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Abstract

We performed nuclear dynamics calculations on HCN and DCN to study the isotope effect

in dissociative electron attachment (DEA). Our previous calculations at 333 K led to a ratio

σ(CN−/HCN)/σ(CN−/DCN) of about 13 which is significantly higher than recent experimental find-

ings. This discrepancy is attributed to the neglect of correlation and polarization effects in the

scattering calculation performed. We carried out a relaxed-SCF calculation to determine the vari-

ation of the resonance parameters under these effects. We observe a shift in the positions of the

shape resonance as well as a narrowing of the autoionization widths resulting in an isotope ratio

of 3.2 at T = 333 K; in closer agreement with the measured value.
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I. INTRODUCTION

Recently, May et al. conducted a time-of-flight ion spectrometry experiment to measure

the isotope effect in DEA to HCN [1]. The authors measured a σ(CN−/HCN)/σ(CN−/DCN)

ratio of 2.76 at 333 K below 3 eV in electron energy. Previous theoretical work on DEA

to HCN shows a value of 13 for this ratio [2]. It has been speculated that this discrepancy

is due to the significant sensitivity of the wavepacket flux to the computed values of the

autoionization widths. In order to test this hypothesis, we have carried out a more accurate

electron scattering calculation that includes the polarization and correlation effects. We then

performed a new 3-D wavepacket propagation run using the improved complex adiabatic

potential energy surface (APES) in the A′ symmetry. In this paper, we first give a brief

overview of the relaxed-SCF approach used in this study and discuss the results of the

electron scattering calculation. Secondly, we describe the results of the nuclear dynamics

calculation and compare the DEA cross section of HCN and DCN to experimental findings.

II. BACKGROUND

Here we review the method employed to solve for the dissociation dynamics of the tri-

atomic system. We have represented the internal degrees of freedom using the Jacobi coor-

dinates Q = (r, R, θ) as show in Fig.(1).

The nuclear dynamics of the metastable negative ion state is expressed within the local

potential approximation [3] to give the nuclear wave equation:

[

Etot − T̂Q − Eel(Q) − ǫres(Q) +
i

2
Γ(Q)

]

ξnuc(Q) =

(

Γ(Q)

2π

)1/2

χν(Q) (1)

where Etot is the total energy of the {electron, molecule} system, Eel represents the ground

electronic state of the neutral, ǫres is the resonance energy and Γ is the autoionization width

within the Local Complex Potential model [4]. The latter three functions are expressed as

a function of Q to form the 3-D anion complex potential energy surfaces. In Eq.(1), ξnuc

represents the nuclear wave function and χν the initial vibrational state of the neutral target.

Here, the kinetic energy operator T̂Q is given for a total momentum operator J = 0 and

is expressed in the Jacobi coordinates as
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Figure 1: (Color online) Molecule in Jacobi coordinates.
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where µr and µR specify the reduced masses associated with the r and R coordinates

(Note that atomic units h̄ = m = 1 are used).

We further use the time-dependent formulation of this wave equation as established by

McCurdy and Turner [5] to compute the DEA wavefunction Φnuc(Q, t). The working equa-

tion of motion is therefore given by















[

T̂Q + Eel(Q) + ǫres(Q) − i
2
Γ(Q)

]

Φnuc(Q, t) = i∂tΦnuc(Q, t);

Φnuc(Q, 0) =
(

Γ(Q)
2π

)1/2

χν(Q)
(3)

We use the computational technique based on Multi-Configuration Time-Dependant

Hartree (MCTDH) formalism discussed in detail in [6]. In this approach, the nuclear wave

function for the negative ion is expressed in the Jacobi coordinates as:

Φnuc(r, R, θ, t) =
Nr
∑

i=1

NR
∑

j=1

Nθ
∑

k=1

Aijk(t)ρi(r, t)̺j(R, t)Θk(θ, t) (4)
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Each single-particle function appearing in Eq.(4) is in turn expanded in terms of a function

basis set chosen to correspond to that of a Discrete Variable Representation (DVR) for

computational efficiency. Here, Nr, NR and Nθ are all set to the value 8 and the single-

particle functions associated with the variables R, r and θ are expressed in terms of sine-DVR

(99 grid points), Harmonic Oscillator-DVR (27 grid points) and Legendre-DVR (121 grid

points) respectively.

III. COMPLEX APES

Our previous scattering calculation in [2] was conducted at the static exchange level. In

this case, the expression of the trial electronic wavefunction is given by [7]

φ+
λ (r;q) =

∑

λ′

A
[

ϕλ′(~r1, ~r2, ..., ~rn;q)F λλ′

(~rn+1; kλ)
]

, (5)

where the sum runs over the energetically open n-electron target states, r =

(~r1, ~r2, ..., ~rn+1) is the (n + 1)-electronic coordinates vector, A is the antisymmetrizing op-

erator and the label λ groups all the quantum numbers needed to represent the physical

state of the {electron, molecule} system i.e. the internal state of the target and the energy

and orbital angular momentum of the scattered electron. The function ϕλ(~r1, ~r2, ..., ~rn;q) in

Eq.(5) is the target n-electron ground state with the nuclei clamped at q and F λλ′

(~rn+1; kλ)

is the one-electron scattering wavefunction as a function of the electron’s position ~rn+1 and

momentum kλ. This level of approximation does not take into account polarization and cor-

relation effects of the {electron, molecule}. In the current work, the scattering wavefunction

used in given by

φ+
λ (r;q) =

∑

λ′

A
[

ϕλ′(~r1, ~r2, ..., ~rn;q)F λλ′

(~rn+1; kλ)
]

+
∑

µ

dλ
µΘµ(r), (6)

where the additional expansion involves an orthonormal set {Θµ}µ of antisymmetric,

square-integrable (n+1)−electron functions and represents the polarization and correlation

effects not contained in the first summation .

In this relaxed-SCF calculation, we have used a basis set of 66 functions allowing

symmetry-preserving excitations from occupied HCN orbitals into virtual orbitals result-

ing in 9405 configurations in the A′ symmetry. Fig.(2) shows the eigenphase sums obtained
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for various molecular geometries and compares the fitted resonance parameters to previous

static exchange calculation of [2]. As expected, inclusion of the correlation and polarization

term in Eq.(6) leads to a shift of the resonance positions to lower energies and to a nar-

rowing of the autoionization widths. For instance, at quasi-equilibrium geometry (1◦ bend),

we observe a decrease of the lower resonance energy by about 0.04 a.u. (i.e. around 36.3%

decrease) and a reduction of its width of about 0.01 a.u. (i.e. around 18.8% decrease).

Similar trend is observed for a 10◦ bend as shown in Fig.(3).
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Figure 2: (Color online) Eigenphase sums as a function of electron collision energy with variations

in R with r = 2.1 a.u. and θ = 1◦. The resonance parameters for (overlapping) resonances are

shown for the quasi-equilibrium geometry R =3.2 a.u.

Fig.(4) depicts the shape of the lowest resonant potential energy surface constructed based

on this calculation as a function of the internal degrees of freedom of HCN. In Fig.(5), the

correspondent imaginary part of the complex potential surface Γ is plotted as a function of

the coordinates R and θ. Qualitatively, these surfaces bear a great topological resemblance
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Figure 3: (Color online) Eigenphase sums as a function of electron collision energy with variations

in R with r = 2.1 a.u. and θ = 10◦. The resonance parameters for (overlapping) resonances are

shown for the quasi-equilibrium geometry R =3.2 a.u.

to the ones obtained in our previous work. However, the changes in the values of the

resonance parameters cause a variation in the relative neutral-anion surface position (and

hence, the position and shape of the curve crossing seam) as well as the width and height

of the potential barrier that characterizes this A′ APES.

IV. DEA CROSS SECTION

In the framework of the local complex potential model [4] used to describe to nuclear

motion, the propagating wavepacket undergoes the effect of the Γ(q) function both through

the initial condition (or the driving term of the wave equation) and the complex poten-

tial expressed in the Hamiltonian operator. The nuclear motion is computed using Multi-
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Figure 4: (Color online) 3-D plots of the ground electronic state of the HCN target (S0) and of the

lowest resonant APES (real part (V1)) of HCN−∗. Surfaces are shown as a function of the Jacobi

coordinates R and θ where the latter is shown within the interval [−30◦, 10◦]. The plot shows the

crossing of the resonant anion and neutral states and the potential barrier observed in the resonant

surface. The cut at 10◦ depicts the surface profiles along the dissociative coordinate R.

Configuration Time-Dependent Hartree approach using the Heidelberg Package [6] to com-

pute the propagation of each of the 4 low-lying bending vibrational states for HCN. The

excited states used are obtained by applying successively an angular raising operator on the

ground vibrational mode.

This set of individual vibrational modes cross sections were combined using a weight

given by a Boltzmann distribution at 333 K to calculate the total contribution to the DEA

cross section. The resulting partial DEA cross sections and the population-weighted sums
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Figure 5: (Color online)3-D plots of the imaginary part Γ of lowest resonant APES of HCN−∗. The

surface is shown as a function of the Jacobi coordinates R and θ where the latter is shown within

the interval [−30◦, 10◦].

are shown in Fig.(6) and Fig.(7) respectively for HCN and DCN. In these figures further

compare the present results to the experimental values of May et al. [1].

The theoretical plots are in good agreement with the experiment in terms of DEA peak

positions, heights and widths. The calculated DEA cross sections are centered approxi-

mately around 1.94 eV with a maximum value of 865.6 pm2 for HCN and 283.1 pm2 for

DCN. Furthermore, the FWHM of the calculated cross sections are evaluated at 0.77 eV

and 0.68 eV for HCN and DCN respectively. This calculation results in a value of the

σ(CN−/HCN)/σ(CN−/DCN) ratio at 1.94 eV of approximately 3.05 in close agreement with the

experimental 2.76 value. These values are summarized in Table I and Table II respectively

for HCN and HCN.
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Figure 6: (Color online) Absolute DEA cross section for initial HCN vibrational states νi = 0, 1,

2 and 3 and the population-weighted sum at 333 K. Comparison with DEA cross section in [1] is

shown in the solid orange plot.

Table I: Comparative summary of DEA cross section characteristics for HCN

Experiment[1] Previous work[2] Present work

Peak max. position (eV) 1.85 3.01 1.94

Peak height (pm2) 942 2790 865.6

FWHM (eV) 0.84 1.6 0.77

However, we note that this calculation only shows a modest agreement with experiment

in terms of the DEA peak onsets and the secondary shoulder feature in May et al.’s measure-

ments. The authors attributed this feature to the contribution of the ground and excited
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Figure 7: (Color online) Absolute DEA cross section for initial DCN vibrational states νi = 0, 1,

2 and 3 and the population-weighted sum at 333 K. Comparison with DEA cross section in [1] is

shown in the solid orange plot.

Table II: Comparative summary of DEA cross section characteristics for DCN

Experiment[1] Previous work[2] Present work

Peak max. position (eV) 1.91 3.18 1.94

Peak height (pm2) 339 215 283.1

FWHM (eV) 0.88 1.9 0.68

vibrational states of the dissociated CN− fragment. We carried out a projection of the

asymptotic state of the resonant anion onto the vibrational states ν0, ν1,ν2, and ν3 of the

CN− fragment. Fig.(8) and Fig.(9) show a plot of the cross section associated with each of

the fragment vibrational states in the case of HCN and DCN respectively. The peak height

ratios are found to be 1, 0.3, 0.09 and 0.017 (1, 0.2, 0.05 and 4×103) for HCN (DCN) for

the CN− vibrational states ν0, ν1,ν2, and ν3 respectfully.
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Figure 8: (Color online) Cross sections for final CN− vibrational states ν0, ν1, ν2 and ν3 for HCN.

V. CONCLUSION

A relaxed-SCF calculation is necessary to obtain a more accurate treatment of dynamics

of HCN and DCN. The inclusion of the polarization and correlation effects provides a better

description of the interaction between the incident electron and the neutral target and thus,

leads to a better agreement with experimental results. This is consistent with the assumption

that the DEA cross section is significantly sensitive to the resonance parameters. This

improved calculation further results in a good agreement for the σ(CN−/HCN)/σ(CN−/DCN)

ratio which indicates that the relaxed-SCF calculation yields a more accurate topology of

the complex potential used in the nuclear wave equation for HCN and DCN.

Examination of the experimental cross section in [1] shows a double peak structure where

the lowest and smallest of the peaks lies at about 0.2 eV below the main peak for both

HCN and DCN. The authors attribute this feature to possible contribution from the excited

vibrational states of CN−. This feature is not present in our current calculation where
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Figure 9: (Color online) Cross sections for final CN− vibrational states ν0, ν1, ν2 and ν3 for DCN.

only a single peak structure consistent with the main experimental peak is observed. The

double-peak structure may be the result of a coupling to a higher resonant state where

non-adiabatic coupling terms introduce interference effects in the propagating wavepacket

as seen in cases elsewhere [8]. In fact, as detailed in [2], the 2 complex adiabatic surfaces

of HCN intersect at the crossing point of 2Σ and 2Π resonant states in linear geometry.

The present computation, however, neglects the vibronic interaction between these states

which may explain the absence of the minor peak observed experimentally. The inclusion

of coupling between the resonant states entails a computationally complicated diabatization

procedure to determine the non-adiabatic matrix elements and the solution of a system of

two coupled wave equations of the tridimensional HCN and DCN systems. This calculation

goes beyond the scope of the present study.
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