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We present an operational interpretation of quantum discord based on the quantum state merging
protocol. Quantum discord is the markup in the cost of quantum communication in the process
of quantum state merging, if one discards relevant prior information. Our interpretation has an
intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result
to provide operational interpretations of other quantities like the local purity and quantum deficit.
Finally, we discuss in brief some instances where our interpretation is valid in the single copy
scenario.
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Quantum information science is primarily aimed at
harnessing the quantum structure of nature for informa-
tion processing and computing tasks [1]. This quest has
met with considerable success over the last decade, but
there has been substantial progress in the other direction
as well. Information theory has provided a novel frame-
work for unraveling the intricacies of quantum mechanics.
Quantum correlations, as well as classical ones are now
viewed as resources, whose interconvertibility is governed
by quantum information theory [2]. Foremost amongst
these is evidently entanglement, which provides enhanced
performance in several important tasks like communica-
tion, computation, metrology and others [3].

In the realm of mixed-state quantum information, how-
ever, instances are known where quantum advantages are
evidenced in the presence of little or no entanglement [4].
Recently, quantum discord was proposed as the source
behind this enhancement and first steps towards a formal
proof have been taken [5]. Quantum discord was origi-
nally suggested as a measure of quantumness of correla-
tions [6], and has since been studied in variety of systems
and settings [7–9]. Initial motivation for its definition
arose in the context of pointer states and environment
induced decoherence [10]. It has since been related to
quantum phase transitions [11] and the performance to
quantum and classical Maxwell’s demons [12]. Though
satisfactory from a physical perspective, the benchmark
for accepting some quantity as a resource in quantum
information science is that it appear as the solution to
an appropriate asymptotic information processing tasks.
It is this information theoretic interpretation that has
been lacking for quantum discord, and we now provide
in this Letter. This also addresses a more fundamen-
tal dichotomy in quantum information science, where re-
sources and their manipulations can have both thermo-
dynamic and information theoretic interpretations inde-
pendently, which are not intuitively or mathematically
reconciled. Our Letter bridges this gap in the context
of quantum discord, as well the quantum deficit and the
local purity.

Quantum discord aims at capturing all quantum corre-

lations in a quantum state, including entanglement [6, 13,
14]. Quantum mutual information is generally taken to
be the measure of total correlations, classical and quan-
tum, in a quantum state. For two systems, A and B,
it is defined as I(A : B) = H(A) + H(B) − H(A,B).
Here H(·) denotes the Shannon entropy of the appropri-
ate distribution. For a classical probability distribution,
Bayes’ rule leads to an equivalent definition of the mu-
tual information as I(A : B) = H(A) − H(A|B). This
motivates a definition of classical correlation in a quan-
tum state. Suppose Alice and Bob share a quantum
state ρAB ∈ HA ⊗ HB. If Bob performs the POVM set
{Πi}, the resulting state is given by the shared ensemble
{pi, ρA|i}, where

ρA|i = TrB(ΠiρAB)/pi, pi = TrA,B(ΠiρAB).

A quantum analogue of the conditional entropy can then
be defined as S̃{Πi}(A|B) ≡ ∑

i piS(ρA|i), and an alter-
native version of the quantum mutual information can
now be defined as J{Πi}(ρAB) = S(ρA) − S̃{Πi}(A|B),
where S(·) denotes the von Neumann entropy of the rele-
vant state. The above quantity depends on the chosen set
of measurements {Πi}. To capture all the classical corre-
lations present in ρAB, we maximize J{Πi}(ρAB) over all
{Πi}, arriving at a measurement independent quantity

J (ρAB) = max
{Πi}

(S(ρA) − S̃{Πi}(A|B)). (1)

Then, quantum discord is defined as [6]

D(ρAB) = I(ρAB) − J (ρAB) (2)

= S(ρB) − S(ρAB) + min
{Πi}

S̃{Πi}(A|B),

Since the conditional entropy is concave over the set of
POVMs, which is convex, the minimum is attained on
the extreme points of the set of POVMs, which are rank
1 [15]. In the asymptotic limit, when Alice and Bob share
n copies of the state ρAB, we can define a regularized
version of quantum discord as

D(ρAB) = lim
n→∞

D(ρ⊗n
AB)

n
(3)

≡ I(ρAB) − J (ρAB),
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where

J (ρAB) = lim
n→∞

J (ρ⊗n
AB)

n
. (4)

The quantity J (ρAB) has an operational interpretation
as a measure of classical correlations, as the distillable
common randomness (DCR) with one-way classical com-
munication [15], which is identical to the regularized ver-
sion of the measure of classical correlations as defined
by Henderson and Vedral [13]. Whether there exists a
‘single-letter’ expression for discord depends on its addi-
tivity, which is equivalent to that of the entanglement of
formation since

D(ρAC) = EC(ρAB) + S(ρC) − S(ρAC), (5)

where ρABC is pure and EC(·) is the entanglement cost,
the regularized version of the entanglement of forma-
tion [3]. This can be obtained using the monogamy be-
tween DCR and EC [16]. Following the counterexample
to the additivity of the minimum output entropy [17] and
therefore the entanglement of formation, we can conclude
that quantum discord is not additive either. In fact, the
subadditivity of minimum output entropy implies that in
general, quantum discord is subadditive. Our endeavor
here will be to provide an operational interpretation for
quantum discord D itself, without seeking recourse to its
definition as the difference of total and classical correla-
tions. To that end, we will employ the process of quan-
tum state merging, which we describe next. For brevity,
in the remainder of the paper, we will suppress explicit
mention of the state ρAB in the argument of quanti-
ties, denoting its von Neumann entropy as S(A,B), its
quantum discord when measurements are made on B as
D(A|B), etc.

Consider a party Bob having access to some incom-
plete information Y, and another party Alice having the
missing the part X. We can think of X and Y as ran-
dom variables. If Bob wishes to learn X fully, how much
information must Alice send to him? Evidently, she can
send H(X) bits to satisfy Bob. However, Slepian and
Wolf showed that she can do better, by merely sending
H(X |Y ) = H(X,Y ) − H(Y ), the conditional informa-
tion [18]. Since H(X |Y ) ≤ H(X), Alice can take ad-
vantage of correlations between X and Y to reduce the
communication cost needed to accomplish the given task.
Quantum state merging protocol is the extension of the
classical Slepian-Wolf protocol into the quantum domain
where Alice and Bob share the quantum state ρ⊗n

AB, with
each party having the marginal density operators ρ⊗n

A

and ρ⊗n
B respectively. Let |ΨABC〉 be a purification of

ρAB. Assume, without loss of generality, that Bob holds
C. The quantum state merging protocol quantifies the
minimum amount of quantum information which Alice
must send to Bob so that he ends up with a state arbi-
trarily close to |Ψ〉⊗n

B′BC , B
′ being a register at Bob’s end

to store the qubits received from Alice. It was shown
that in the limit of n → ∞, and asymptotically van-
ishing errors, the answer is given by the quantum condi-
tional entropy [19, 20]: S(A|B) = S(A,B)−S(B). When
S(A|B) is negative, Bob obtains the full state with just
local operations and classical communication, and distill
−S(A|B) ebits with Alice, which can be used to transfer
additional quantum information in the future.

An intuitive argument for our interpretation of quan-
tum discord beings with strong subadditivity, which
states that [20]

S(A|B,C) ≤ S(A|B). (6)

From the point of view of the state merging protocol,
the above has a very clear interpretation: having more
prior information makes state merging cheaper. Or in
other words, throwing away information will make state
merging more expensive. Thus, if Bob discards system
C, it will increase the cost of quantum communication
needed by Alice in order to merge her state with Bob.
Our intent here shall be to relate this increase in the cost
of state merging to quantum discord between A and B.

To that end, we expand the size of the Hilbert space
so that an arbitrary measurement (with forgetting) can
be modeled by coupling to the auxiliary subsystem and
then discarding it. This permits us to apply strong sub-
additivity to the problem in question. We assume C to
initially be in a pure state |0〉, and a unitary interactionU
between B and C. Letting primes denote the state of the
system after U has acted we have S(A,B) = S(A,BC)
as C starts out in a product state with AB. We also
have I(A : BC) = I(A′ : B′C′). As discarding quantum
systems cannot increase the mutual information, we get
I(A′ : B′) ≤ I(A′ : B′C′). Now consider the state merg-
ing protocol between A and B in the presence of C. We
have S(A|B) = S(A) − I(A : B) = S(A) − I(A : BC) =
S(A|BC). After the application of the unitary U , but be-
fore discarding the subsystem C, the cost of merging is
still given by S(A′|B′C′) = S(A|B). This implies that
one can always view the cost of merging the state of sys-
tem A with B, as the cost of merging A with the system
BC, where C is some ancilla (initially in a pure state)
with which B interacts coherently through a unitary U .
Such a scheme does not change the cost of state merging,
as shown, but helps us in counting resources. Discarding
system C yields

I(A′ : B′) ≤ I(A′ : B′C′) = I(A : BC) = I(A : B), (7)

or alternatively,

S(A′|B′) ≥ S(A′|B′C′) = S(A|B). (8)

Computing the mark up in the price in the state merg-
ing on discarding information gives D = I(A : B) −
I(A′ : B′). This quantity D is equal to quantum dis-
cord when our quantum operations are quantum mea-
surements maximizing I(A′ : B′). Thus, discord is the
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minimum possible increase in the cost of quantum com-
munication in performing state merging, with a measure-
ment on the party receiving the final state. This also ad-
dresses the asymmetry that is inherent is quantum dis-
cord. This is exhibited operationally in our interpretation
since the state merging protocol is not invariant under
exchanging the parties.

We now show that the minimum of D over all pos-
sible measurements is the quantum discord. The state
ρAB, under measurement of subsystem B, changes to
ρ′AB =

∑

j pjρA|j⊗πj , where {πj} are orthogonal projec-
tors resulting from a Neumark extension of the POVM
elements. The unconditioned post measurement states of
A and B are

ρ′A =
∑

j

pjρA|j = ρA, ρ′B =
∑

j

pjπj .

Computing the value of I(A′ : B′), we get

I(A′ : B′) = S(A′) + S(B′) − S(A′, B′),

= S(A′) +H(p) −
{

H(p) +
∑

j

pjS(ρA|j)
}

,

= S(A) −
∑

j

pjS(ρA|j). (9)

After maximization, it reduces to J (ρAB), as in Eq. (1).
The reduction to rank 1 POVMs follows as stated earlier.

We can also rewrite the expression for D using Eq.
(8) instead of Eq. (7) as the increase of the condi-
tional entropy D = S(A′|B′) − S(A|B). The above ex-
pression makes our interpretation even more transpar-
ent. Quantum measurements on B destroys quantum
correlations between A and B. This increases the av-
erage cost of quantum communication needed by A,
to merge her post measurement state with B. Since,
S(A′|B′) =

∑

j pjS(ρA|j) ≥ S(A|B), there is always a
mark up in the cost of state merging.

As an example, consider the separable
state that has non zero discord, ρAB =
(|0〉A〈0| ⊗ |0〉B〈0| + |1〉A〈1| ⊗ |+〉B〈+|) /2, where
|+〉 = (|0〉 + |1〉)/

√
2. The cost incurred by A to

merge her state with B is S(A|B) = 0.399124 ebits,
which is equal to the number of EPR pairs that A
and B need to share per copy in order to merge
this state. After measuring B using the projectors
(I ± σx−σz√

2
)/2, S(A′|B′) = 0.600876 ebits. This means

that one now needs these many EPR pairs to per-
form SM. The markup in the cost of state merging is
S(A′|B′) − S(A|B) = 0.201752 ebits, which is equal to
the additional EPR pairs needed to perform SM after
measuring B. This is exactly the quantum discord of
the state ρAB, as per our interpretation. Hence, any
information lost through the measurement results in
making the quantum state merging more expensive by
exactly the same amount.

We can now use our quantum state merging perspec-
tive to derive the various properties of discord. Since
measurements on system B will always result in either
discarding of some information or at best preserving the
original correlations, we will always get a price hike in
state merging or at best we can hope to just break even.
Hence, discord, which is the mark up, will always be
greater than zero [6, 21].

Quantum discord of a state is zero if and only if the
density matrix is of the form ρAB =

∑

i piρA|i ⊗ |λi〉〈λi|,
in the basis which diagonalizes ρB. Measuring the pro-
jectors |λi〉〈λi| and discarding the measurement results
on such a state yields ρM

AB =
∑

i PjρABPj = ρAB. Thus,
we have a measurement which causes no loss of informa-
tion, and retains all the correlations between A and B.
Hence there is no mark up in the cost of merging a zero
discord state.

The converse can be seen through the application of
strong subadditivity in Eq. (6). The equality of mutual
information, I(A : B), of the initial state and that of the
state after quantum operations on B, I(A′ : B′) coincides
with the equality condition for strong subadditivity. But
this is exactly the condition for the nullity of quantum
discord [21]. Thus a zero mark up in the cost of state
merging implies zero discord.

An upper bound on discord is decided by an upper
bound on the mark up we can get. Since Bob cannot
loose more information than there is at his disposal, the
entropy of the state at Bob’s end S(B), this an upper
bound on quantum discord.

Finally, for pure states, quantum discord reduces to en-
tanglement, and S(A|B) = S(A) − I(A : B) = −S(A) ≤
0. From our perspective, measurement destroys all the
correlations present between A and B. Though the post
measurement state merging of the state of A with that of
B occurs at zero cost, they loose the −S(A|B) potential
Bell pairs, which could have been put to some use. This
provides us a novel way of measuring entanglement, as
the markup in merging a pure state, when B is measured.

Other measures– We now use our result to provide op-
erational interpretations for a couple of other quantities
that were introduced to capture the quantumness of cor-
relations, with motivations different from those of dis-
cord. Since the entropy of a closed system cannot de-
crease, thermodynamically, the purity of quantum states
is a resource, which needs quantification. The allowed
set of operations in this paradigm are called closed lo-
cal operations and classical communications (CLOCC),
which is a modification of the local operations and the
classical communications (LOCC) paradigm without free
pure ancilla. The central task in this setup then is local
purity distillation. If one-way communication is allowed
from Bob to Alice, the rate for this task is given by [22]

κ(A|B) = log(dAB) − S(A,B) − D(A|B), (10)

where dAB = dim(HA ⊗HB). This immediately provides
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an operational interpretation for local purity.
Another measure of quantumness of correlations in

the CLOCC framework is the quantum deficit, which
is also thermodynamically motivated, and can be intu-
itively thought of as a form of nonlocality without en-
tanglement, but with distinguishability [23]. Like quan-
tum discord, unlike entanglement, it can be nonzero for
separable states. The corresponding measure of classical
correlations, the classical deficit is known to be equiv-
alent to the DCR [22] in the asymptotic limit. So, the
quantum deficit actually coincides with the quantum dis-
cord in this regime, and has the same operational inter-
pretation as discord. For a finite number of copies, the
quantum deficit is always a lower bound on the quantum
discord [23], provided the measurements are restricted
to von Neumann projections instead of POVMs, because
free pure ancilla are not allowed. Finally, operational
interpretations can easily be provided for other discord
like measures, for instance, measurement induced distur-
bance (MID) [24] using quantum state merging, by simple
variations of our argument.

The end product of our information theoretic inter-
pretation is the regularized form of quantum discord.
This was necessitated since the single-copy version of
state merging does not lead to the conditional von Neu-
mann entropy [25]. There are however, several interest-
ing cases in which the rate of asymptotic state merging
can be identified with the quantum discord of a single
copy. Evidently, pure states are one such class, since
in that case quantum discord reduces to entanglement.
Since the DCR is additive for separable states [15], we
have a ‘single-letter’ definition of discord for such states
as well. A more interesting set of states for which discord
is additive are the Bell-diagonal states, since their DCR
is additive too [26]. Quantum discord of Bell diagonal
states of two qubits is among the best understood [7],
and we have now shown that this understanding can be
exported to the asymptotic regime without further effort.

In conclusion, this Letter places quantum discord
squarely in the midst of quantum informational concepts
and opens up the way for its manipulation as a resource in
quantum information processing. We also hope that our
work will serve as a stepping stone for a more compre-
hensive and unified understanding of quantum physics,
thermodynamics and information theory.

Note added– After the completion, and during the
preparation of this work, a manuscript [28] appeared
which interprets quantum discord in terms of the en-
tanglement consumption in an extended state merging
of ρAB. The interpretation is through the entanglement
of formation of ρAC , ρAC = Tr B [|ψABC〉〈ψABC |], where
|ψABC〉 is the purification of ρAB.
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