram has proved quite successful with demonstrations of,
for example, Mott insulator to superfluid transition with
ultra-cold 87Rb atoms in an optical lattice [6], the latter
is just beginning to attract attention with several new
experiments comprising degenerate mixtures of bosons
and fermions, of same or different species being set up
[7, 8]. A potentially rich scenario in this context is pro-
vided by an atomic mixture comprising superfluids of two
kinds- bosonic and fermionic. Studying this system may
also have strong implications for, say nuclear physics, as
a recent proposal investigates the intriguing possibility
of simulating dense QCD matter with superfluid atomic
mixtures [9]. Further, considering that in condensed mat-
ter setting, the analogous 3He-4He superfluid mixture is
difficult to realize [10], achieving Bose-Fermi superfluid
mixtures with ultra-cold atoms maybe an important step
towards understanding corresponding occurrences in a
broader context.

In analyzing experiments with ultra-cold Bose-Fermi
mixtures, it is important to understand the effects of in-
homogeneity due to traps. These effects are at the heart
of determining the stability of possible thermodynamic
phases in a given experiment. To this end, we construct

the finite-temperature phase diagram of an interacting
3-dimensional (3-d) mixture comprising of two fermions
(spin ↑ & ↓) of one species and a bosons of another. To
draw such a phase diagram, it is important to understand
the interplay between the following two phenomena: (1)
phase transition that occurs near a critical temperature
where suddenly an order parameter corresponding to one
of the species nucleates. In fact, the critical temperature
of such a transition may itself depend intricately on the
state of the second species. Moreover, the already nu-
cleated phase may subsequently be drastically affected
in a certain region of trap due to the nucleation of a
new phase, corresponding to the second species, as the
system is further cooled and crosses below a lower criti-
cal temperature. (2) phase separation between possible
phases, a phenomenon unique to trapped configurations.
It also implies that the trap potential can simultaneously
accommodate one or more of the phases as determined
by the experimental parameters. Thus, remarkably what
phase/phases will be observed will critically depend on
the trap geometry. This, in fact is a very important ob-
servation implying the possibility of tuning the trap pa-
rameters such that a desired density profile is observed
only if a certain phase has nucleated. On top of all this,
the dimensionality of the trapped system, whether we
consider a 3-d or a 1-d trap, will also largely determine
what phase is energetically favorable for phase separa-
tion.

While various possibilities discussed above exist and
some insight may be borrowed from previous studies on
pure Bose and Fermi superfluids, the intrinsically new
nature of Bose-Fermi superfluid mixtures strongly moti-
vates us to derive a framework within which an elabo-
rate finite temperature phase diagram can be generated.
Also, such finite temperature studies comprising interact-
ing fermions have never been performed in the past. The
paper is organized as follows. In Sec. II, we first review
the theory for analyzing the thermodynamic instabilities
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of the Bose-Fermi mixture. While the technique is quite
standard and maybe found elsewhere, to our knowledge
this is the first instance where it has been applied for de-
riving the finite temperature phase diagram of the inho-
mogeneous mixture comprising of bosons and fermions,
both in the superfluid phase. As discussed in the previous
paragraphs, the trap introduces multiple scenarios that
are new to these systems making the analysis compli-
cated. Therefore as a warmup, in Sec. III A we illustrate
our method by first considering the simplest case of the
T = 0 superfluid mixture in 3-d. The finite tempera-
ture phase diagram for the 3-d Bose Fermi mixture will
be derived in Sec. III B. Finally, in Sec. IV, we will dis-
cuss the implication of the phase diagram for a trapped
Bose-Fermi mixture by introducing a spatially varying
chemical potential in the spirit of a Local Density Ap-
proximation (LDA), followed by brief discussion of the
dependance on dimensionality in Sec. V.

II. THEORY

We begin by writing the Hamiltonian for the interact-
ing Bose-Fermi mixture in the form

Ĥ = Ĥb − µb N̂b
︸ ︷︷ ︸

Ĥb

+ Ĥf − µf N̂f + Ubf N̂b N̂f
︸ ︷︷ ︸

Ĥbf

, (1)

where the subscript b (f) stands for bosons (fermions),

µ’s represent corresponding chemical potentials, N̂ ’s the

corresponding number operators and Ubf denotes the in-
teraction energy between bosons and fermions. Our in-
terest is in studying this interacting Bose-Fermi mixture
in the vicinity of the superfluid critical temperature Tc

of the fermions. Of course, it is true that the Tc itself
will be modified due to the presence of Bose compo-
nent. Further, the phase of fermions may modify the
critical temperature for the condensation of the Bose
component, TBEC . Thus, while the general problem is
indeed complicated, we focus our attention on the situ-
ation when TBEC is much greater than Tc, typically the
case in most trapped experiments [11]. This allows us
to work in the Thomas-Fermi limit of the Bose compo-
nent by neglecting its kinetic energy. We represent the
contact interaction strength between a pair of bosons as
λb = Ub V = 4π~

2ab/m, where Ub is the interaction en-
ergy of bosons, V is the volume, ab is the s-wave boson-
boson scattering length, assumed to be positive implying
repulsive interactions, and m is the mass of bosonic atom.
For large boson number Nb, total pairs of bosons is ap-
proximately N2

b /2 and hence, Ĥb is simply a constant
given by UbN

2
b /2. Thus, the contribution to the free en-

ergy density arising from just the bosonic component is

fb = 〈Ĥb〉 = λb

n2
b

2
− µb nb, (2)

where nb = Nb/V is the boson density.
Now, we focus on the Ĥbf part of the Hamiltonian and

write it explicitly in second quantized form as

Ĥbf =
∑

k,σ

(εk − µf ) c†k,σck,σ + λf

∑

k,k′,q

c†k+q,↑ c†−k,↓c−k′+q,↓ ck′,↑ + λbf nb

∑

k,σ

c†k,σck,σ . (3)

Here εk = ~
2k2/2m and c†k,σ(ck,σ) is the creation (annihi-

lation) operator for a fermion with momentum k and spin
σ. Further, the boson-fermion interaction, which is typ-
ically short range, is described by a δ-potential contact
interaction with strength given by λbf = 2π~

2abf/µm,
where abf is the corresponding s-wave scattering length
and µm is the reduced mass of the boson-fermion sys-
tem. Here we will confine our analysis to the repulsive
regime with abf > 0. Similarly, we describe the fermion-
fermion interaction by the contact interaction strength
λf = 4π~

2af/m, where af is the corresponding s-wave
scattering length. Here, since the interaction is s-wave,
only unequal-spin fermions interact. Also, we are inter-
ested in the superfluid regime, which occurs for attractive
interactions, thus we assume af < 0. Now, in the super-

fluid state with BCS-type pairing [12, 13], the center-
of-mass momentum, q, of the Cooper pair is set to zero
allowing Ĥbf to be simply

Ĥbf =
∑

k,σ

ξk c†k,σck,σ−|λf |
∑

k,k′

c†k,↑ c†−k,↓c−k′,↓ ck′,↑, (4)

with ξk = εk − µf + λbfnb. One can immediately
notice that this is just the usual BCS Hamiltonian
with a modified chemical potential, hence can be di-
agonalized with the usual Bogoliubov transformation
[14]. Firstly, defining the mean-field order parameter
∆ = |λf |

∑

k′〈c−k′,↓ ck′,↑〉 and its complex conjugate ∆∗,

we write Ĥbf as
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Ĥbf
M.F
=

∑

k

ξk

(
c†k,↑ck,↑ + c†k,↓ck,↓

)
+

|∆|2

|λf |
−

(
∆∗

∑

k′

c−k′,↓ ck′,↑ + ∆
∑

k

c†k,↑ c†−k,↓

)
. (5)

Re-writing the above in terms of the Nambu spinor Ψ†
k =

(c†k,↑ , c−k,↓) and its hermitian conjugate Ψk, we have

Ĥbf =
∑

k

Ψ†
k

(
ξk −∆

−∆∗ −ξk

)

Ψk +
∑

k

ξk +
|∆|2

|λf |
. (6)

Now the Bogoliubov transformation immediately gives

Ĥbf =
∑

k

(

α†
k,↑ , α−k,↓

) (
E+

k 0
0 E−

k

) (
αk,↑

α†
−k,↓

)

+
∑

k

ξk +
∆2

|λf |
, (7)

where the eigenenergies are E±
k = ±

√

ξ2
k + ∆2 and ∆

is assumed real [15]. The operator α†
k,↑ (αk,↑) cre-

ates (annihilates) Bogoliubov quasiparticles that are dis-
tributed according to the Fermi-Dirac distribution fk =
1/(1 + eβEk) with β = 1/kB T . Thus the relevant ther-
modynamic potential is given by

〈Ĥbf 〉−TS =
∑

k

(ξk −Ek)+
∆2

|λf |
−

2

β

∑

k

ln (1+ e−β Ek)

(8)
where S is the entropy. The derivations and mean-
field analysis presented henceforth is quantitatively ex-
act only when the interactions are weak. Our analysis is
only qualitatively correct in the strong interaction limit,
where a strong-coupling theory presented along the lines
of Ref. [16] would be quantitatively more accurate.

A. Free energy, Equilibrium and dynamical

stability conditions

Free energy density of the interacting mixture compris-
ing of bosons and fermions, both in the superfluid state,
can now be written from Eqs. (2) and (8):

f =
λbn

2
b

2
−µb nb+

∑

k

(ξk−Ek)+
∆2

|λf |
−

2

β

∑

k

ln (1+e−β Ek).

As one can immediately notice, f depends on numerous
parameters: interaction strengths λ{b,f,bf} (in-turn, the
scattering lengths a{b,f,bf}), particle densities n{b,f},
chemical potentials µ{b,f}, BCS superfluid order param-
eter ∆ and temperature T . It is quite evident that the
phase space of this interacting mixture is huge and thus
an exhaustive study is impossible. However, noticing the
fact that not all of these parameters are independent, we

adopt the following scheme that was first introduced in
Ref. [17], allowing us to investigate the experimentally
relevant region of the phase space: (1) fix parameters
λb, λbf and µf and perform our analysis at fixed values
of T [18]; (2) we project the multi-dimensional phase
diagram in the {nb, ∆} phase space; (3) the remaining
dependent parameters µb, nf and λf are determined by
the equilibrium stability conditions to be derived below.

(1) First derivative conditions: First of these is
the Gap equation obtained as the extremum of f with
respect to ∆ and provides the self-consistent value of
the interaction strength parameter λf :

∂f

∂∆
= 0 =⇒

1

|λf |
=

∑

k

1

2 Ek

tanh
(βEk

2

)
.

However, in three dimensions, the momentum sum in the
above expression diverges, an artifact of the contact in-
teraction approximation. This unphysical effect is easily
eliminated by an appropriate regularizing prescription.
One of the easiest and convenient methods is to subtract
the diverging piece:

1

|λf |
=

m

4π~2|af |
=

∑

k

1

2 Ek

tanh
(βEk

2

)
−

1

2 εk

. (9)

Correspondingly, we upgrade the free energy f to the
regularized freg such that the extremum condition auto-
matically reproduces the regularized version of the Gap
equation [19]

freg(nb, ∆) = λb

n2
b

2
− µb nb +

∑

k

(ξk − Ek +
∆2

2 εk

)

+
∆2

|λf |
−

2

β

∑

k

ln (1 + e−β Ek) . (10)

The above step is essential for our case since we will be
eventually interested not only in the stability of the Fermi
system but that of the combined Bose-Fermi system. The
presence of bosons affects the self-consistent value of λf ,
through the combination λbf nb. Next we consider the
variation with respect to the fermion chemical potential
µf . This produces the familiar equation determining the
fermion number density nf :

∂(freg + µf nf )

∂µf

= 0 =⇒ nf =
∑

k

1 −
ξk

Ek

tanh
(βEk

2

)
.

(11)
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Finally, the last of dependent parameters, the boson
chemical potential µb is determined by minimizing freg

with respect to the boson density. This leads to the mod-
ified Thomas-Fermi equation given by

∂freg/∂nb = 0 =⇒ µb = λbnb + λbfnf . (12)

(2) Second derivative conditions: The second derivatives

at the extremum points derived above provide the dy-
namical stability criterion for the mixture via positive
definiteness of the Hessian matrix M. The relevant Hes-
sian matrix elements are:

M11 =
∂2freg

∂n2
b

= λb − λ2
bf

∑

k

∆2

E3
k

tanh(
βEk

2
) −

β

2

ξ2
k

E2
k

sech(
βEk

2
)2; (13)

M22 =
∂2freg

∂∆2
=

∑

k

∆2

E3
k

tanh(
βEk

2
) −

β

2

∆2

E2
k

sech(
βEk

2
)2; (14)

M12 = M21 =
∂2freg

∂∆ ∂nb

= λbf

∑

k

∆ ξk

E3
k

tanh(
βEk

2
) −

β

2

∆ ξk

E2
k

sech(
βEk

2
)2. (15)

III. FINITE TEMPERATURE PHASE

DIAGRAM

For illustrative purposes, we start with a brief discus-
sion of the zero-temperature phase diagram. Through-
out, we follow the scheme outlined in Sec. II A to con-
struct all the phase diagrams.

A. Zero-Temperature limit

This is simply derived by taking the T = 0 limit of
Eqs. (9)-(15). In the phase diagram shown in Fig. 1(a),
the solid (green) curve represents the boundary of the dy-
namically stable region above it, separating the unstable
region below. However, it is important to note that, in
the phase diagram the interaction parameter λf is deter-
mined self-consistently from the Gap equation. Thus in
any single experimental realization, only a small portion,
corresponding to a fixed λf , of the above phase space is
accessible. In our analysis, we choose a value of λf (cor-
responding to 1/kf af = −1.10) such that pure fermions
are in the BCS superfluid regime. This corresponds to
a BCS superfluid critical temperature of Tc = 0.11 Tf ,
with Tf being the Fermi temperature [20]. It is however
important to note that Tc,mix, the BCS transition tem-
perature of fermions in the presence of bosons, is modi-
fied by the presence of the factor λbf nb in the effective
fermion chemical potential. Further, the dependence is
such that Tc,mix ≤ Tc and the equality is satisfied when
λbfnb → 0.

Points in the phase space that correspond to this fixed
value of λf is shown by the dashed (blue) contour C in
Fig. 1(a). The crossing of this contour with the dynam-

ical stability contour indicates the phase space point at
which the homogeneous mixture enters the dynamically
stable region. However, for the homogeneous mixture to
be the stable ground state, mechanical stability condition
should also be satisfied on top of the dynamical stability
condition. This additional criterion is exclusively present
due to the spatial inhomogeneity intrinsic in trapped-
atom setups. By mechanical stability, we mean that the
free energy of the homogeneous mixture should be less
than the free energy of the pure bosonic phase or the
pure fermionic phase along the contour C. The value of
the latter is a constant, since λf is fixed along C. Free
energy of pure bosons along C is given by

fb[C] = −
µ2

b [C]

2 λb

(16)

where, µb[C] is the boson chemical potential along C.

The plot of Fig. 1(b) shows the comparison of free
energies mentioned above. The free energy of the pure
fermionic phase and that of the homogeneous Bose-Fermi
mixture along C are represented by the solid and the
dashed lines respectively. The free energy of pure bosons
is much higher than the others and hence bosons do not
phase separate out of the mixture. Actually this obser-
vation is a general property of the phase space of a 3-
dimensional Bose-Fermi mixture. The filled circle (red)
represents the critical point along contour C, at which
the free energy of the homogeneous mixture is lower than
that of pure fermions, i.e., the critical point at which the
homogeneous mixture enters a region of both dynami-
cal and mechanical stability. This implies that, for the
specific experimental realization considered here, up un-
til this critical point pure fermions phase separate out
of the mixture, while above the critical point the Bose-
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FIG. 1: (Color online) (a) Phase diagram of the Bose-Fermi superfluid mixture at T = 0 [21]. Solid (green) curve is the
dynamical stability contour while the dashed (blue) contour C denotes points in phase space with a fixed value of λf such
that Tc = 0.11 Tf . The filled (red) circle represents the critical point, for this specific experimental realization, at which the
homogeneous mixture enters the dynamically and mechanically stable region. (b) Plot of the free energy densities of pure
fermions (solid) and the homogeneous mixture (dashed) against µb[C]. Free energy of homogeneous mixture is lower than that
of pure fermions only beyond the critical point represented by the filled (red) circle. Here, free energy density is a dimensionless
quantity [22].

Fermi superfluid exists as a stable mixed phase.

B. Finite-Temperature scenario

We begin the discussion of the finite temperature case
by first emphasizing some of the generic aspects of such
a phase diagram as depicted in the schematic of Fig. 2.

1. Generic features

2S

1S 1U

2U

BECT

c,mixT

experimental parameters

T

FIG. 2: (Color online) Schematic depicting possible first-order
transitions occurring in Bose-Fermi mixtures across Tc,mix.
Horizontal axis denotes the R

5 phase space of experimental
parameters defined by {λb, λbf , µf , nb, ∆}.

Similar to the above illustration of the zero-
temperature limit, we analyze the stability of the super-
fluid Bose-Fermi mixture in the vicinity of BCS critical

temperature for a wide range of temperature and other
parameter values. As mentioned earlier in Sec. II A, the
phase space is huge (5-dimensional) allowing for compli-
cated boundaries between stable (Si) and unstable (Ui)
regions of the homogeneous mixture. Before proceeding
to the detailed quantitative finite temperature phase di-
agram in Fig. 3, we therefore summarize our findings by
pointing out the broad features, as depicted in Fig. 2.
In a certain projected subspace, the homogeneous Bose-
Fermi mixture becomes dynamically and/or mechanically
unstable towards phase separation through a first-order
transition S1 → U2, when cooled across Tc,mix. The tun-
ability of experimental parameters further allows us to
access the U2 → S2 transition at some fixed tempera-
ture below Tc,mix. We also observe the existence of a pa-
rameter regime where the homogeneous mixture remains
unstable across Tc,mix going from U1 → U2. If fermions
phase separate out of the unstable regions, then along the
phase space boundary between U1 and U2, and that be-
tween U2 and S1, Tc,mix is essentially Tc. Thus, in short,
the Bose-Fermi mixture exhibits rich mixing-demixing
physics in the vicinity of the BCS critical temperature.
Particularly interesting is the parameter regime exhibit-
ing the first-order transitions S1 → U2 → S2, which
shows how the already condensed bosons affect the nucle-
ation of fermions when cooled across the critical tempera-
ture, thereby clearly indicating direct implication for the
observation of Fermi superfluidity in trapped mixtures.
We therefore address this part of the phase space in more
detail.
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2. Quantitative features

FIG. 3: (Color online) Phase diagram of the Bose-Fermi su-
perfluid mixture at temperatures Tc > T . Solid (green) curves
show dynamical stability criteria and the (blue) surface rep-
resents points of fixed λf , such that Tc = 0.11 Tf [20, 21].
Dashed (blue) curves Ci are contours of fixed temperature
Ti along this surface and (red) circles indicate critical points
at which the homogeneous mixture enters the region of both
dynamical and mechanical stability.

For temperatures T > Tc,mix before the onset of BCS
superfluidity, ∆ = 0 and hence we are confined to the nb

axis. Correspondingly, the free energy and the stability
conditions of the homogeneous Bose-Fermi mixture are
given by simply substituting ∆ = 0 in Eqs. (9)-(15). For
the parameter space under investigation, we find that
the homogeneous mixture is always the stable ground
state in this temperature regime. On the other hand, at
temperatures T < Tc,mix, the onset of BCS superfluidity
in fermions is characterized by a non-zero value of ∆.
In Fig. 3, we plot the phase diagram for a wide range
of temperatures below Tc to observe that the mixture is
dynamically stable only above the solid (green) curves
at a given temperature. Thus the presence of an all-
stable homogeneous phase above Tc,mix and a mixture
of unstable/stable phases below Tc,mix, as seen in Fig. 3,
depicts the unambiguous manifestation of S1 → U2 → S2

transitions.

Now we can immediately recognize the significance of
this phase diagram for a realistic experimental situation.
Again, just like the T = 0 case, only a small part of
the stable phase space, corresponding to a fixed value
of λf , is accessible in a particular experimental realiza-
tion. This we indicate by the two-dimensional surface
shown in Fig. 3, for our chosen value of λf such that the
fermions are in the BCS superfluid regime. The dashed
lines Ci’s are contours connecting phase space points on

this surface with fixed temperatures Ti’s. The crossing
of contours Ci’s with dynamical stability contours indi-
cates the phase space points at which the mixture enters
the dynamically stable region. The filled circles represent
critical points at which the homogeneous Bose-Fermi su-
perfluid mixture becomes the stable ground state, i.e.,
both dynamically and mechanically stable. We observe
their occurrence to transpire in two different ways: (1)
In C1-C4, critical points occur in the dynamically stable
region where the mixture also attains mechanical stabil-
ity (as illustrated in Sec. III A). (2) Along C5 (C6), the
BCS transition temperature monotonously reduces with
∆ by such an extent that when ∆ → 0, Tc,mix < T5 (T6).
However as discussed before, the mixture is always the
stable ground state for Tc,mix < T . Hence in C5-C6, the
critical points are given by their intersections with ∆=0
plane. Thus along each Ci, below these critical points the
homogeneous mixture becomes dynamically and/or me-
chanically unstable. We further find that in the unstable
regions, pure fermions phase separate from the mixture.
Thus in Fig. 3 we clearly demonstrate the occurrence of
temperature-driven mixing-demixing transitions at fixed
interaction strengths.

IV. TRAP PROFILES WITHIN LDA

FIG. 4: (Color online) Subplots top, middle and bottom
show boson density profiles (slice along y=0 plane) computed
within the LDA for temperatures T = 0.13, 0.072, 0.055 Tf

respectively, with Tc=0.11 Tf . µb is adjusted to ensure num-
ber conservation (∼42000 atoms). X, Z are in µm. Color bar
shows density variations in scale of nba

3

b (10−6). Chosen trap
parameters V0 (several mW), σ=12 µm and ωz/ω⊥=0.08.

We now show the direct experimental implications of
the above phase stability analysis. This, we do by reliably
translating this analysis to the inhomogeneous case via
Local Density Approximation (LDA) by defining a posi-
tion dependent chemical potential µb(r) = µb − Vtrap(r),
where µb(r) is the local chemical potential and Vtrap(r)
is the trap potential for bosons [2]. While this approx-
imation is known to be very efficient for large densities
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(typically the case in trapped-atom experiments), it also
implies that the trap potential can simultaneously ac-
commodate one or more of the phases discussed above.
Thus, remarkably what phase/phases will be observed
will critically depend on the trap geometry. This in fact,
is a very important observation implying the possibility
of tuning the trap parameters such that a desired density
profile is observed only if a certain phase has nucleated.

To illustrate this program, let us consider bosons to
be in a tightly confined trap surrounded by the Fermi
gas in a larger trap, a scenario that takes advantage of
our framework to consider a homogeneous Fermi gas with
fixed µf . Additionally, this consideration is completely
justified as the trapping potential for each species can
be independently controlled [7]. After careful analysis of
the phase diagram in Fig. 3, we find it advantageous to
confine bosons in a trap with a finite barrier near the
center. As this also helps to enhance the contrast in
imaging the nucleated phases, we propose a double-well
cigar shaped trap with a potential

Vtrap(r) =
1

2
mω⊥(x2 + y2) +

1

2
mωzz

2 + V0 exp(−
z2

2σ2
)

to confine bosons, where ω⊥ (ωz) is the trap frequency
in the transverse (longitudinal) direction to the Gaussian
beam creating the trapping potential. V0 and σ, defining
the barrier peak and beam-width respectively, are chosen
to ensure a readily detectable overlap of boson density
profiles from the two wells for T = 0.13 Tf (i.e., Tc < T ),
as shown in the top plot of Fig. 4. At T = 0.072 Tf

(0.055 Tf), phase stability analysis along contour C5 (C3)
in Fig. 3 indicates the existence of a critical boson den-
sity (and correspondingly a critical boson chemical po-
tential µb(r)), only above which the Bose-Fermi mixture
homogeneously co-exists as the stable ground state. Cor-
responding regions of the trap where this condition is
not satisfied are devoid of bosons in a drastic fashion, as
seen from the ∼4 µm (8 µm) gap between the separated
bosonic islands in Fig. 4. As these separation lengths
are far greater than the healing length of the condensate,
this illustration vividly shows how crucial aspects of the
finite temperature phase diagram readily translate into
detectable signatures in experiments. Furthermore, this
particular signature in Fig. 4 may be used as a signal in-
dicating the onset of BCS superfluidity in the particular
parameter regime of the attractive Fermi gas.

V. EFFECT OF DIMENSIONALITY ON THE

PHASE DIAGRAM

As a final piece, we analyze how the phase diagram gets
modified when only the trap geometry of the experimen-
tal setup is deformed (all other parameters kept constant)
such that the confinement in two orthogonal directions is
made much tighter compared to that in the third. In ef-
fect, the system can be considered to be one-dimensional

if the trapping frequency in the tight directions is such
that ~ ωtight ≫ µb,f . For simplicity, we restrict ourselves
to the T = 0 limit, where all the qualitative features
can be comprehensively discussed [23]. The effective 1-d
interaction strength can be written in terms of the 1-d
scattering length, which in turn can be easily related to
the 3-d scattering length [24]. This mapping is critically
dependent on the aspect ratio of the trap. We choose ex-
perimentally relevant values for ω⊥ and ωz [25]. While we
assume ω⊥ ≃ 2 π 105 Hz for both bosons and fermions, we
find it useful to consider ω⊥/ωz ≃ 103 for fermions but
smaller values of ω⊥/ωz for bosons. Apart from ensuring
that we are indeed in the 1-d regime, this choice guaran-
tees a highly elongated trapping potential for fermions.
From the parameter values used in deriving the 3-d phase
diagram of Fig. 1(a), we obtain the corresponding values
for the 1-d scenario [24].

We thus construct the phase diagram of the interacting
one dimensional superfluid mixture, by performing the 1-
d integrals instead of 3-d in Eqs. (9)-(15). The phase dia-
gram is shown in Fig. 5(a), where the solid (green) curve
represents the dynamical stability contour that separates
the dynamically unstable region (inside the ellipse) from
the dynamically stable region (outside the ellipse). Phase
space points that correspond to the fixed value of λ1d f ,
are shown by the dashed (blue) contour C. The crossing
of C and the dynamical stability contours indicates the
point at which the homogeneous mixture enters the dy-
namically unstable region. However, as discussed before
in Sec. III A, for the Bose-Fermi homogeneous mixture
to be stable, it is necessary that the mechanical stabil-
ity condition be simultaneously satisfied. For this, we
plot the relevant free energies in Fig. 5(b), where the
free energies of pure bosons, homogeneous mixture and
pure fermions along C are given by dotted, dashed and
solid lines respectively. We immediately note that pure
fermions can never phase separate out of the mixture,
a remarkably different result when compared to the 3-d
case [see Fig. 1(b)]. The filled circle (red) represents the
critical point along contour C, at which the free energy of
the bosons becomes lower than that of the homogeneous
mixture, i.e., the critical point at which the homogeneous
mixture becomes mechanically unstable. This means
that up until this critical point, homogeneous superfluid
mixture coexists as the stable ground state. However,
above this critical point pure bosons phase separate out
of the mixture. The significance of this critical point is
clear since we can now directly obtain the boson density
profile in the boson trap by mapping the boson chemical
potential µb[C] onto the spatial coordinate in the trap
via LDA using µb[C] = µb(r) = µb − V (r[C]), where
V (r) is the probe trapping potential for the bosons. It is
evident from Figs. 5(a) and 5(b) that the pure bosons
phase separate out of the homogeneous mixture in the
trap above the critical value of boson chemical potential
µb corresponding to the critical point (filled red circle).
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FIG. 5: (Color online) (a) Phase diagram of the Bose-Fermi superfluid mixture in 1-d at T = 0 (for the same parameters used
in Fig. 1(a)). Solid (green) curve is the dynamical stability contour, while the dashed (blue) contour C denotes phase space
points with a fixed value of λ1D f . The dotted (black) curve represents the region within which the homogeneous mixture is
mechanically unstable. The filled circle (red) represents the critical point, for this specific experimental realization, at which
the homogeneous mixture enters the mechanically unstable region. (b) Plot of the free energy densities of pure bosons (dotted),
of pure fermions (solid) and the homogeneous mixture (dashed) against µb[C]. Free energy density of homogeneous mixture
becomes higher than that of pure bosons at the critical point represented by the filled (red) circle, resulting in the phase
separation of pure bosons out of the mixture. Here, free energy density is a dimensionless quantity [22].

VI. CONCLUSIONS

In this article, we have discussed a consistent the-
oretical method for performing the finite temperature
phase stability analysis of an ultra-cold mixture compris-
ing of bosons and fermions, both in the superfluid regime.
Based on our stability analysis in the vicinity of the Fermi
superfluid temperature, we discussed two distinct scenar-
ios where the homogeneous superfluid mixture becomes
unstable (1) when the normal-superfluid phase transi-
tion (second-order) occurs in the fermionic component,
and (2) below the Fermi superfluid temperature via me-
chanical instability which is a first-order phase-separation
phase transition. The latter scenario happens exclusively
due to the trap inhomogeneity inherent in trapped-atom
experiments, thereby allowing for the two phases to be
simultaneously present. We have illustrated the emer-
gence of these instabilities and the ensuing phase sep-
aration by considering a realistic experimental setting.
We fine-tuned the trap geometry to enhance the effect
of phase separation. Finally, we briefly discussed the ef-
fect of dimensionality on the stability of various phases.
We reiterate that while our phase diagram analysis is
quantitatively exact when the interactions are weak, our
study is only qualitatively correct in the strong interac-
tion limit.

We emphasize here that the interplay between the
first and second order phase transitions, similar to that
discussed in this paper, will have strong implications for

analyzing experimental observations involving ultra-cold
mixtures in general [26]. While our framework is also
valid to study the regime of strong interactions near
a broad Feshbach resonance, it can be easily extended
within a two channel model for the case of a narrow
Feshbach resonance. Further, while such a treatment
will naturally allow for a molecular condensate of Fermi
atoms [27], it is not hard to speculate emergence of
rich physics due to occurrence of Efimov bound states
in the Bose-molecule interaction channel [28]. Finally,
an important extension of the current work would be
to consider spin-dependent Bose-Fermi interactions.
The presence of a small BEC can shift the chemical
potential of a particular spin component relative to the
other. This is analogous to the situation encountered in
solid-state samples with magnetic impurities, thereby
providing a new platform for studying the interplay
between superfluidity and magnetism.
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