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Abstract

In homonuclear molecules, such as H2, the electric dipole transitions are strongly forbidden, and the

transitions between rovibrational states are of the electric quadrupole type. We show however, that mag-

netic dipole transitions also take place, although are significantly weaker. We evaluate the probabilities of

such transitions between several lowest rotational states and compare them with those of the corresponding

electric quadrupole transitions.
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I. INTRODUCTION

The rotating hydrogen molecule although neutral, has a nonvanishing magnetic moment ~µ,

that comes from the nuclear and the electronic rotational angular momentum. For a molecule in

the Σ electronic state, the expectation value of the electronic angular momentum vanishes and the

electronic magnetic moment comes from the nonadiabatic effect [1, 2], the coupling of the electron

to the nuclear motion. In the approximate but still quite accurate treatment, one can associate a

value of the rotational magnetic moment with each distance R between the protons. The average

in a rovibrational state gives the total rotational magnetic moment. The appropriate formula has

been first derived by Wick [3, 4], and confirmed experimentally by Ramsey et al. [5–9].

Since the matrix elements of the R-dependent rotational magnetic moment between different

vibrational states do not vanish, the magnetic dipole (M1) transitions are allowed, although only

between states of the same rotational quantum number J . ∆J = 1 transitions are strictly forbid-

den due to parity. The M1 transitions occur at the same wavelength as the electric quadrupole

(E2) ones, thus their existence for the unpolarized sample of H2 molecules, can be observed by the

increased total transition intensities. Since the final quantum states corresponding to M1 and E2

transitions are orthogonal to each other, namely the photon states have different angular momen-

tum, the total rate is a sum of the individual M1 and E2 rates.

In this work we employ the known formulae for the magnetic dipole moment to perform nu-

merical calculations and verify them with the experimental values of Ramsey et al. [5–9]. Having

checked correctness of the magnetic dipole moment as a function of the internuclear distance we

perform numerical calculations of the magnetic dipole transition rates, which is our main goal. For

low values of J these rates happen to be much smaller in comparison to the electric quadrupole

ones, but increase quickly with J to become dominant for highly excited rotational states.

II. THE ADIABATIC APPROXIMATION

The total wave function φ is the solution of the stationary Schrödinger equation

[H − E] |φ〉 = 0 , (1)

with the Hamiltonian

H = Hel +Hn , (2)
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split into the electronic and nuclear parts. In the electronic Hamiltonian Hel

Hel = −
∑

a

∇2
a

2me

+ V (3)

the potential V includes all the Coulomb interactions with fixed positions ~RX of nuclei. The

nuclear Hamiltonian involves kinetic energies of the nuclei

Hn = −
∑

X=A,B

∇2
RX

2MX

. (4)

For a diatomic molecule in the space-fixed reference frame attached to the geometrical center of

the two nuclei, Hn takes the form

Hn = − ∇
2
R

2mn

− ∇
2
el

2mn

−
(

1

MB

− 1

MA

)
~∇R · ~∇el , (5)

where ~R = ~RA− ~RB, ~∇el = 1/2
∑

a
~∇a, and 1/mn = 1/MA +1/MB is the nuclear reduced mass.

In the adiabatic approximation the total wave function φa is a product of the electronic and the

nuclear wave functions

φa(~r, ~R) = φel(~r) χ(~R) , (6)

the former obeying the clamped nuclei electronic Schrödinger equation,

Hel φel = Eel(~R)φel, (7)

the latter being a solution to the nuclear Schrödinger equation in the effective potential generated

by electrons [
− 1

R2

∂

∂R

R2

2mn

∂

∂R
+
J (J + 1)

2mnR2
+ Eel(R) + Ea(R)

]
χvJ(R)

= Ea χvJ(R), (8)

where the adiabatic correction to the BO potential Eel(R) is Ea(R) = 〈φel |Hn|φel〉el.

III. ROTATIONAL MAGNETIC MOMENT

The rotational magnetic moment of a molecule in a state with the rotational quantum number

J is

~µ = g µN
~J, (9)
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where g is the rotational g-factor and µN = eh̄/(2mp) is the nuclear magneton. In the leading

order of the nonadiabatic perturbation theory, as in the adiabatic approximation, the g-factor is a

function of the internuclear distance R. If we locate the origin of the molecule-fixed axis system

in the geometrical center of the two nuclei, we can express the rotational g-factor of a diatomic

molecule with equal nuclear charges as (see Eq. (98) of [2])

g(R) =
mp

2mn

(
1 +

2

R2

〈
φel

∣∣∣∣ ~Jel
1

(Eel −Hel)′
~Jel

∣∣∣∣φel

〉
el

)
, (10)

where the integration goes over the electronic coordinates and where ~Jel is the electronic com-

ponent of the total angular momentum ~J . The second term in parenthesis equals to 4m2
nW⊥(R)

using the previously defined and evaluated functionW⊥ [10, 11]. On the other hand it is also equal

to 4χp
⊥(R)/R2 in terms of the paramagnetic susceptibility function [3, 4, 6].

To obtain the rotational magnetic moment for a given rovibrational level (v, J) we evaluate the

expectation value (in units of µN)

µ(v, J) = 〈χvJ |g(R)|χvJ〉 J (11)

with the nuclear wave functions χvJ , which are solutions to the radial nuclear equation (8). To

obtain magnetic dipole transition rates we evaluate the off-diagonal matrix elements

TJ(v′′ → v′) = 〈χv′J |g(R)|χv′′J〉µN , (12)

between the states of the same, nonvanishing angular momentum (otherwise the matrix element of

the magnetic dipole operator in Eq. (9) vanishes), whereas the probability of the M1 transition is

given (in units of s−1) by

AM1
J (v′′ → v′) =

4

3
(4πR∞c)α

5 J(J + 1)

× [∆EJ(v′′ → v′)]
3 |TJ(v′′ → v′)|2 , (13)

where ∆EJ(v′′ → v′) is the energy difference (in atomic units) between the higher (v′′, J) and

the lower (v′, J) rovibrational level, α = 1/137.035 999 679(94) is the fine structure constant and

R∞c = 3.289 841 960 361(22)× 1015 Hz [12].

IV. RESULTS AND DISCUSSION

A. Magnetic moment

Details of evaluation of theW⊥(R) function, which is directly related to g(R) of Eq. (10), have

been given in Refs. [10, 11] and will not be repeated here. The numerical values of the g(R)
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function computed for H2 are listed in Table I. To obtain analogous results for other isotopomers

it is sufficient to rescale the data by pertinent nuclear reduced mass ratio, e.g. mn(H2)/mn(D2)

for D2 or mn(H2)/mn(HD) for HD. For R → ∞, the second term in Eq. (10) goes to −1 and

g(∞) vanishes regardless of the nuclear masses. At the R = 0 limit, the expression in parentheses

equals to 1 so that g(0) = mp/(2mn) and, via mn, changes from one isotopomer to another. In

evaluation of the nuclear reduced masses we used mp = 1836.15267247me and 3670.4829654me

as the deuteron mass [12].

The rotational magnetic moment of H2, HD, and D2 in their lowest rovibrational states has

been determined experimentally by Ramsey and coworkers [5–9]. Several older and less precise

experiments have also been reported [5, 6] but were omitted in the discussion here. For comparison

with the outcome of the present work, shown in Table II, only the most accurate measurements

were selected. The relative accuracy of the measurements is an order of magnitude higher then

those of the computations. We estimate the relative accuracy of our theoretical results as equal to

me/mn. This error results from dropping higher order nonadiabatic terms. We also estimate that

the omitted relativistic corrections to µ are even an order of magnitude smaller. Within this error

estimation we note a very good agreement with the measurements.

Calculations of the rotational magnetic moment of the hydrogen molecule have already been

performed by Rychlewski and Raynes [13], who employed Kołos-Wolniewicz wave functions

to evaluate the magnetic susceptibility to a high accuracy. Using the connection between the

perpendicular component of the paramagnetic susceptibility χp
⊥ and the electronic part of the g-

factor they evaluated the rotational g-factor for several rovibrational levels. The difference between

their results and ours appears at most on the fourth significant figure. One should also mention

some older calculations of the rotational magnetic moment, which were performed merely at the

equilibrium internuclear distance and yielded an accuracy of about 10% [14]. Several other earlier

attempts have also been reported in [15].

B. Magnetic dipole transitions

To our knowledge, the rotational magnetic dipole transitions in H2 have not been studied yet.

The main purpose of this paper is to report on the theoretical predictions of the transition inten-

sities expressed through their probabilities AM1
J of Eq. (13). The accuracy of the g(R) function,

employed to evaluate the transition moment (12), has been verified in the previous section against

experimental and other theoretical data. We further assume that the uncertainties assigned to µ
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can be transferred directly to TJ . The energy separations ∆EJ were taken from our previous com-

putations on H2 [11, 16] and take into account all the adiabatic (∼ m−1
n ), nonadiabatic (∼ m−2

n ),

relativistic (∼ α2) and radiative (∼ α3 and α4) effects. Also the radial nuclear functions χvJ

were obtained by solving the nonadiabatic version of Eq. (8) [11]. High accuracy of ∆EJ ob-

tained with this procedure have been proven in confrontation with the measured values. For in-

stance, the theoretically predicted lowest ortho–para separation in the v = 0 state of H2 amounts to

118.486 80(11) cm−1 [16], which agrees up to 0.000 04 cm−1 with the experiment [17]. We there-

fore assume that TJ is the only source of uncertainty in AM1
J . Table III collects the M1 transition

rates predicted for 30 rotational states of v = 1→ 0 band of H2 and D2.

The infrared spectrum of the H2 molecule is dominated by the electric quadrupole (E2) tran-

sitions [18] (the electric dipole transitions are strongly forbidden). It is interesting to see if the

magnetic dipole transitions could be competitive with respect to their intensity to E2 transitions.

For this purpose we evaluated the probability AE2
J of the E2 transition between the same rovibra-

tional levels as for the M1 transition. The probability is given by the following formula

AE2
J (v′′ → v′) =

1

15
(4πR∞c)α

5 J(J + 1)

(2J − 1)(2J + 3)

× [∆EJ(v′′ → v′)]
5 |TE2

J (v′′ → v′)|2 (14)

with TE2
J (v′′ → v′) = 〈χv′J |Q(R)|χv′′J〉 and the quadrupole moment operator in the formQ(R) =

R2/2 − 1
2
〈φel |

∑
a r

2
a(3 cos2 θa − 1)|φel〉el. Our numerical results for AE2

J agree with that of [19]

to at least two significant digits.

The v = 1 → 0 band transition probabilities of both types are compared in Figure 1. For the

lowest J , the magnetic dipole transitions are almost three orders of magnitude weaker than the

electric quadrupole transitions. For example, AM1
1 = 7.13 × 10−10 s−1 whereas AE2

1 = 4.28 ×

10−7 s−1. With growing J though, the proportions change in favor of the M1 transition and for

the highest rotational states the M1 intensities dominate unequivocally. Similarly, any magnetic

dipole transitions with ∆J = 0 are allowed and grow quickly with J . For convenience, we present

in Table I values of g(R), from which any magnetic dipole transition can be obtained if only the

nuclear wave function of the initial and final state are known. An analogous M1 to E2 relation has

been found for HD and D2. However HD exhibits much stronger electric dipole E1 transitions,

which appear at different wavelength, as they corresponds to transitions with ∆J = 1. Due to

the smallness of the M1 transitions for low J , they probably have no astrophysical significance,

however their existence should be most easily confirmed experimentally for the large values of J ,
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by verifying the total transition rate as a sum of the E2 and M1 transitions.
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TABLE I: Internuclear distance dependence of the rotational magnetic g-factor for H2.

R/bohr g(R) R/bohr g(R)

0.0 1.000 000 2.6 0.639 229

0.1 0.999 161 2.7 0.610 173

0.2 0.996 767 2.8 0.580 075

0.3 0.993 040 2.9 0.549 081

0.4 0.988 172 3.0 0.517 382

0.5 0.982 303 3.1 0.485 195

0.6 0.975 527 3.2 0.452 771

0.7 0.967 899 3.3 0.420 380

0.8 0.959 450 3.4 0.388 305

0.9 0.950 189 3.5 0.356 830

1.0 0.940 113 3.6 0.326 225

1.1 0.929 205 3.8 0.268 601

1.2 0.917 439 4.0 0.217 016

1.3 0.904 782 4.2 0.172 373

1.4 0.891 193 4.4 0.134 893

1.5 0.876 629 4.6 0.104 241

1.6 0.861 038 4.8 0.079 716

1.7 0.844 375 5.0 0.060 442

1.8 0.826 584 5.5 0.029 443

1.9 0.807 616 6.0 0.013 984

2.0 0.787 426 7.0 0.003 047

2.1 0.765 969 8.0 0.000 663

2.2 0.743 220 9.0 0.000 152

2.3 0.719 158 10.0 0.000 040

2.4 0.693 787 11.0 0.000 013

2.5 0.667 127 12.0 0.000 005
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TABLE II: Comparison of the computed and measured rotational magnetic moments µ (in units of µN) for

the hydrogen molecule in the lowest vibrational state (v = 0).

J H2 HD D2

1 Theory 0.8825(10) 0.6629(5) 0.4428(2)

Experiment 0.882910(80) [8] 0.663211(14) [9] 0.442884(52) [7]

2 Theory 1.764(2) 1.325(1) 0.8853(5)

Experiment 1.764530(70) [7]
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TABLE III: Rates of the M1 (AM1
J ) and E2 (AE2

J ) transitions, in units of 10−8s−1, for the rotational states

of v = 1 → 0 band in H2 and D2. The relative uncertainty of AM1
J and AE2

J is 2me/mn and comes from

the neglected higher order nonadiabatic effects.

H2 D2

J AM1
J AE2

J AM1
J AE2

J

1 0.07131 42.84 0.004508 5.850

2 0.2140 30.27 0.013527 4.157

3 0.4282 27.79 0.02706 3.849

4 0.7140 26.48 0.04512 3.710

5 1.072 25.43 0.06770 3.614

6 1.501 24.41 0.09482 3.531

7 2.002 23.37 0.1265 3.450

8 2.575 22.27 0.1627 3.366

9 3.218 21.11 0.2034 3.279

10 3.932 19.89 0.2487 3.186

11 4.715 18.63 0.2986 3.088

12 5.566 17.34 0.3529 2.986

13 6.482 16.03 0.4118 2.878

14 7.461 14.71 0.4751 2.767

15 8.500 13.40 0.5429 2.652

16 9.594 12.10 0.6150 2.533

17 10.74 10.84 0.6914 2.413

18 11.93 9.615 0.7720 2.290

19 13.16 8.446 0.8568 2.166

20 14.41 7.337 0.9455 2.042

21 15.69 6.296 1.038 1.9180

22 16.96 5.330 1.135 1.7946

23 18.23 4.443 1.234 1.6726

24 19.46 3.639 1.338 1.5525

25 20.64 2.920 1.444 1.4348

26 21.73 2.287 1.553 1.3200

27 22.69 1.740 1.665 1.2086

28 23.48 1.277 1.779 1.1009

29 24.04 0.8953 1.894 0.9974

30 24.29 0.5914 2.011 0.8984
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FIG. 1: (Color online) Comparison of the rates of the magnetic dipole transition (M1) with the ∆J = 0

electric quadrupole transition (E2) in H2.
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