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We have studied hydrogen-hydrogen-alkali three-body systems in the adiabatic hyperspherical
representation. For the spin-stretched case, there exists a single XH molecular state when X is one
of the bosonic alkali atoms: 7Li, 23Na, 39K, 87Rb and 133Cs. As a result, the only recombination
process is the one that leads to formation of XH molecules, H+H+X→XH+H, and such molecules
will be stable against vibrational relaxation. We have calculated the collision rates for recombination
and collision induced dissociation as well as the elastic cross-sections for H+XH collisions up to a
temperature of 0.5 K, including the partial wave contributions from JΠ=0+ to 5−. We have also
found that there is just one three-body bound state for such systems for JΠ=0+ and no bound
states for higher angular momenta.

PACS numbers:

I. INTRODUCTION

In the last decade, studies of three-body collisional pro-
cesses have attracted tremendous attention due to their
great relevance for the rapidly growing field of cold and
ultracold atomic gases [1]. In such systems, three-body
recombination and elastic and inelastic atom-molecule
collisions are of particular interest.

Three-body recombination is a scattering process
where three free particles collide, with two of them bind-
ing to form a molecular state, converting the binding
energy into the relative kinetic energy of the atom and
molecule produced. Three-body recombination, there-
fore, is important generically as it can shed light on
binding in nuclear and chemical reactions. In ultracold
atomic gas experiments, three-body recombination can
lead to huge losses near a Feshbach resonance [2–4] and
has been studied extensively to understand the lifetime
and the stability of the gas samples [5, 7–11].

Elastic atom-molecule collisions are crucial for deter-
mining the dynamics of ultracold atom-molecule mix-
tures at the mean-field level, and inelastic atom-molecule
collisions have a big impact on the lifetime of Fesh-
bach molecules in such systems [12–14]. Furthermore,
in the regime of large two-body s-wave scattering length
a, achieved near a Feshbach resonance, three-body colli-
sional processes show universal scaling behavior with a
as result of Efimov physics [6–9, 15, 16]. These univer-
sal aspects have been observed experimentally in recent
years [17–23] and confirm our understanding of three-
body universal properties [16].

Ultracold three-body collisions, however, are only uni-
versal when the dynamics are predominantly determined
by the long-range behavior of the atom-atom scattering
wave function. When a system behaves universally, the
complicated atom-atom interaction can thus be replaced
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with a much simpler model designed to reproduce the
long-range wave function. It is in this context that the
adiabatic hyperspherical representation has been applied
to the calculation of three-body recombination. While
it has proven very useful for getting deeper insights into
this process, calculating recombination for chemically im-
portant species using realistic interactions requires sub-
stantial further technical development, but does not pose
fundamental difficulties.

Nevertheless, there are a few realistic systems that
are sufficiently simple that recombination calculations
are possible with the tools already available. For in-
stance, recombination of helium atoms, for which there
is a single 4He2 ro-vibrational bound state, has been
studied within the adiabatic hyperspherical representa-
tion [24, 25]. Parker, et al. have studied the Ne+Ne+H
system, calculating the JΠ=0+ partial wave contribu-
tion to recombination and collision induced dissociation
rates [26]. The studies done by Suno et al. for three he-
lium atoms [24, 25] and for He+He+Alkali systems [27]
have included higher partial wave contributions in order
to calculate the total recombination rate up to tempera-
tures of at least 10 mK. These results are relevant to the
buffer gas cooling technique used in cold and ultracold ex-
periments [28, 29], where three-body recombination can
lead to dramatic losses.

In this paper, we study three-body processes involving
two hydrogen atoms and one alkali atom. Knowledge of
these processes could benefit future ultracold atomic gas
experiments. The diatomic molecules produced by three-
body recombination, for instance, are heteronuclear and
thus have a permanent dipole moment. Such molecules
have recently been the focus of much attention [30–34].
Moreover, our results for the light alkali atom systems at
higher temperatures approach the regime relevant to the
evolution of interstellar gases [35].

If all atoms are spin-stretched, these systems are
amenable to calculation since the H+H interaction has
no bound state and X+H has only a single s-wave bound
state for all the alkali species, X , considered here [36–
39]: 7Li, 23Na, 39K, 87Rb and 133Cs. In thermal Alkali-
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hydrogen mixtures, the recombination rate K3 for the
process H+H+X→XH+H is related to the density of
the alkali atoms by

dnX

dt
= −K3n

2
HnX (1)

where nH and nX are the densities of the H atoms and
alkali atoms, respectively. Note that there is a 2! reduc-
tion in the rate if the hydrogen atoms are in a conden-
sate [40]. The three-body calculations are thus simplified
by having only one recombination channel, but the pres-
ence of sharp avoided crossings in the three-body poten-
tials makes the calculations a challenge in the adiabatic
representation. These sharp crossings are between dif-
ferent families of adiabatic potentials corresponding to
H+H and X+H.

We will use atomic units throughout unless specified
otherwise. It is also convenient to convert energies to
temperature units by dividing by Boltzmann’s constant
kB, i.e. 3.17×10−6 a.u.=1 K.

II. METHOD

After separating the center-of-mass motion, the rela-
tive motion of the three particles can be represented by
the mass-scaled Jacobi vectors ρ12 and ρ1,23 [41]:

ρ12 = (r1 − r2)/d, (2)

ρ12,3 = d(r3 −
r1 + r2

2
), (3)

where r1, r2, and r3 are the lab-frame position vectors
of the two hydrogen atoms with mass mH and the alkali
atom with mass mX , respectively. In the above equa-
tions, the mass scaling factor d is given by

d2 =
mX

µ

2mH

2mH +mX
. (4)

The three-body reduced mass is defined as follows to pre-
serve the phase-space volume element [41]:

µ =

√

m2
HmX

2mH +mX
. (5)

In the adiabatic hyperspherical representation, the hy-
perradius R, R2=ρ2

12 + ρ2
12,3, is the only coordinate with

the dimension of length and represents the overall size of
the three-body system. The remaining degrees of free-
dom, the hyperangles, are represented collectively by Ω.
We use body-frame Delves’ coordinates [42] such that
Ω ≡ (φ, θ, α, β, γ), with

φ = tan−1

(

ρ12,3

ρ12

)

, 0 ≤ φ ≤ π/2; (6)

and θ, the angle between the vectors ρ12 and ρ1,23 such
that 0 ≤ θ ≤ π. The remaining hyperangles are the

three Euler angles α, β and γ describing the rotation of
the plane containing the three particles. As a result, the
interparticle distances rij are determined in terms of the
internal coordinates (R, θ, φ) only:

r12 =Rd cosφ (7)

r23 =R(
d2

4
cos2 φ+

1

d2
sin2 φ+

1

2
sin 2φ cos θ)1/2, (8)

r31 =R(
d2

4
cos2 φ+

1

d2
sin2 φ− 1

2
sin 2φ cos θ)1/2. (9)

This definition of the hyperangles facilitates the sym-
metrization of the wave function under exchange of the
two H atoms.

After rescaling the three-body wave function Ψ as
ψ=R5/2Ψ, the three-body Schrödinger equation takes the
form

[

− 1

2µ

∂2

∂R2
+

Λ2

2µR2
+ V (R,Ω)

]

ψ = Eψ, (10)

where V (R,Ω) includes all the interactions and Λ2 is the
hyperangular momentum operator, defined by taking ρ12

to be the quantization axis for the body-fixed frame [42]
and expressed as:

Λ2 = T0 + T1 + T2 − 1/4, (11)

with

T0 =
∂2

∂φ2
− 4

sin2 2φ

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

, (12)

T1 =
4

sin2 2φ

1

sin2 θ
J2

z − 1

cos2 φ
(2J2

z − J2), (13)

T2 =
1

cos2 φ

(

2iJy
∂

∂θ
+ 2 cot θJxJz

)

. (14)

The components J ≡ (Jx, Jy, Jz) are the total orbital an-
gular momentum operator projected on the body-frame
axes.

Since we assume the atoms to be spin-stretched, i.e., in
the total spin state with the largest magnitude spin pro-
jection, the relevant Born-Oppenheimer potential surface
is the lowest quartet surface. We approximate this sur-
face as a pairwise sum of 3Σu two-body potentials:

V (R,Ω) = vHH(r12) + vXH(r23) + vXH(r31). (15)

The two-body potentials vHH(r) and vXH(r) are shown
in Fig. 1. At small distances, these potentials are deter-
mined from ab initio calculations [36, 38, 39] while their
long-range behavior is determined by the usual dispersion
potentials [37, 38]. Without including the fine and hyper-
fine interactions, these two-body potentials are expected
to be quite accurate. For instance, the ab initio data
for vHH are claimed to have eight digits of accuracy [36],
and vXH are claimed to have an absolute accuracy rang-
ing from 10−6–10−7 a.u. depending on the species [38].
The dispersion potentials are believed to have an error of
a few percent [37, 38].
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Note that for three atoms, a non-additive three-body
term should be included in V (R,Ω). This three-body
term depends on the spatial configuration of the three
atoms and can be significant for certain configurations.
The only fully quantum mechanical recombination cal-
culation for a realistic system that has so far included
the three-body term found its effect to be negligible [25].
But, that work treated He, and He is not very polarizable
compared to H or the other alkalis. The impact of the
three-body term for the present systems is thus expected
to be correspondingly larger. Unfortunately, neither the
full three-body surface nor the three-body term is avail-
able for the quartet state of H+H+X . The importance
of the three-body term for the systems we are investigat-
ing, though, can be estimated qualitatively by looking
at the available three-body terms for the quartet surface
of identical alkali atoms [43, 44], as they have similar
electronic structure. The three-body term is most signif-
icant when all the atoms are close together. For Li, the
three-body potential can make the minimum of the total
potential about four times deeper than the pair-wise sum
potential [44]. For heavier alkali atoms, the three-body
term can change the potential minimum by a factor of
1.2–1.5 [43]. When the atoms are far apart, a three-body
dispersion interaction should also be included. The con-
tribution of this interaction, however, is much smaller.
For Li, the three-body dispersion interaction is a few
percent of the pair-wise sum potential, and even smaller
for heavier alkali atoms [44]. We thus expect that our
results will change dramatically when the three-body in-
teractions are included. We know, for instance, that the
numerical value of the rate can change over a broad range
for model problems [45]. However, as the first calculation
for H+H+X systems, our results can give a sense of the
order of magnitude for the three-body observables, and
serve as a starting point for the study of three-body inter-
actions in such three-body systems. We further note that
including a three-body term or a full three-body surface
to improve the accuracy of our numerical results poses
no particular problem for our approach [45].

In order to solve Eq. (10), we first expand the three-
body wave function as

ψ =

∞
∑

ν=0

FνE(R)Φν(R; Ω), (16)

where Φν(R; Ω) are the channel functions obtained as the
solutions of the adiabatic equation

[

Λ2

2µR2
+ V (R,Ω)

]

Φν = Uν(R)Φν . (17)

We solve this equation as a function of R, and its eigen-
values are the adiabatic potentials Uν(R). Therefore,
upon substitution of ψ, Eq. (10) reduces to a set of cou-
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FIG. 1: (color online) The 3Σu potentials for H+H and X+H.
Among all these combinations, only X+H systems have a
single, weakly bound molecular state.

pled ordinary differential equations:

[

− 1

2µ

d2

dR2
+ Uν(R)

]

FνE(R)− 1

2µ

∑

ν′

[

Pνν′ (R)
d

dR

+
d

dR
Pνν′(R) +Qνν′(R)

]

Fν′E(R)=EFνE(R), (18)

with non-adiabatic couplings Pνν′ and Qνν′ given by

Pνν′(R) =

〈〈

Φν

∣

∣

∣

∣

d

dR

∣

∣

∣

∣

Φν′

〉〉

, (19)

Qνν′(R) = −
〈〈

dΦν

dR

∣

∣

∣

∣

dΦν′

dR

〉〉

. (20)

Here, the double brackets denote integration over only
the hyperangular degrees of freedom.

In our calculations, the biggest computational burden
comes from solving the five-dimensional adiabatic equa-
tion (17). To facilitate its solution, we separate out
the external degrees of freedom (α, β, γ) and simulta-
neously obtain eigenstates of total orbital angular mo-
mentum and parity by further expanding the adiabatic
wave functions Φν on the basis of symmetrized Wigner
D functions [42]:

Φν(R; Ω) =

J
∑

K=0

uνK(R; θ, φ)D̃JΠ
KM (α, β, γ), (21)

where Π denotes the total parity of the system, and K
and M denote the projection of the total orbital angular
momentum on the body-fixed and space-fixed z axes, re-
spectively. Since molecules XH have only a single s-wave
state, recombination only happens for the parity-favored
case, i.e., when Π=(−1)J .

Although we are solving for the motion of the nuclei,
we must require that the total wave function, including
the electronic degrees of freedom, is antisymmetric under
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exchange of the two protons. For the electronic symme-
try we are considering, exchanging protons introduces a
sign change in the electronic wave function. Thus, the
nuclear part of the wave function must be symmetric un-
der proton exchange.

Since we neglect hyperfine interactions, we can cou-
ple the two protons’ spin to give a total spin I=0,1
and consider their contribution to recombination inde-
pendently. For I=1, the spin wave function is symmetric
under exchange, requiring the spatial wave function to
also be symmetric. Such spatial symmetry leads to non-
vanishing K3 at ultracold temperatures [46]. For I=0,
however, the spin wave function is antisymmetric under
exchange of the two protons, and the spatial wave func-
tion is therefore also antisymmetric. For this symmetry,
K3 vanishes in the zero temperature limit [46]. In the
present work, we calculate K3 for I=1, which is the dom-
inant recombination process for ultracold temperatures.
For more general cases where the I=1 state is not pref-
erentially prepared, our results give only a partial con-
tribution to K3 for temperatures beyond the ultracold
regime.

We built the exchange symmetry of the two protons
into the boundary conditions of the body-frame compo-
nents uνK . Permuting the two protons only affects the
hyperangles Ω:

P12D̃
JΠ
KM = Π(−1)KD̃JΠ

KM , (22)

P12θ = π − θ. (23)

For even parity, the permutation requirements can be
equivalently expressed as uνK being symmetric about
θ=π/2 for even K and antisymmetric for odd K. For odd
parity, uνK should be antisymmetric for evenK and sym-
metric for odd K. Imposing these boundary conditions,
we need only solve Eq. (17) in the range 0 ≤ θ ≤ π/2.

Asymptotically, i.e., as R → ∞, the adiabatic poten-
tials with the diagonal couplings included are determined
by the energies of the break-up components. For the
atom-molecule channel, the potentials behave like

W0(R) = U0(R) − 1

2µ
Q0,0 → EXH +

l(l + 1)

2µR2
, (24)

where the partial angular momentum l is the relative
orbital angular momentum between the atom and the
molecule. Since all of the XH systems have only an s-
wave bound state, l=J . For the three-body break-up
channels, the potentials behave like

Wν(R) → λ(λ + 4) + 15/4

2µR2
. (25)

The values of λ are non-negative integers determined by
JΠ and the identical particle symmetry [46].

Accurate numerical calculations of the three-body ob-
servables depend largely on the accuracy of the adia-
batic potentials and channel functions [Eqs. (17) and
(21)] and, ultimately, on the non-adiabatic couplings

EXH (a.u.) a (a.u.) lvdW (a.u.)

H+H — 1.557 10.45

Li+H -1.268×10−7 63.71 21.50

Na+H -3.376×10−7 43.26 22.58

K+H -7.360×10−7 34.72 25.12

Rb+H -2.446×10−7 50.24 25.92

Cs+H -1.784×10−7 56.85 27.18

TABLE I: The two-body bound state energy EXH, scattering
length a, and van der Waals length lvdW for the H+H and
X+H interactions.

[Eq. (20)]. By expanding the body-frame components
uνK(R; θ, φ) on a two-dimensional, direct product B-
spline basis [47], we obtain accurate potentials and cou-
plings up to R ≈ 2000 a.u.. Beyond this distance, we
extrapolate the potentials using the known asymptotic
expansions [48]. Typically, a (θ, φ) mesh of 60×250 gives
eigenvalues converged to at least eight digits. We have
found that due to the sharp avoided crossings occurring
at small R, a hyperradial grid of about 3000 points is nec-
essary to accurately resolve most of the abrupt changes
in the non-adiabatic couplings. Many sharper crossings
remain, though, that must be traced individually.

III. THREE-BODY SCATTERING

OBSERVABLES

It is well known [16] that when the scattering length a
greatly exceeds the characteristic range of the two-body
interaction, three-body scattering observables are dra-
matically affected. For the systems we consider here, the
long-range part of the two-body interaction is the van der
Waals potential −C6/r

6
ij . Therefore, they are character-

ized by the van der Waals length lvdW = (2µijC6)
1/4 [16],

where µij is the two-body reduced mass. In Table I, we
list the bound state energies, the scattering lengths, and
the van der Waals lengths for all of the two-body poten-
tials we used. Notice that none the scattering lengths are
substantially larger than the van der Waals lengths and
thus the condition for universal behavior (|a| ≫ lvdW ) is
not fulfilled. As a result, we do not expect to observe
universal physics for these systems.

After obtaining the potentials and couplings, we solve
the hyperradial equation (18) using finite elements as de-
scribed in Ref. [49]. For recombination processes, the to-
tal recombination rate K3 is the sum over all the partial
wave contributions KJΠ

3 [24, 25]:

K3 =
∑

J,Π

KJΠ
3 = 2!

∑

J,Π

∑

i

32(2J + 1)π2

µk4

∣

∣SJΠ
f←i

∣

∣

2
, (26)

where k=
√

2µE and SJΠ
f←i is the scattering matrix ele-

ment from the initial three-body continuum channel to
the final atom-molecule channel. From the asymptotic
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form of the three-body entrance channel, the threshold
behavior of KJΠ

3 is determined by the smallest λ for that
symmetry [46] such that:

KJΠ
3 ∝ EλJΠ

min . (27)

In our calculations, we have included the lowest six
partial-waves JΠ, implying that λJΠ

min=0, 1, 2, 3, 4 and 5,
respectively.

Collision-induced dissociation H+XH→X+H+H is
the time reversed process of three-body recombination.
The dissociation rate D3 is defined as [24]

D3 =
∑

J,Π

DJΠ
3 =

∑

J,Π

∑

f

(2J + 1)π2

µ12,3k12,3

∣

∣SJΠ
f←i

∣

∣

2
, (28)

where k12,3 =
√

2µ12,3(E − EXH) and µ12,3 = mH(mH +
mX)/(2mH + mX) is the reduced mass between the H
atom and the XH molecule.

Note that the channels that the indices i and f refer
to are reversed from those in K3. Since the S-matrix is
unitary, D3 can be readily calculated once the S-matrix
elements for K3 are known. Near the three-body breakup
threshold where collision-induced dissociation becomes
energetically possible, DJΠ

3 behaves like [46]:

DJΠ
3 ∝ EλJΠ

min
+2. (29)

For atom-molecule collisions, the elastic cross section
is [25]

σ2 =
∑

J,Π

σJΠ
2 =

∑

J,Π

(2J + 1)π

k2
12,3

∣

∣SJΠ
0←0 − 1

∣

∣

2
, (30)

The threshold behavior of σJΠ
2 , in contrast to recombina-

tion, is determined solely by J and follows the standard
Wigner threshold law,

σJΠ
2 ∼ (E − EXH)2J . (31)

The calculation of scattering solutions to Eq. (18) are
complicated by the sharp avoided crossings in the adi-
abatic potentials: we typically use 5×104 hyperradial
elements distributed as Ri ∝ i3 from R=10 a.u. to
R ≈ 2000 a.u.. In the asymptotic region (R > 2000 a.u.),
the density of elements is fixed to eight elements per
shortest de Broglie wavelength. To calculate the scat-
tering observables, we match the numerical solutions to
the asymptotic analytical solutions at R=105 a.u. for re-
combination, and at R=5×103 a.u. for atom-molecule
collisions. The convergence of the scattering observ-
ables with respect to the number of adiabatic channels is
also dramatically affected by the sharp avoided crossings.
Even the threshold behavior for KJΠ

3 and σJΠ
2 requires a

fairly large number of adiabatic channels for convergence,
which we take to be from 12 to 25 for all the calculations.
The resultingK3 and σ2 are converged to at least two dig-
its for all partial waves, and the three-body bound state
energies are converged to three digits.

In our calculations, we have included JΠ=0+, 1−, 2+,
3−, 4+ and 5− for the convergence of the total rates and
cross sections at high energies. The overall convergence
of the total total rates and cross sections are converged
to two digits for E < 200 mK and one digit for 200 mK<
E <500 mK.

IV. RESULTS

A. Three-body recombination rates

Since the adiabatic hyperspherical potentials Uν(R)
are important in understanding the underlying three-
body physics involved in the scattering processes, we first
discuss their behavior. We see that the avoided crossings
become sharper as we go to heavier alkali atoms. As an
illustration, in Fig. 2 we show the lowest six adiabatic po-
tentials Uν(R) with JΠ=0+ for H+H+Li and H+H+Cs.
The potentials for higher partial waves behave similarly
but become more repulsive as J increases.

To demonstrate the effects of sharp avoided crossings
on the adiabatic potentials on the non-adiabatic cou-
plings, we show a key crossing in the insets of Fig. 2. Fig-
ure 3 shows the corresponding couplings Pνν′ and Qνν′

for H+H+Cs with JΠ=0+. It can be seen that when
a sharp avoided crossing occurs between two potential
curves, the Pνν′ and Qνν′ coupling those curves show
sharp spikes at that R. These couplings must be care-
fully traced out with a dense hyperradial grid in order to
obtain an accurate solution of Eq. (18).

In our calculations, the convergence of K3 depends
critically on the behavior of the adiabatic potentials. We
have found that, except for H+H+Li, all the systems
have sharp avoided crossings below 1 Kelvin. To cal-
culate K3 for energies above the crossings like the one
shown in the inset of Fig. 2(b), both of the potentials
involved in the crossing need to be included to avoid spu-
rious resonances.

The three-body recombination rates for different alkali
species X are shown in Fig. 4(a)–(f). The correspond-
ing data are available in electronic form [50]. Gener-
ally, the three-body recombination rates are dominated
by the JΠ = 0+ contribution at ultracold energies, and
by the JΠ = 1− and 2+ contributions near the high-
est energies we have calculated. It can be seen that
the total three-body recombination rates for H+H+Na,
H+H+Rb, and H+H+Cs behave similarly and that the
rates for H+H+Li and H+H+K recombination behave
differently. In particular, the JΠ = 0+ partial rates for
H+H+K recombination are much smaller than the rates
for other systems near the zero-energy threshold. The to-
tal rates for H+H+K recombination are then dominated
by the JΠ = 1− partial wave contribution for a large en-
ergy range from about 0.5 mK to 50 mK. Interestingly,
we have observed that the threshold values of the recom-
bination rates for different X are ordered by the mag-
nitude of their non-adiabatic couplings P01 and Q01 at
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K3 (cm6/s)

H+H+Li 1.3×10−29

H+H+Na 6.1×10−31

H+H+K 2.3×10−32

H+H+Rb 9.7×10−31

H+H+Cs 2.5×10−30

TABLE II: The zero-energy limit of the three-body recombi-
nation rates K3.

large hyperradii R > 200 a.u. for 0+. This suggests that
for the present cases 0+ recombination is dominated by
inelastic transitions from the lowest continuum channel
to the atom-molecule channel at large distances.

In thermal gases, it is crucial to consider the ther-
mal distribution of the collisional energies when calcu-
lating a collision rate. Assuming a Boltzmann distribu-
tion, we have performed a thermal average of the energy-
dependent rates. The thermally averaged recombination
rate 〈K3〉 are given by [51]:

〈K3〉 =
1

2(kBT )3

∫

∞

0

K3E
2e−E/kBTdE. (32)

The results are shown in Fig. 4(f). To perform the
thermal average, we extrapolate K3 from the lowest en-
ergy we have calculated to zero energy using the known
threshold behavior. Since we could not similarly extrap-
olate to infinite energy for the integral in Eq. (32), the
integral was limited to the energies we could calculate.
Consequently, the thermally averaged rates are converged
to more than one digit only for temperatures below 100
mK. It can be seen that the energy dependence of the
rates is largely preserved. Further, the thermally aver-
aged rates for these systems lie close to each other when
the temperature is beyond 10 mK. In Table II, we list
the values of K3 for the processes H+H+X→XH+H in
the zero-energy limit for reference.

B. Collision induced dissociation rates

Using the simple relation between K3 and D3, we have
also calculated D3 for the same range of E. In Fig. 5,
we show the thermally averaged collision-induced disso-
ciation rate 〈D3〉 as a function of the temperature of the
XH+H mixture, where 〈D3〉 is given by [49]

〈D3〉 =
2√
π

1

(kBT )3/2

∫

∞

0

D3E
1/2e−E/kBTdE. (33)

The energy E in the integrand is relative to the XH+H
threshold. That is, it is the XH+H scattering energy,
and this must be taken into account when evaluating
D3(E). It is interesting to note that although dissocia-
tion is allowed only when the collision energy exceeds the
molecular binding energy, Fig. 5 shows that in a thermal
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FIG. 4: (color online) The total three-body recombination rate K3 and the partial rates KJΠ
3 for H+H+X→H+XH, where X

is (a) Li, (b) Na, (c) K, (d) Rb and (e) Cs. The thermally-averaged total recombination rates are shown in (f).

gas dissociation can occur for temperatures well below
the dissociation threshold. In fact, because we know the
threshold behavior from Eq. (29) to be D3 ∝ (E−EXH)2

for E ≥ EXH (and zero below EXH), we can explicitly
calculate 〈D3〉 below threshold:

〈D3〉 ∝ 2
√
x(15x−2)e−1/x+

√
π[4+3x(5x−4)erfc(1/

√
x)]

with x = kBT/EXH. By contrast, 〈K3〉 and 〈σ2〉 have the
same threshold behavior as the energy-dependent quan-
tities (with E replaced by kBT ). This formula for 〈D3〉

is likely valid only for temperatures below EXH since the
tail of the thermal distribution starts sampling energies
outside the threshold regime for higher temperatures,
making our assumption for the behavior of D3 invalid.
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FIG. 5: (color online) The thermally averaged total collision
induced dissociation rate 〈D3〉 for H+XH→X+H+H. For all
species, the rates are shown up to 100 mK beyond the three-
body break-up threshold which is indicated by the vertical
dashed line.

C. Atom-molecule elastic cross sections

As a representative example, we plot the total and par-
tial cross sections for elastic collisions between H and
KH in Fig. 6. The JΠ=0+ partial wave contribution
dominates for collisional energies below 100 mK, beyond
which the JΠ=1− contribution becomes dominant. The
JΠ=1− contribution has a pronounced minimum near 20
mK, but this feature has only a negligible effect on the to-
tal cross section. The partial atom-molecule elastic cross
sections for the other alkali species are not shown, as their
energy-dependence is qualitatively the same as shown for
H+KH. Instead, we show in Fig. 7 the thermally averaged
cross sections for all the alkali species. The thermally av-
eraged cross sections can be derived from the thermally
averaged elastic scattering rate, and is given by [49]

〈σ2〉 =
1

(kBT )2

∫

∞

0

σ2Ee
−E/kBTdE. (34)

The total elastic cross sections for all alkali species are
converged to two digits for all energies. All these data
are available in electronic form [50].

In Table III, we list the values of the elastic cross
section extrapolated to zero temperature as well as the
corresponding values for the atom-molecule scattering
length aH+XH for all the alkali species. Both quanti-
ties increase with the respective values of the two-body
scattering lengths (see Table I), or equivalently, the size
of the molecular state. In fact, we can get an order-of-
magnitude estimate for the elastic cross-section by sim-
ply using σ2 ≈ 4πa2. These estimated values are also
shown in Table III. The rough agreement implies that for
our simple pair-wise sum potential the zero-energy elas-
tic cross section is mainly determined by the size of the
XH molecule. By extension, the atom-molecule scatter-
ing length can be approximated by the X+H scattering
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FIG. 6: (color online) The total atom-molecule elastic
cross section σ2 and the partial cross sections σJΠ

2 for
H+KH→H+KH.
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FIG. 7: (color online) The thermally averaged total atom-
molecule elastic cross section 〈σ2〉 for H+XH→H+XH.

length at the same level of approximation.

D. Three-body bound state energies

To complete our study of these systems, we calculate
the three-body bound states. The three-body energy
spectra for the H+H+Alkali systems are very simple due

σ2 (cm2) 4πa2 (cm2) aH+XH (a.u.)

H+LiH 2.2×10−12 1.4×10−12 80

H+NaH 8.2×10−13 6.6×10−13 48

H+KH 4.6×10−13 4.2×10−13 36

H+RbH 1.3×10−12 8.9×10−13 60

H+CsH 1.6×10−12 1.1×10−12 68

TABLE III: The atom-molecule zero temperature elastic
cross-section and scattering length between H and XH.
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EXH2
(a.u.) 〈rXH〉 (a.u.) 〈rHH〉 (a.u.) Bond angle

LiH2 9.02×10−8 43 65 98◦

NaH2 2.58×10−7 30 46 100◦

KH2 6.24×10−7 25 37 95◦

RbH2 1.95×10−7 34 52 100◦

CsH2 1.43×10−7 38 59 102◦

TABLE IV: The 0+ triatomic bound state energies, expecta-
tion values of interatomic distances, and bond angles.

to their weakly-interacting nature. In our calculations,
we have found only one triatomic vibrational bound state
for JΠ = 0+ for all the systems. No bound levels
are found for higher angular momenta. The three-body
binding energies, relative to the atom-molecule break-up
threshold, are listed in Table IV.

To get a sense of the sizes of the triatomic molecules,
we have also calculated the expectation values of the in-
teratomic distances 〈rXH〉 and 〈rHH〉, given by

〈rAH〉 =
∑

ν,ν′

∫

∞

0

Fν(R)Fν′(R) 〈〈Φν |rAH|Φν′〉〉 dR, (35)

where A represents X or H. From these bond lengths, we
can also calculate the bond angle at the X atom and find
them to be consistently around 100◦ for all species. All
of this geometrical information is included in Table IV.
From the small binding energies and large bond lengths,
it is clear that these are very floppy states as is expected
for van der Waal’s molecules. We expect, though, that
the inclusion of three-body terms in the interaction po-
tential will tend to bind these states more strongly, reduc-
ing the bond lengths correspondingly. The three-body
term may further tend to increase the bond angle towards
a linear configuration. The three-body term might even
be sufficient to bind additional states, at least for some
species.

Finally, we have verified numerically that the triatomic
binding energies are indeed predominantly determined
by the lowest adiabatic channel ν = 0. Specifically, the
channel probability

∫

|Fν(R)|2dR for ν = 0 is beyond
99% for all the systems. The channel functions F0(R)
are shown in Fig. 8. It is interesting to note that, except
for KH2, all the triatomic states have a large hyperradial
extent, reaching values up to a few hundred atomic units
consistent with the bond lengths listed in Table IV.

V. SUMMARY

In this paper, we have studied three-body scattering
and the bound state spectra for two hydrogen atoms and
one alkali atom using a fully quantum mechanical ap-
proach. Solving the three-body Schrödinger equation in
the adiabatic hyperspherical representation, we have cal-
culated the three-body recombination rates and atom-

 0
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FIG. 8: (color online) The JΠ = 0+ hyperradial channel func-
tion F0(R) for the triatomic bound states.

molecule elastic cross sections for all the alkali species
for temperatures up to 0.5 Kelvin. The biggest uncer-
tainty in our calculations by far is the interaction po-
tential. Nevertheless, we expect that our results give
a correct order-of-magnitude estimate of the three-body
scattering observables. For three-body recombination,
the lowest three partial waves dominate the total recom-
bination rates in the energy range we have calculated.
For the elastic atom-molecule collisions, the cross sec-
tions are dominated by a single partial wave contribution
for the energy range in our calculations, which is JΠ=0+

at lower energies and JΠ=1− at higher energies. The
bound state spectra are very simple, with only one ro-
vibrational three-body state for each of the alkali species.

Finally, the difficulty of sharply avoided crossings we
met at small hyperradius raises an alert for doing adia-
batic calculations for realistic systems. The complicated
short-range three-body dynamics can give rise to rapidly
varying behavior in the adiabatic potentials and the non-
adiabatic couplings, which makes the adiabatic calcula-
tions much harder and less reliable. For such cases, a di-
abatic representation of some sort will become necessary,
especially for small distances [52, 53]. Besides this tech-
nical improvement, the calculations can be made more
realistic through the inclusion of full three-body poten-
tial surfaces should they become available. Explicitly ac-
counting for fine and hyperfine interactions would further
improve the results.
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