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For a quantum computer acting on d-dimensional systems, we analyze the computational power of circuits

wherein stabilizer operations are perfect and we allow access to imperfect non-stabilizer states or operations.

If the noise rate affecting the non-stabilizer resource is sufficiently high, then these states and operations can

become simulable in the sense of the Gottesman-Knill theorem, reducing the overall power of the circuit to no

better than classical. In this paper we find the depolarizing noise rate at which this happens, and consequently

the most robust non-stabilizer states and non-Clifford gates. In doing so, we make use of the discrete Wigner

function and derive facets of the so-called qudit Clifford polytope i.e. the inequalities defining the convex

hull of all qudit Clifford gates. Our results for robust states are provably optimal. For robust gates we find a

critical noise rate that, as dimension increases, rapidly approaches the the theoretical optimum of 100%. Some

connections with the question of qudit magic state distillation are discussed.

PACS numbers: 03.65.Aa, 03.67.-a, 03.67.Pp

I. INTRODUCTION.

An interesting question in quantum information theory con-

cerns the types of processes and states that must be present in

a quantum circuit that can perform better-than-classical com-

putation. Relevant properties that have been studied include

entanglement [1] , quantum discord [2] and non-contextuality

[3]. The Gottesman-Knill theorem [4] tells us that placing

a restriction on the states and gates at our disposal can re-

duce the power of a quantum circuit to no better than classi-

cal. Specifically, preparation of |0〉 states, measurement in the

computational basis, feed-forward of measurement results and

unitary gates from the Clifford group (including entangling

gates) are no more powerful than a classical computer. Collec-

tively, we call these operations stabilizer operations. Clearly,

the ability to create non-stabilizer states during the course of

a computation is a prerequisite for a quantum-computational

speed-up.

The model of quantum computing that we adopt - perfect

stabilizer operations plus imperfect non-stabilizer resource -

has practical implications for implementing a quantum com-

puter. Buhrman et al. [5] used these kinds of ideas to show

that any qubit-based quantum computer suffering greater than

45% depolarizing noise cannot be more powerful than a clas-

sical computer - i.e. they proved an upper bound on the

noise threshold for fault-tolerant universal quantum compu-

tation (UQC). Plenio and Virmani [6] examined the effect of

letting noise affect stabilizer operations as well as the non-

stabilizer resource, and subsequently showed that the upper

bound on the noise rate was on the order of 10% depending

on the fault-tolerant scheme one intended to use.

The lower bound on the noise threshold for fault-tolerant
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UQC is in the region of (just under) 1% to 5% [7–12] de-

pending on whether these bounds are obtained analytically or

via numerical estimates, and depending on particular features

of the fault-tolerant scheme (e.g. locality constraints). The

noise model employed for such lower bound calculations will

also have a significant effect on the values obtained (adver-

sarial noise models are often used in more rigorous estimates,

for example). Typically, it seems that the bottleneck lies in

implementing the controlled-NOT gate fault-tolerantly. In our

model, which assumes perfect stabilizer operations and a non-

stabilizer resource subject to depolarizing noise, no such bot-

tleneck exists and it turns out that the lower bound coincides

with the upper bound of 45% [5, 13]. While the assumption of

perfect stabilizer operations may seem naive, it turns out that

many proposals for a topological quantum computer using

anyons have exactly this property [14, 15]. In these cases, sta-

bilizer measurements are naturally fault-tolerant, as are Clif-

ford gates, which are implemented by braiding anyons. For

such systems, an additional non-stabilizer resource must be

introduced in order to achieve UQC, and since it is not topo-

logically protected it is expected to be highly noisy. This was

the motivation for Bravyi and Kitaev’s investigation of magic

state distillation [16].

For qubits, the types of resource that provably promote a

stabilizer circuit to UQC are fairly well understood. Bravyi

and Kitaev [16], and subsequently Reichardt [13] showed that

almost all single qubit non-stabilizer states could perform this

task, when sufficiently many copies were input into a magic

state distillation routine. The overall effect of this routine

is to output an increasingly (with more iterations) pure non-

stabilizer state, which in turn allows for the implementation

of a unitary gate outside the Clifford group. Campbell and

Browne have discussed the structure of distillation protocols

[18] and the impossibility of distilling some non-stabilizer

states using known techniques [19]. Campbell [20] recently

proved the existence of catalysis-like effects for magic state

distillation. In a previous work [21] we showed that, under
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depolarizing noise, every noisy non-Clifford gate either prov-

ably enables UQC or is implementable using Clifford gates

only i.e. there is a tight noise threshold. In the qubit case, the

states and gates that were most robust to depolarizing noise

turned out to be relevant for magic state distillation routines

and this is part of the motivation for the current work - little

has been done to date on the question of magic state distilla-

tion for qudit-based systems. One of our results shows that,

even for a hypothetical optimal magic state distillation routine

for qudits, the maximum depolarizing noise rate for which a

d-dimensional state could possibly be distilled is d
d+1

.

The relevance of the discrete Wigner function (DWF) to

our current study arises from a particular definition of DWF

due to Galvão [22], which has the property that the states hav-

ing a negative DWF are exactly those states which are non-

stabilizer [23]. To be more precise, Galvão’s construction is

based on the DWF definition of Wooters [25] and Gibbons

et al. [26], with the additional feature that all possible le-

gitimate DWF in the Gibbons et al. construction are consid-

ered simultaneously. This property means that Galvão’s defi-

nition contains redundant information in a tomographic sense

(i.e. for description of quantum states) but makes it ideal for

our present purposes. While the interpretation of the DWF

in terms of discrete points in phase space is a rich subject

(many different definitions for DWF exist e.g. that of Gross

[24] ), we will not discuss this aspect - rather we will use

this construction to aid in characterizing non-stabilizer states

and non-Clifford operations. It is worth mentioning, however,

that two aspects of non-classicality coincide - (i) the existence

of negativity in the quasiprobability description of a quantum

state and (ii) the existence of states that are non-classical in

the sense of simulability via the Gottesman-Knill theorem.

We prove a result conjectured by Wootters (as noted by [27])

concerning the achievable negativity of quantum states in odd

prime dimension. This result involves the explicit construc-

tion of so-called phase point operators with a certain spec-

trum; the more general problem of classifying these phase

point operators by spectrum was recently investigated by Ap-

pleby et al. [28].

We begin by re-stating some relevant facts concerning qu-

dit stabilizer operations and defining our notation. Next, we

introduce Galvão’s DWF and rewrite it slightly in terms of sta-

bilizer projectors. The final preliminary section discusses how

one might go about constructing a polytope whose vertices are

Clifford gates. The table at the beginning of section III (Re-

sults) represents a summary of the most robust states and gates

that we have found. The rest of section III details our method

for ascertaining maximally robust states, facets of the Clifford

polytope and robust non-Clifford gates respectively.

II. PRELIMINARIES AND NOTATION.

A. Qudit Pauli Group and Stabilizer States.

Throughout, we always assume the dimension d to be a

prime number ([29] and [30] are good references for this sec-

tion).

X | j〉= | j + 1 mod d〉 Z| j〉 = ω j| j〉 (1)

where ω = exp(2πi/d) is a primitive dth root of unity such

that XZ = ω−1ZX . Further, we define

P(a|b) = XaZb (d > 2) (2)

P(a|b) = iabσa
xσb

z (d = 2) (3)

Using so-called symplectic notation, the general form for

multi-particle stabilizer operators with vectors x = (x1,x2, . . . )
and z = (z1,z2, . . . ) with xi, zi ∈ Zd is

P(x|z) = (X x1 ⊗X x2 . . . )(Zz1 ⊗Zz2 . . . ) . (4)

Two operators commute if and only if the symplectic inner

product between their vector descriptions vanishes i.e.

P(x|z)P(x′|z′) = P(x′|z′)P(x|z) if and only if

∑
i

xiz
′
i− x′izi = x · z′− x′ · z = 0 mod d (5)

The Pauli group over n qudits is given by

Gn =
{

ωcP(x|z)|x,z ∈ Z
n
d ,c ∈ Zd

}
(6)

An n-qudit stabilizer state |ψ〉 is the simultaneous eigenvector,

with eigenvalue 1, of a subgroup, Gs, of Gn. The elements of

Gs must be mutually commuting, and Gs can be generated by

n non-trivial elements {g1,g2, . . .gn} ∈ Gn i.e.

Gs = 〈g1,g2, . . .gn〉, |Gs|= dn

|ψ〉〈ψ|= 1

dn ∑
g∈Gs

g

where 〈·〉 denotes a generating set.

The elements of Gn have eigenvalues from
{

ωk|k ∈ Zd

}
(re-

place ω with −1 in the rest of this section for the d = 2 case).

Measurement of an arbitrary operator A from Gn such that the

result is ωk is described by the following projection operator

[29]

Π[k] =
1

d

(
I + ω−kA + ω−2kA2 + · · ·+ ω−(d−1)kAd−1

)
(7)

We will have occasion to describe both single- and two-

qudit projection operators in detail. The ωk eigenspace of a

single-qudit operator P(a|b) corresponds to the projector

Π(a|b)[k] =
1

d

(
I + ω−kP(a|b) + . . .+ ω−(d−1)k(P(a|b))

d−1
)

(8)

which is clearly a qudit stabilizer state (there are a total of

d(d + 1) distinct single-qudit stabilizer states). Measuring a

two-qudit Pauli operator corresponds to projecting with

Π(x1,x2|z1,z2)[k] =
1

d

(
I + ω−kP(x1,x2|z1,z2) + . . .

. . .+ ω−(d−1)k(P(x1,x2|z1,z2))
d−1
)

(9)
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This eigenspace has dimension d and can be viewed as the

codespace of a 2-qudit stabilizer code that encodes one qudit.

Explicit expressions for powers of a Pauli operator can be

derived via [30]

(P(x|z))
m = ω

1
2 m(m−1)x·zP(mx|mz) (10)

B. Discrete Wigner Function.

We use the discrete Wigner function originally defined by

Galvão [22], which is constructed using stabilizer MUB vec-

tors, and which was subsequently shown to have the following

property

Theorem 1 (Cormick et al. [23]) A quantum state (pure or

mixed) has a negative Wigner function if and only if the state

lies outside the convex hull of stabilizer states.

The construction of this DWF relies on associating lines in

phase space with vectors (pure stabilizer states) from a set of

mutually unbiased bases (MUB). More precisely, for a set of

MUB comprising d +1 bases, each with d orthonormal states

we have a total of d(d + 1) states labeled as |φk
j〉 e.g.

{
|φ1

0〉, . . . |φ1
d−1〉, |φ2

0〉 . . . |φd+1
d−1〉

}

The mutual unbiasedness can then be summarized as

|〈φk
j|φm

l 〉|2 =
1

d
(1− δk,m)+ δk,mδ j,l

The Wigner function for a state ρ at a point in phase space

α is given by the expectation value of the so called phase point

operator, Aα, at that point

Wα = Tr(ρAα)

The operator Aα is constructed using the aforementioned

MUB vectors |φk
j〉 (we explain how in detail shortly), and can

be viewed as a witness for a state being outside the hull of

stabilizer states i.e. a state ρ such that Tr(ρAα) < 0, for any

well-defined Aα, cannot be decomposed as

ρ 6= ∑
i

qi|ψ(s)
i 〉〈ψ

(s)
i |

(
0≤ qi ≤ 1, ∑

i

qi = 1

)

where the |ψ(s)
i 〉 are d-dimensional stabilizer states. The

complete set of phase point operators Aα describe bound-

ing inequalities, defining the polytope whose vertices are the

d(d + 1) stabilizer states that exist in dimension d.

There are d(d+1) distinct phase point operators, each

of which can be associated with a vector u ∈ Z
(d+1)
d i.e.

u = (u1,u2, . . . ) and ui ∈ Zd ,

A(u) =
1

d

(
d+1

∑
k=1

|φk
uk
〉〈φk

uk
|− I

)
(11)

We make the construction of these phase point operators

more explicit in the next section. It should be apparent from

the above construction that Tr(A) = 1
d

always.

1. Restatement of DWF.

If we desire to specify phase point operators A(u) then we

must fix a definition for the MUB that we are using. Our def-

inition is not much different to [28] except for relabeling and

different notation. It is well known that, in prime dimensions

d, the eigenvectors of the following set of operators consti-

tutes a MUB

{Z,X ,XZ, . . .XZd−1}

Using the symplectic vector notation for stabilizer operators,

we can identify these d(d + 1) eigenvectors with projectors

indexed by elements ui ∈ Zd e.g

{Π(0|1)[u1],Π(1|0)[u2],Π(1|1)[u3], . . .Π(1|d−1)[ud+1]} (12)

Now Eq. (11) can be rewritten as

Definition 1 A phase point operator indexed by u ∈ Z
(d+1)
d

corresponds to

A(u) =
1

d

(
Π(0|1)[u1] +

d+1

∑
j=2

Π(1| j−2)[u j]− I

)
(13)

where Π(a|b)[k] are single-qudit stabilizer projection opera-

tors.

It is useful to have an expression for the expectation value

of A(u) with respect to an arbitrary state ρ. First define the

Pauli basis coefficients c(a|b) for the state ρ

c(a|b) = Tr
(
P

†
(a|b)

ρ
)

(14)

These d2 coefficients are enough to specify an arbitrary state

ρ, since the Pauli operators form a complete orthogonal uni-

tary basis.

Using Eq. (8) and Eq. (10), one can show that

Tr(ρΠ(a|b)[k]) =
1

d

d−1

∑
q=0

ω−qkω−
1
2 q(q+1)abc((d−q)a|(d−q)b) (15)

Substituting the projectors that are relevant to A(u) we get

Tr(ρΠ(0|1)[u1]) =
1

d

d−1

∑
q=0

ω−qu1c(0|(d−q)b) (16)

Tr(ρΠ(1|0)[u2]) =
1

d

d−1

∑
q=0

ω−qu2c((d−q)a|0) (17)

Tr(ρΠ(1| j−2)[u j]) =
1

d

d−1

∑
q=0

ω−qu j ω−
1
2 q(q+1)( j−2)c((d−q)|(d−q)( j−2))

(18)

The last equation (18) represents d − 1 distinct terms, cor-

responding to the remaining projectors in our definition

Eq. (13), indexed by the values 3≤ j≤ d +1. The expectation

value Tr(Aρ) is proportional to the sum of equations (16) –

(18) and −Tr(ρI). Each of Eq. (16) – (18) comprises powers
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of ω multiplying Pauli coefficients, c(a|b), and so we can write

Tr(Aρ) in a more intuitive form involving d×d matrices, i.e.

Tr(Aρ) =
1

d2




ω0 ωu1 . . .
ωu2 ωu3 . . .

...
. . .


 ·




c(0|0) c(0|1) . . .
c(1|0) c(1|1)

...
. . .




(19)

where the dot product operation between two matrices M and

N is to be interpreted as

M ·N =
d

∑
i, j=1

Mi, jNi, j

Obviously the left hand matrix of Eq. (19) is a function of

u ∈ Z
d+1
d . Moreover, its first row and column are functions

of only u1 and u2 respectively, as can be seen by referring to

Eq. (16) and Eq. (17). The remaining (d−1)2 elements of this

matrix are functions of (u3,u4, . . . ,ud+1) and can be calculated

using Eq. (18).

As a concrete example of the preceding, the expectation

value of A(u1,u2,u3,u4) with respect to a qutrit state ρ (whose

Pauli decomposition is c(a|b)) is given by

Tr(Aρ) =
1

32




ω0 ωu1 ω2u1

ωu2 ωu3 ωu4

ω2u2 ω2u4+1 ω2u3+2


 ·




c(0|0) c(0|1) c(0|2)

c(1|0) c(1|1) c(1|2)

c(2|0) c(2|1) c(2|2)




The equivalent expression for a qubit system ρ and phase

point operator A(u1,u2,u3) is

Tr(Aρ) =
1

22

(
(−1)0 (−1)u1

(−1)u2 (−1)u3

)
·
(

c(0|0) c(0|1)

c(1|0) c(1|1)

)

which is probably more readily interpreted when written as

Tr(Aρ) =
1

4
(1 +(−1)u1x +(−1)u2y +(−1)u3z) (20)

where x = Tr(σxρ) etc.

The interior of the qubit stabilizer octahedron (convex hull of

6 stabilizer states) is typically parameterized as

|x|+ |y|+ |z| ≤ 1

so we can immediately see that Tr(A(u)ρ) ≥ 0 (∀ u ∈ Z
3
2)

defines the same region.

2. Robustness of States to Depolarizing Noise

If a state ρ is outside the convex hull of stabilizer states then

we must have Tr(ρA(u)) < 0 for at least one of the phase point

operators. We define the negativity of a state as

Definition 2 Negativity of a state, ρ is denoted |N(ρ)|:

|N(ρ)|=





∣∣∣∣∣ min
u∈Z

d+1
d

[Tr(ρA(u))]

∣∣∣∣∣
0 ⇐⇒ Tr(ρA(u))≥ 0,∀ u ∈ Z

d+1
d

(21)

Definition 3 Robustness to depolarizing noise of a state ρ is

denoted p⋆(ρ) :

p⋆(ρ) = min(p) such that

(1− p)ρ + p
I

d
= ∑

i

qi|ψ(s)
i 〉〈ψ

(s)
i |

(
0≤ qi ≤ 1, ∑

i

qi = 1

)

where the |ψ(s)
i 〉 are d-dimensional stabilizer states.

Lemma 2 Negativity of a state ρ and its robustness to noise

are related by

p⋆(ρ) = 1− 1

d2|N(ρ)|+ 1

First note that since the trace of a phase point operator is

always 1
d

, then the maximally mixed state I

d
satisfies

Tr

(
A(u)

I

d

)
=

1

d2
, ∀ u ∈ Z

d+1
d

Let A be the phase point operator that minimizes Tr(Aρ) for a

particular state ρ, then

Tr

(
A

[
(1− p)ρ + p

I

d

])
≥ 0 (22)

⇐⇒ −(1− p)|N(ρ)|+ p

d2
≥ 0 (23)

⇐⇒ p≥ 1− 1

d2|N(ρ)|+ 1
(24)

⇒ p⋆(ρ) = 1− 1

d2|N(ρ)|+ 1
(25)

Later we will use this expression to prove the existence of

states that can survive depolarizing rates of up to p = d
d+1

before becoming stabilizer states.

C. Noisy Quantum Operations and the Clifford Polytope

We saw in section II B how the set of states inside the con-

vex hull of stabilizer states can be described by bounding in-

equalities, where each such inequality corresponds to a Her-

mitean operator, A. We have previously argued that access to

states from inside this region does not improve the computa-

tional power of a quantum computer that can only implement

stabilizer operations (albeit perfectly). For the same reason,

access to operations inside the convex hull of Clifford gates is

equally unhelpful. The structure of the qudit Clifford polytope

is of inherent interest, but we are especially interested in what

it tells us about operations that are highly robust to noise. We

denote a noisy (depolarized) version of non-Clifford gate, U ,

as EU i.e.

EU : ρ→ ρ′

where ρ′ = (1− p)UρU† + p
I

d
(26)
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Similarly to how we defined states’ robustness to noise in the

previous section, we define the robustness of a non-Clifford

gate U as the minimum noise rate that takes it inside the Clif-

ford polytope

Definition 4 Robustness to depolarizing noise of an operation

U is denoted p⋆(U) :

p⋆(U) = min(p) such that

(1− p)UρU† + p
I

d
= ∑

i

qiCiρC
†
i

(
0≤ qi ≤ 1, ∑

i

qi = 1

)

where the Ci are Clifford gates. In other words, p⋆(U) is the

noise rate at which EU enters the Clifford polytope.

Finding the bounding inequalities for the convex hull of a

set of vertices is known as the halfspace enumeration problem.

The reverse question, finding the vertices given a set of in-

equalities is known as vertex enumeration. Both the halfspace

and vertex enumeration problems get rapidly more difficult as

the size of the problem increases e.g. computing the convex

hull of n points in d-dimensional space requiresO(n⌊
d
2 ⌋) time

[31]. Various software implementations exist to solve these

kinds of problems (e.g [32, 33]). In order to find the con-

vex hull of Clifford gates using this software, one must first

describe the gates using an appropriate real, linear representa-

tion. For example, it is possible to represent each Clifford gate

C ∈ SU(d) as an orthogonal rotation matrix RC ∈ SO(d2−1)
[34]. Alternatively, one can represent the Choi-Jamiołkowski

state corresponding to each Clifford gate by using the well

known construction for power-of-prime MUBs (e.g. [36]).

Using one of the aforementioned software packages,

Buhrman et al. [5] derived a complete list of facets (non-

redundant halfspace inequalities) for the polytope whose ver-

tices are the 24 single-qubit Clifford gates - the so-called

Clifford polytope. Doing so allowed them to find the non-

Clifford gate that was most resistant to noise. One of the

main goals of this work is to examine the structure of the

qudit version of Buhrman et al.’s Clifford polytope [5], i.e.

the structure in (d2− 1)2-dimensional space whose vertices

comprise the set of d3(d2− 1) single-particle Clifford oper-

ations on d-dimensional systems. Unfortunately, because of

the aforementioned computational complexity of the halfs-

pace enumeration problem we were unable to complete the

calculation that would provide all the facets of the qudit Clif-

ford polytope for any d > 2. However, building on our pre-

vious work, we predicted that the facets would have a cer-

tain structure and could be logically deduced. Checking that

a conjectured facet is indeed a true facet is not computation-

ally difficult, and so we were able to verify our conjectured

facets, and consequently find a large set of distinct facets for

d = 3,5,7. There is precedence for deriving facets of a poly-

tope in quantum information theory, typically in the setting of

non-locality, whereby the vertices correspond to measurement

outcomes of different parties and facets are tight Bell inequal-

ities (see e.g. [35]).

1. Checking Conjectured Facets

A polytope P , in D dimensions, can be uniquely charac-

terized by a finite set of bounding inequalities called facets,

{Fi, fi}, where Fi ∈ R
D and fi ∈ R. We can test membership

in P of some vector X by taking the dot product with these

facet-defining vectors Fi

X ∈ P ⇐⇒ X ·Fi ≤ fi ∀i

Let us denote the vertices of this polytope as V j - again there

are a finite number of these.

The Clifford polytopes that we study will live in a space

of dimension D = (d2−1)2, where d is the dimension of the

qudit system that is under consideration. If we construct a

conjectured facet {G,g}, then for it to be a true facet (see e.g.

[35]) it must satisfy

Condition 1: ∀ V j, V j ·G≤ g

and, defining

{Ṽ j}= {V j|V j ·G = g}

we must also have

Condition 2: rank



← Ṽ1 →
← Ṽ2 →

...


= D

i.e. we must have D linearly independent vertices contained

in G. Later we will rewrite this second condition simply as

rank{Ṽ j}= D.

III. RESULTS

A. Summary of Results

Table I summarizes the robustness of non-stabilizer states

and non-Clifford gates to depolarizing noise. The rest of this

results section addresses how these values were determined.

We first deal with the left half of the table (robust states) be-

fore moving on to the right half (robust gates).

B. Robust Qudit States.

This subsection comprises the proof of the following theo-

rem and a discussion of some of its implications.

Theorem 3 For all odd prime dimensions, d, there is a family

of pure states, {|ν〉}, which require a depolarizing rate of p =
d

d+1
in

(1− p)|ν〉〈ν|+ p
I

d

to become a stabilizer state. Furthermore, these states are

maximally robust amongst all states in dimension d.
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p⋆(ρ) Optimal? p⋆(U) Optimal?

d = 2 1− 1√
3
≈ 42% X 1− 1

2
√

2−1
≈ 45.3% X

d = 3 3
4 = 75% X ≈ 78.6% ?

d = 5 5
6 ≈ 83% X 1− 1

21 ≈ 95.2% ?

d = 7 7
8 = 87.5% X ≈ 97.6% ?

d d
d+1 X

TABLE I. Summary of results: The maximal robustness to depo-

larizing noise of non-stabilizer states p⋆(ρ), and robustness of non-

Clifford gates p⋆(U).

We will find a family of states for all prime dimension d

that are maximally robust to depolarizing noise. Using the

previously-derived relationship between robustness (p⋆) and

negativity (|N|),

p⋆(ρ) =
1

d2|N(ρ)|+ 1
(27)

this amounts to finding states that have maximal negativity in

terms of their discrete Wigner function. It was conjectured

by Wootters that the maximal negativity achievable by quan-

tum states in odd prime dimension is |N(ρ)| = 1
d

. Recall that

Wigner function of a state is its expectation value with respect

to a phase point operator A(u). We can use this to show that

negativity is bounded above by |N(ρ)| ≤ 1
d

Wu(ρ) = Tr(A(u)ρ) (28)

=
1

d

(
Tr(ρΠ(0|1)[u1])+

d+1

∑
j=2

Tr(ρΠ(1| j−2)[u j])−Tr(ρI)

)

(29)

=
1

d

(
d+1

∑
i=1

qi−1

)
(0≤ qi ≤ 1) (30)

⇒min
u, ρ

[Wu(ρ)]≥−1

d
(31)

⇒ |N(ρ)| ≤ 1

d
(32)

Next, we show that this limit is achievable in all odd prime

dimensions.

Casaccino, Galvão and Severini [27] proved that the quan-

tity

min
ρ

[Tr(Aρ)] (33)

is minimized by setting

ρ = |ν1〉〈ν1| where A =
d

∑
k=1

λk|νk〉〈νk| (34)

and λ1 ≤ λ2 . . .≤ λd (35)

In other words Tr(Aρ) is minimized by finding the mini-

mal eigenvalue of A and using the corresponding normalized

eigenvector for ρ (this is actually a common technique to find

a state that minimizes or maximizes an operator). To complete

the proof that |N(ρ)|= 1
d

is achievable, we need to show that

there is always a phase point operator, in odd prime dimension

d, with at least one eigenvalue λ1 =− 1
d

.

Bandyopadhyay et al. [36] showed that the eigenvector

(with eigenvalue ωk) of XZb is given by

|ψb
k〉=

1√
d

d−1

∑
m=0

(ωk)d−m(ω−b)sm |m〉 (36)

where sm =
d−1

∑
q=m

q (37)

Since

|ψb
0〉〈ψb

0|= Π(1|b)[0] (38)

and |k〉〈k|= Π(0|1)[k] (39)

we have the following matrix form for the phase point opera-

tor corresponding to u⋆ = ( d+1
2

,0, . . .0)

A(u⋆) =
1

d

(
| d+1

2
〉〈 d+1

2
|+ 1

d

d−1

∑
b=0

|ψb
0〉〈ψb

0|− I

)

=
1

d

(
| d+1

2
〉〈 d+1

2
|+ 1

d

d−1

∑
b,m,n=0

ωb(sn−sm)|m〉〈n|− I

)

where sm =
d−1

∑
q=m

q and sn =
d−1

∑
q=n

q

For a moment let us concentrate on the matrix

1

d

d−1

∑
b,m,n=0

ωb(sn−sm)|m〉〈n|=
d−1

∑
m,n=0

(
1

d

d−1

∑
b=0

ωb(sn−sm)|m〉〈n|
)

(40)

Use the facts that

1

d

d−1

∑
b=0

ωb(sn−sm) =

{
0 : sn 6= sm

1 : sn = sm

and sm =
d−1

∑
q=m

q =
1

2
(m−m2) mod d

to show that non-zero coefficients occur only when

m(m−1) = n(n−1) i.e. when

n = m mod d

or n = 1−m mod d

Taking all of the above into consideration, the matrix
1
d ∑

d−1
b,m,n=0 ωb(sn−sm)|m〉〈n| takes a particularly simple form –
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it is block diagonal with a 2× 2 submatrix of ones and an-

other submatrix with ones on the diagonal and antidiagonal.

For example for d = 7 we have

1

d

d−1

∑
b,m,n=0

ωb(sn−sm)|m〉〈n|=




1 1 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 1

0 0 0 1 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 1 0

0 0 1 0 0 0 1




(d = 7)

Note that the diagonal and anti-diagonal of the second subma-

trix intersect at m = d+1
2

.

Returning to the phase point operator A(u⋆) we see that sub-

tracting the identity and adding in | d+1
2
〉〈 d+1

2
| gives us a ma-

trix of the form

A(u⋆) =
1

7




0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0




(d = 7)

i.e. it contains two counter-identity matrices of sizes 2×2 and

(d − 2)× (d − 2) respectively. It is known that ⌊ n
2
⌋ of the

eigenvalues of an n× n counter-identity matrix are −1 (and

the rest are 1). In our case this means that d−3
2

+ 1 = d−1
2

eigenvalues of A(u⋆) are− 1
d

. Each corresponding eigenvector

|νk〉 (properly normalized) is a state that is maximally robust

to depolarizing noise.

A(u⋆) =
d

∑
k=1

λk|νk〉〈νk| (λ1 ≤ λ2 . . .≤ λd) (41)

So, for k ∈
{

1,2 . . .
d−1

2

}
we have

Tr(A(u⋆)|νk〉〈νk|) =−1

d
(42)

⇒ p⋆(|νk〉〈νk|) = 1− 1

d2
(

1
d

)
+ 1

=
d

d + 1
(43)

It was noted in [28] that each A is part of a subset of phase

point operators of size d2, all of which have the same spec-

trum. We can generate the remaining d2−1 remaining phase

point operators related to A(u⋆) by applying each of the d2−1

non-trivial Pauli operators to it. Taking the d−1
2

eigenvectors,

with eigenvalue − 1
d

, of all phase point operators related to

A(u⋆) gives us a total of
d2(d−1)

2
maximally robust states.

Let us denote by |ν1〉 the following eigenvector of A(u⋆)

|ν1〉=
|0〉− |1〉√

2

(
λ1 =−1

d

)
(44)

We show in the appendix that this vector is an eigenvector

of a qudit Clifford operation. The so-called |T 〉-type magic

states for qubits (which are known to be distillable for less

than about 35% depolarizing noise) are qubit states that are

maximally robust to depolarizing noise, and are also eigen-

vectors of Clifford operations. It is an interesting open ques-

tion whether the maximally robust qudit states, |ν1〉, that we

have just described are distillable by some qudit magic state

distillation routine.

C. Method for Deriving Facets of the Clifford Polytope.

We describe a method of deducing facets of the Clifford

polytope by using a simple argument:

If some two-qudit state τ is acted on by sta-

bilizer operations only (actually this process is

the decoding for a two-qudit stabilizer code), and

the output of this process is a single-qudit non-

stabilizer state ρ, then the original two-qudit state

τ cannot have been a stabilizer state.

Note that the converse is not necessarily true.

Definition 5 A Choi-Jamiołkowski state corresponding to a

unitary operation U on a qudit state is denoted

|JU〉= (I⊗U)
d−1

∑
j=0

| j j〉√
d

(45)

Definition 6 A weight-2 two-qudit τ state is one for which

c(x1,x2|z1,z2) = 0 if x1 = z1 = 0 or x2 = z2 = 0

where c(x1,x2|z1,z2) = Tr(P†
(x1,x2|z1,z2)τ)

i.e. states τ are those for which a local Pauli measurement

must have zero expectation value.

Since the identity coefficient c(0,0|0,0) is identically 1, we

have potentially (d2− 1)2 non zero coefficients. The corre-

sponding weight-two Pauli operators form a unitary orthogo-

nal basis for the space of Choi-Jamiołkowski states.

The set of states {|JCi
〉}, where {C1,C2 . . .Cd3(d2−1)} are all

the Clifford gates for a single qudit, form the vertices of the

Clifford polytope. The noisy operation EU (that we want to

check for membership of the Clifford polytope) will be en-

coded in the weight-two operator τ via

τ = (I ⊗EU)

(
1

d

d−1

∑
j,k=0

| j j〉〈kk|
)

=
1

d2
c(x1,x2|z1,z2)P(x1,x2|z1,z2)

(46)

If we somehow had access to a complete facet descrip-

tion, F , of the Clifford polytope (where the individual facets

are written as Hermitean operators, F , in d× d-dimensional

Hilbert space) then we could immediately test whether or not

EU is a Clifford operation via

∃F such that Tr(Fτ) < 0 ⇐⇒ EU is non-Clifford (47)
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In the absence of a complete facet description, we instead cre-

ate operators for which the forward implication is necessarily

true. In turn, we show that these operators are indeed facets -

although it is possible our method does not enable construc-

tion of every F ∈ F .

Definition 7 A Clifford witness W is a Hermitean operator

satisfying

Tr(Wτ) < 0⇒EU is non-Clifford (48)

where τ = (I ⊗EU)

(
1

d

d−1

∑
j,k=0

| j j〉〈kk|
)

The general idea for our method of constructing Clifford

witnesses is as follows

1. Project arbitrary weight-2 state τ into codespace of two-

qudit stabilizer code. This produces an encoded state ρ.

2. Decode ρ→ ρ using stabilizer operations only.

3. Derive conditions on coefficients c(x1,x2|z1,z2) of τ such

that Tr(ρA(u) < 0.

Since decoding a stabilizer code uses only stabilizer op-

erations, we know that any τ satisfying these conditions on

c(x1,x2|z1,z2) must have been non-stabilizer to begin with. Each

of these conditions on c(x1,x2|z1,z2) corresponds to a hyperplane

in (d2− 1)2-dimensional space - where one side of the hy-

perplane contains only τ corresponding to non-Clifford oper-

ations. What we want is a facet – a hyperplane that forms part

of the boundary of the convex hull of Clifford operations - so

we need to check that conditions 1 and 2 described in Section

II C 1 are satisfied.

There are many different codes we could choose so for sim-

plicity we concentrate on codes defined by the projector

Π(0,0|1,1)[0] =
d−1

∑
j=0

| j〉〈 j| (49)

where | j〉〈 j|= 1

d2
〈P(0,0|1,1),ω

jP(0,0|0,1)〉 (50)

which projects onto the parity-zero subspace of the two-qudit

Hilbert space. These will eventually be used to derive what

we have called “B-type” facets in previous work. We also use

the codes

Π(0,0|0,1)[0] =
d−1

∑
j=0

| j〉〈 j| (51)

where | j〉〈 j|= 1

d2
〈P(0,0|0,1),ω

jP(0,0|1,0)〉 (52)

Π(0,0|1,0)[0] =
d−1

∑
j=0

| j〉〈 j| (53)

where | j〉〈 j|= 1

d2
〈P(0,0|1,0),ω

jP(0,0|0,1)〉 (54)

to derive different types of facets, which were called “A-type”

facets and “AT -type” facets in previous work [21].

Conjugating any facet by local Clifford operations must

produce another (not necessarily distinct) facet, so each facet,

F , that we derive can immediately be used to generate a family

of facets

F = {F ′|F ′ = (Ci⊗C j)F(Ci⊗C j)
†} (55)

∀ i, j ∈ {1,2, . . . ,d3(d2−1)}

all of which will have the same spectrum (by construction).

Theorem 4 The preceding method for deriving facets of the

Clifford polytope gives a complete description (i.e. all possi-

ble facets), for the qubit (d = 2) case. Furthermore, the opti-

mal non-Clifford gate and the threshold depolarizing rate are

given by an eigenvector and eigenvalue of the Hermitean Clif-

ford witnesses WB respectively.

The proof is contained in the following example and the sub-

sequent section on finding robust operations.

1. Example: Deriving Qubit (d=2) Clifford Polytope Facets

Define

ρ =
Π(0,0|1,1)[0]τΠ(0,0|1,1)[0]

Tr
(
Π(0,0|1,1)[0]τΠ(0,0|1,1)[0]

) (56)

and decoding this to a single qubit produces

ρ→
dec

ρ =
d−1

∑
m,n=0

〈m|ρ|n〉|m〉〈n|=

∑
k∈Z2

(
c(0,0|k,k) (−1)kc(1,1|k,k)+(−i)kc(1,1|k+1,k)

(−1)kc(1,1|k,k)+(i)kc(1,1|k+1,k) c(0,0|k,k)

)

(57)

Calculating the expectation value for a phase point operator

with respect to the normalized single-qubit ρ gives e.g.

For u = (0,0,0) : A(u) =




1
2

1
4
− i

4

1
4
+ i

4
0


 (58)

and Tr(ρA(u)) =
∑k∈Z2

(
c(0,0|k,k) + c(1,1|k+1,k) +(−1)kc(1,1|1,k)

)

∑k∈Z2
c(0,0|k,k)

(59)

Because we are only interested in the sign of Tr(ρA(u)) the

denominator is unimportant, and so any state τ that satisfies

∑
k∈Z2

(
c(0,0|k,k) + c(1,1|k+1,k) +(−1)kc(1,1|1,k)

)
< 0 (60)

must not correspond to a Clifford operation. Since

c(x1,x2|z1,z2) = Tr(P†
(x1,x2|z1,z2)τ) (by definition) the condition on
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τ can be expressed as the expectation of an observable i.e.

Tr(WBτ) < 0 implies a non-Clifford operation, where

WB = ∑
k∈Z2

(
P

†
(0,0|k,k) + P

†
(1,1|k+1,k) +(−1)kP

†
(1,1|1,k)

)
(61)

⇒ WB =




2 0 0 2−2i

0 0 0 0

0 0 0 0

2 + 2i 0 0 2




(62)

We omit the details, but the same kind of analysis, using the

encoding

ρ ∝ Π(0,0|0,1)[0]τΠ(0,0|0,1)[0] (63)

and the same phase point operator A(0,0,0), shows us that any

τ satisfying

c(0,0|0,0) + c(0,0|1,1) + c(1,0|0,1) + c(1,0|1,1) < 0 (64)

must represent a non-Clifford operation. This inequality im-

plies a witness of the form

WA =




2 0 1− i 0

0 0 0 −1 + i

1 + i 0 0 0

0 −1− i 0 2




(65)

Finally, using the closely related encoding

ρ ∝ Π(0,0|1,0)[0]τΠ(0,0|1,0)[0] (66)

we find that any τ satisfying

c(0,0|0,0) + c(0,0|1,1) + c(0,1|1,0) + c(0,1|1,1) < 0 (67)

must represent a non-Clifford operation. The witness is

WAT =




2 1− i 0 0

1 + i 0 0 0

0 0 0 −1 + i

0 0 −1− i 2




(68)

Next, we seek to ascertain whether these witnesses are tight

against the convex hull of Clifford operations. The following

facts, which are easily checked, ensure that the witnesses are

tight - i.e. they are facets of the Clifford polytope.

For all F ∈ {A,AT ,B}
〈JCi
|WF |JCi

〉 ≥ 0 ∀ i ∈ {1,2, ..,24} (69)

and, defining the subset
{
|J̃Ci
〉
}

F
=
{
|JCi
〉
∣∣ 〈JCi

|WF |JCi
〉= 0

}

rank
{
|J̃Ci
〉
}

F
= 9 = (d2−1)2 (70)

Equations (69) and (70) correspond to conditions 1 and 2 de-

scribed in SectionII C 1. It should also be noted that∣∣∣
{
|J̃Ci
〉
}

A

∣∣∣=
∣∣∣
{
|J̃Ci
〉
}

AT

∣∣∣= 12,
∣∣∣
{
|J̃Ci
〉
}

B

∣∣∣= 14 (71)

i.e. A(T )-type facets contain 12 Clifford vertices each, while

B-type facets contain 14.

As a final step, we generate sets of facets from these canon-

ical representatives

WF = {W ′F |W ′F = (Ci⊗C j)WF(Ci⊗C j)
†} (72)

∀ i, j ∈ {1,2, . . . ,24}, F ∈ {A,AT ,B}
resulting in the set of facets

S =WA∪WAT ∪WB (73)

It is straightforward to verify that S contains |S|= 120 distinct

facets, and, using software for vertex enumeration, that the

polytope represented by S has all 24 Clifford operations as its

vertices - i.e S is exactly the Clifford polytope arrived at by

Buhrman et al.

D. Robust Qudit Operations.

If we have a facet of the Clifford polytope, how do we find

the operation that is maximally robust to depolarizing noise

before it gets pushed inside the polytope? Recall that a two-

qudit state τ represents a non-Clifford operation EU if

Tr(τW ) < 0 where (74)

τ = (I ⊗EU)

(
1

d

d−1

∑
j,k=0

| j j〉〈kk|
)

= (1− p)|JU〉〈JU |+ p
I

d2

(75)

so clearly 〈JU |W |JU〉< 0, and the more negative this quantity,

the greater the depolarizing rate required to make Tr(τW ) = 0.

Let U be the unitary that minimizes 〈JU |W |JU〉, and re-scale

W to make it have unit trace, then

Tr

(
W

[
(1− p)|JU〉〈JU |+ p

I

d2

])
≥ 0 (76)

⇐⇒ −(1− p)|〈JU |W |JU〉|+
p

d2
≥ 0 (Tr(W ) = 1) (77)

⇐⇒ p≥ 1− 1

d2|〈JU |W |JU〉|+ 1
(78)

⇒ p⋆(U) = 1− 1

d2|〈JU |W |JU〉|+ 1
(79)
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We can use the result of Casaccino et al. to find the state

that minimizes the expectation value with the witness

min
ρ

[Tr(ρW )] is achieved by

ρ = |ν1〉〈ν1| where W = ∑
k

λk|νk〉〈νk| (λ1 ≤ λ2 . . .) (80)

Furthermore if |ν1〉 is of the form |JU〉 = (I⊗U)∑
d−1
j=0

| j j〉√
d

for some U then we are finished. If this is not the case (and

it usually is not) then the minimal eigenvalue of W at least

provides an upper bound on the robustness of the optimal U

with respect to W .

Uopt w.r.t. W = argmin
U∈SU(d)

〈JU |W |JU〉 (81)

p⋆(Uopt)≤ 1− 1

d2|λ1|+ 1
(82)

The optimal qudit (d ≥ 3) gates that we describe were found

by numerical optimization, so we cannot rule out the possibil-

ity that these gates correspond to a local minimum, although

we find this unlikely. Furthermore, we cannot claim global

optimality with respect to the Clifford polytope without first

having a complete description of all its facets.

In the case of the qubit facets we derived in Section III C 1,

the eigenvectors and eigenvalues immediately give us the

globally optimal gate and its threshold noise rate. Consider

the B-type representative facet WB of Eq. (62), re-scaled to

have unit trace; its eigenvectors and eigenvalues are

λ1 =
1

2
(1−
√

2) |ν1〉=




− 1−i
2

0

0

1√
2




(83)

λ2 =
1

2
(1 +
√

2) |ν2〉=




1+i
2

0

0

1√
2




(84)

|ν1〉= (I⊗U)
1

∑
j=0

| j j〉√
2

: U =



−e

3πi
8 0

0 e
5πi
8


 (85)

p⋆(U) = 1− 1

4| 1
2
(1−
√

2)|+ 1
≈ 0.453 (86)

The WA(T ) -type facets have eigenvalues 1
4
(1±
√

3) which im-

plies a threshold noise rate of at most 1−1/
√

3≈ 42%. Thus

we have re-derived the result of Buhrman et al. [5] in a dif-

ferent way; the authors of [5] formulated the optimization as a

quadratic program and used Karush-Kuhn-Tucker conditions

to ensure the solution was a global optimum.

The rest of this section is concerned with describing the

most robust gates, Uopt , that we have found in dimensions

d = 3,5,7. These are analogous to the so-called π/8-gate for

qubits, insofar as they are the non-Clifford unitaries that re-

quire the maximum amount of noise to enter the convex hull

of Clifford gates. Intuitively it seems reasonable that such

gates would take a relatively simple form, as they do below.

1. Robust Qutrit Operation.

The facet, W
(3)
B , used for this optimization is given explic-

itly in the appendix.

Uopt := argmin
U∈SU(3)

〈JU |W (3)
B |JU〉 (87)

〈JUopt |W
(3)
B |JUopt 〉= (88)

1

9

(
3−
√

3cos( π
18

)−6cos(π
9
)−3sin( π

18
)+ 2
√

3sin(π
9
)
)

Uopt =




1 0 0

0 0 e
2πi
9

0 e−
2πi
9 0




(89)

⇒ p⋆(Uopt)≈ 78.63% (90)

2. Robust (d=5) Qudit Operation.

The facet, WB, used for this optimization is given explicitly

in the appendix.

Uopt := argmin
U∈SU(5)

〈JU |WB|JU〉 (91)

〈JUopt |WB|JUopt 〉=−
4

5
(92)

Uopt =




1 0 0 0 0

0 0 0 0 e
−2πi

5

0 0 0 e
4πi
5 0

0 0 e
−4πi

5 0 0

0 e
2πi
5 0 0 0




(93)

⇒ p⋆(Uopt) =
20

21
≈ 95.2% (94)
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3. Robust (d=7) Qudit Operation.

The facet, WB, used for this optimization is too large to re-

produce but can be constructed by decoding the parity code

Eq. (50) and testing the qudit output state with respect to the

phase point operator A(0,0,0,3,2,4,2,3).

Uopt := argmin
U∈SU(7)

〈JU |WB|JU〉 (95)

〈JUopt |WB|JUopt 〉 ≈ −0.8411 (96)

Uopt =




1 0 0 0 0 0 0

0 0 0 0 0 0 e
10πi

7

0 0 0 0 0 e
6πi
7 0

0 0 0 0 e
6πi
7 0 0

0 0 0 1 0 0 0

0 0 e
6πi
7 0 0 0 0

0 1 0 0 0 0 0




(97)

⇒ p⋆(Uopt)≈ 97.63% (98)

IV. SUMMARY AND OPEN QUESTIONS.

By using an appropriately-defined discrete Wigner function

(DWF), we have found a family of qudit non-stabilizer states

that are maximally robust to depolarizing noise i.e. they are

the states which are furthest outside the convex hull of all the

d-dimensional stabilizer states. The threshold noise rate for

these states takes a particularly simple form and, interestingly,

these states are eigenvectors of qudit Clifford operators. Turn-

ing our attention to non-Clifford unitary gates, we found some

gates which required a high rate of depolarizing before they

enter the convex hull of Clifford gates (the so-called Clifford

polytope). In order to find these robust gates it was first nec-

essary to deduce facets of the Clifford polytope, and we ex-

plained a simple procedure that successfully produced many

distinct facets.

An obvious open question is whether non-stabilizer qudit

states, like those that we have discussed, can be purified using

only stabilizer operations i.e. qudit magic state distillation.

Another natural extensions of our work is to allow noise to

affect stabilizer operations too, as the authors of [6] did for

the qubit case. The depolarizing noise model we have used

is ubiquitous in quantum information theory because of its

generality and tractability. Nonetheless, other noise models

are also worthy of investigation because of their relevance in

fault-tolerance threshold lower bound calculations, for exam-

ple, and so we highlight this as another interesting open ques-

tion.
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Appendix A: Robust States as Eigenvectors of Clifford

Operators

Here we show that the maximally negative state

|ν1〉=
|0〉− |1〉√

2
(A1)

is an eigenvector of a qudit Clifford operation for all dimen-

sions d. The fact that every Clifford operation in odd dimen-

sion d can be associated with a matrix F ∈ SL(2,Zd) in addi-

tion to a vector χ ∈ Z
2
d results from the isomorphism

C ∼= SL(2,Zd)⋉Z
2
d, (A2)

established by Appleby [37], where C is the Clifford group. If

we specify the elements of F and χ as

F =




α β

γ δ


 χ =




χ1

χ2


 (A3)

then Appleby provides an explicit description of the unitary

matrix C(F,χ) in terms of these elements. Initially, the Clifford

operations we are interested in correspond to

F =



−1 0

−1 −1


 χ =




0

0


 (A4)

which have matrix form

C(F,χ) =
d−1

∑
j=0

κ j2 |d− j〉〈 j|
(

κ = e
(d+1)πi

d

)
(A5)

Conjugating this Clifford operation with the Pauli operator

P
(

d+1
2

,0)
=

d−1

∑
j=0

| j + d+1
2
〉〈 j| (A6)

we arrive at another Clifford operation C′

C′ = P
(

d+1
2

,0)
C(F,χ)P

†

(
d+1

2
,0)

(A7)

=
d−1

∑
j=0

| j + d+1
2
〉κ(− j)2〈 d+1

2
− j| (A8)
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For example, in dimension d = 7 we have

C′ =




0 e
2πi
7 0 0 0 0 0

e
2πi
7 0 0 0 0 0 0

0 0 0 0 0 0 e
4πi
7

0 0 0 0 0 e−
6πi
7 0

0 0 0 0 1 0 0

0 0 0 e−
6πi
7 0 0 0

0 0 e
4πi
7 0 0 0 0




(A9)

Clearly |ν1〉 = |0〉−|1〉√
2

is an eigenvector of C′ with eigenvalue

−e
2πi
7 . In general when j takes on the values d±1

2
in the ex-

pression for C′ we get the following matrix entries

j = d−1
2

: |0〉κ(
d−1

2
)2〈1|

j = d+1
2

: |1〉κ(
d+1

2
)2〈0|

Since

κ(
d−1

2
)2

= κ(
d+1

2
)2

= ωk (for some k ∈ Zd) (A10)

then
|0〉−|1〉√

2
is an eigenvector with eigenvalue λ =−ωk

Appendix B: Facets of Qudit Clifford Polytope

Here we explicitly describe the Clifford Witnesses which

were used in the proving the results contained in the main

text. For d = 3 we list all distinct Witnesses (up to Clifford

conjugation) that we were able to find and note whether they

are true facets or not. For d = 5 we only give the polytope

facet which was relevant to Uopt listed in the main text. The

d = 7 facet that was used to derive the threshold and optimal

gate is too large to reproduce here.

1. Qutrit Facets and Peaks

W
(1)
A =W

u=(0,0,0,0)
A (B1)

W
(1)
A =

(
Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + Π(1,0|0,1)[0]+ (B2)

Π(1,0|0,2)[0] + Π(1,0|1,1)[0] + Π(1,0|1,2)[0]+

Π(1,0|2,1)[0] + Π(1,0|2,2)[0]−
7

3
I
)
/3

W
(1)
A :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 144

rank
{
|J̃Ci
〉
}

= 64 (True Facet)
(B3)

W
(2)
A =W

u=(0,0,1,2)
A (B4)

W
(2)
A =

(
Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + Π(1,0|0,1)[0]+ (B5)

Π(1,0|0,2)[0] + Π(1,0|1,1)[1] + Π(1,0|1,2)[1]+

Π(1,0|2,1)[2] + Π(1,0|2,2)[2]−
7

3
I
)
/3

W
(2)
A :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 144

rank
{
|J̃Ci
〉
}

= 62 (Not a Facet)
(B6)

W
(1)

AT =W
u=(0,0,0,0)

AT (B7)

W
(1)

AT =
(
Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + Π(0,1|1,0)[0]+ (B8)

Π(0,1|1,1)[0] + Π(0,1|1,2)[0] + Π(0,1|2,0)[0]+

Π(0,1|2,1)[0] + Π(0,1|2,2)[0]−
7

3
I
)
/3

W
(1)

AT :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 144

rank
{
|J̃Ci
〉
}

= 64 (True Facet)
(B9)

W
(2)

AT =W
u=(0,0,1,2)

AT (B10)

W
(2)

AT =
(
Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + Π(0,1|1,0)[0]+ (B11)

Π(0,1|1,1)[1] + Π(0,1|1,2)[2] + Π(0,1|2,0)[0]+

Π(0,1|2,1)[1] + Π(0,1|2,2)[2]−
7

3
I
)
/3

W
(2)

AT :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 144

rank
{
|J̃Ci
〉
}

= 62 (Not a Facet)
(B12)

W
(1)
B =W

u=(0,0,0,0)
B (B13)

W
(1)
B =

(
Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + Π(1,2|0,0)[0]+ (B14)

Π(1,2|0,1)[0] + Π(1,2|0,2)[0] + Π(1,2|1,0)[0]+

Π(1,2|1,1)[0] + Π(1,2|1,2)[0] + Π(1,2|2,0)[0]+

Π(1,2|2,1)[0] + Π(1,2|2,2)[0]−
10

3
I
)
/3

W
(1)
B :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 150

rank
{
|J̃Ci
〉
}

= 64 (True Facet)
(B15)
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W
(2)
B =W

u=(0,0,1,2)
B (B16)

W
(2)
B =

(
Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + Π(1,2|0,0)[0]+ (B17)

Π(1,2|0,1)[2] + Π(1,2|0,2)[1] + Π(1,2|1,0)[1]+

Π(1,2|1,1)[0] + Π(1,2|1,2)[2] + Π(1,2|2,0)[2]+

Π(1,2|2,1)[1] + Π(1,2|2,2)[0]−
10

3
I
)
/3

W
(2)
B :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 150

rank
{
|J̃Ci
〉
}

= 62 (Not a Facet)
(B18)

W
(3)
B =W

u=(0,2,2,0)
B (B19)

W
(3)
B =

(
Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + Π(1,2|0,0)[2]+ (B20)

Π(1,2|0,1)[0] + Π(1,2|0,2)[2] + Π(1,2|1,0)[2]+

Π(1,2|1,1)[2] + Π(1,2|1,2)[0] + Π(1,2|2,0)[0]+

Π(1,2|2,1)[2] + Π(1,2|2,2)[2]−
10

3
I
)
/3

W
(3)
B :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 150

rank
{
|J̃Ci
〉
}

= 64 (True Facet)
(B21)

The witnesses that contain only 62 linearly independent

|JCi
〉 are not facets, they are called peaks. The number of dis-

tinct facets (or peaks as the case may be) that can be created

by conjugating with local Clifford operations is listed below

where e.g. the setW(1)
A corresponds to all facets generated by

W
(1)
A .

|W(1)
A |= 864, |W(2)

A |= 108

|W(1)

AT |= 864, |W(2)

AT |= 108

|W(1)
B |= 1728, |W(2)

B |= 864, |W(3)
B |= 5184

This gives a total of 8640 distinct facets and 1080 distinct

peaks.

2. Qudit (d=5) Facet

The following list of 58 5-tuples defines the facet WB for

d = 5 qudit Clifford polytope via

WB = Π(0,0|1,1)[0] + Π(0,0|1,2)[0] + . . .

.i.e. WB = ∑list Π(x1,x2|z1,z2)[k]

list =




0 0 1 1 0
0 0 1 2 0
0 0 1 3 0
0 0 1 4 0
0 0 2 1 0
0 0 2 2 0
0 0 2 3 0
0 0 2 4 0
1 4 0 0 0
1 4 0 1 1
1 4 0 2 3
1 4 0 3 1
1 4 0 4 0
1 4 1 0 0
1 4 1 1 0
1 4 1 2 1
1 4 1 3 3
1 4 1 4 1
1 4 2 0 1
1 4 2 1 0







1 4 2 2 0
1 4 2 3 1
1 4 2 4 3
1 4 3 0 3
1 4 3 1 1
1 4 3 2 0
1 4 3 3 0
1 4 3 4 1
1 4 4 0 1
1 4 4 1 3
1 4 4 2 1
1 4 4 3 0
1 4 4 4 0
2 3 0 0 0
2 3 0 1 0
2 3 0 2 3
2 3 0 3 4
2 3 0 4 3
2 3 1 0 3
2 3 1 1 0







2 3 1 2 0
2 3 1 3 3
2 3 1 4 4
2 3 2 0 4
2 3 2 1 3
2 3 2 2 0
2 3 2 3 0
2 3 2 4 3
2 3 3 0 3
2 3 3 1 4
2 3 3 2 3
2 3 3 3 0
2 3 3 4 0
2 3 4 0 0
2 3 4 1 3
2 3 4 2 4
2 3 4 3 3
2 3 4 4 0




(B22)

Note that

WB :





∣∣∣
{
|J̃Ci
〉
}∣∣∣= 2420

rank
{
|J̃Ci
〉
}

= (d2−1)2 = 576 (True Facet)

(B23)
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