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Spin chains have been proposed as quantum wires in many quantum information processing
architectures. Coherent transmission of quantum information in spin chains over short distances is
enabled by their internal dynamics, which drives the transport of single-spin excitations in perfectly
polarized chains. Given the practical challenge of preparing the chain in a pure state, we propose to
use a chain that is initially in the maximally mixed state. We compare the transport properties of
pure and mixed-state chains and find similarities that enable the experimental study of pure-state
transfer via mixed-state chains. We also demonstrate protocols for the perfect transfer of quantum
information in these chains. Remarkably, mixed-state chains allow the use of Hamiltonians which do
not preserve the total number of single-spin excitations, and which are more readily obtainable from
the naturally occurring magnetic dipolar interaction. We discuss experimental implementations
using solid-state nuclear magnetic resonance and defect centers in diamond.

PACS numbers: 03.67.Hk, 03.67.Lx, 75.10.Pq, 76.90+d

I. INTRODUCTION

Many quantum information processing (QIP) propos-
als require the computational units to be spatially sep-
arated due to constraints in fabrication or control [1–3].
Coherent information transfer from one quantum register
to another must then be carried out either by photons or,
for more compact architectures, by quantum wires. Lin-
ear chains of spins have been proposed as quantum wires,
the desired transport being obtained via the free evolu-
tion of the spins under their mutual interaction [4–9]. In
general, only partial control over the spins in the chain
is assumed, as relevant to most experimental implemen-
tations, and perfect state transfer with no or reduced
control requirements has already been studied [10–12].

The reduced control may also naturally entail an im-
perfect initialization of the spin chain in a state other
than the intended one, possibly mixed. With some
notable exceptions (e.g., [12–15]) where protocols for
perfect state transfer without state initialization have
been investigated under the assumption of sufficient end-
chain control, existing analyses have primarily focused
on transport in the one-spin excitation manifold. How-
ever, imperfect chain initialization makes it imperative
to more systematically study the transport properties of
the higher excitation manifolds, in order to both obtain a
general characterization of the dynamics of mixed-state
spin chains under different physical Hamiltonians and
possibly further relax the required control resources.

In this paper we focus on the transport properties of
chains that are initially in the maximally mixed-state.
This state corresponds to the infinite temperature limit
and is easily reachable for many systems of relevance to
QIP [16–18]. Alternatively, it could be obtained by an
active randomization of the chain’s initial state. The
reduced requirements on the initialization of the wires,
when combined with low control requirements, would

make quantum information transport more accessible to
experimental implementations. We are thus interested
in comparing the transport properties of pure and mixed
state chains, with a twofold goal in mind: i) exploring
the extent to which the experimental study of pure-state
transport may be enabled by its simulation via highly
mixed chains; and ii) studying protocols for the trans-
port of quantum information via mixed-state chains.

The paper is organized as follows. We first review in
Sec. II some results about transport in the one-spin ex-
citation manifold and then generalize them to higher ex-
citation manifolds and mixed states. Furthermore, we
describe how transport may also be driven by Hamil-
tonians that do not conserve the number of single-spin
excitations. In Sec. III, we investigate transfer of quan-
tum information in a mixed-state chain based on a stan-
dard encoding protocol [14] and extend it to more general
Hamiltonians. In Sec. IV we then present applications
of these results, focusing on two experimental QIP plat-
forms. The first is based on solid-state nuclear magnetic
resonance (NMR) and enables the study of transport in
mixed state chains and its limitations due to imperfec-
tions in the system [7, 19, 20]. The second example is an
application of quantum information transfer via mixed-
state wires in a scalable architecture based on spin defects
in diamond [21–23].

II. STATE TRANSFER IN PURE- AND

MIXED-STATE SPIN CHAINS

A. Single-spin excitation manifold

In analogy with the phenomenon of spin waves,
the simplest mechanism for quantum state transfer
is the propagation of a single spin excitation |j〉 =
|00 . . .01j0 . . .〉 down a chain of n spins-1/2, coupled by
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the Heisenberg exchange Hamiltonian [4, 24]. In this con-
text, the most common model studied is the xx-model,
described by the Hamiltonian

Hxx =

n−1
∑

j=1

dj

2
(σj

xσ
j+1
x + σj

yσ
j+1
y ), (1)

where σα (α = {x, y, z}) are the Pauli matrices, dj the
couplings and we have set ~ = 1. A single spin excitation
is propagated through the chain via energy conserving
spin flip-flops, as shown by rewriting the xx-Hamiltonian
in terms of the operators σ± = (σx ± iσy)/2:

Hxx =

n−1
∑

j=1

dj(σ
j
+σ

j+1
− + σj

−σ
j+1
+ ). (2)

The transport properties of the xx-Hamiltonian are made
apparent by a mapping of the system to a local fermionic
Hamiltonian via the Jordan-Wigner transformation:

cj =

j−1
∏

k=1

(−σk
z ) σj

−, σj
− =

j−1
∏

k=1

(

1/2 − c†kck

)

cj , (3)

which also yields σj
z = 1 − 2c†jcj . Using these fermion

operators, the xx-Hamiltonian can be rewritten as:

Hxx =
n−1
∑

j=1

dj(c
†
jcj+1 + c†j+1cj). (4)

Since the total angular momentum along z, Z =
∑n

j=1 σ
j
z, is conserved, [Hxx, Z] = 0, it is possible to

block-diagonalize the Hamiltonian into subspaces cor-
responding to (typically degenerate) eigenvalues of Z.
These subspaces are more simply characterized by the
number of spins in the excited state |1〉, which is usually
called the (magnon) excitation number. In this descrip-
tion, the xx-Hamiltonian induces transport by creating
an excitation at site j + 1 while annihilating another at
site j. For a given evolution time t > 0, transport from
spin j to spin l is characterized by the transfer fidelity
of the state |j〉 to |l〉, defined as the overlap P xx

jl (t) =

|Ajl(t)|2 = |〈l|Uxx(t)|j〉|2, where Uxx(t) = e−iHxxt and
usually j = 1 and l = n in a open-ended chain.

A well studied case [5–7] is the homogenous limit, cor-
responding to equal couplings, dj = d for all j. The
corresponding Hamiltonian can be diagonalized by the
operators

ah
k =

1√
n+ 1

n
∑

j=1

sin (κj) cj , κ =
πk

n+ 1
, k = 1, . . . , n,

to reveal the eigenvalues ωh
k = 2 d cos (κ). It is then pos-

sible to calculate the probability of state transfer from

spin j to spin l, yielding P h,xx
jl (t) = |Ah

jl(t)|2, with [5]:

Ah
jl(t) =

2

n+ 1

∑

k

sin (κj) sin (κl)e−iωkt. (5)

In practice, it is often difficult to experimentally pre-
pare the spins in the maximally polarized, ground state.
Thus, in order to experimentally investigate quantum
transport it is highly desirable to relax the requirements
on the initial state of the spin chain. In [7], we found that
it was possible to simulate the spin excitation transport
by using a highly mixed spin chain. We generalized the
spin excitation transport to mixed states by looking at
the evolution of an initial state of the form

ρ =
1

2n
(11 + ǫ δρj

z), δρj
z = 11j−1 ⊗ σj

z ⊗ 11n−j .

This state represents a completely mixed-state chain with
a single spin partially polarized along the z axis. A metric
that quantifies the efficiency with which the initial state
is transferred from spin j to spin l is given by the correla-
tion between the resulting time-evolved state and the in-
tended final state, that is, Mjl(t) = Tr {ρj(t)ρl}. Notice,
however, that as long as the dynamics is unital, we only
need to follow the evolution of the traceless deviation δρ
from the identity, thus in what follows we will often use
a simplified metric defined as Cjl(t) = Tr

{

δρj
z(t)δρ

l
z

}

.
Using a fermionic mapping of the mixed states, we found
in Ref. [7] that for the homogenous xx-Hamiltonian such

a correlation is exactly given by P h,xx
jl (t), although the

states involved in the transport are quite different. In-
deed, states such as δρj

z do not reside in the lowest exci-
tation manifold, for which the state transfer equation (5)
was initially calculated, but they are a mixture spanning
all the possible excitation manifolds.

A similar mapping from mixed to pure states cannot
be carried further in such a simple way. For example, we
cannot use the state δρj

x = 11j−1 ⊗ σj
x ⊗ 11n−j to simulate

the transfer of a coherent pure state such as |+〉|00 . . .〉,
where |+〉 = (|0〉 + |1〉)/

√
2.

In the following, we will analyze the conditions allow-
ing state transfer in mixed-state spin chains in order to
lay the basis of a protocol for the transport of quantum
information.

B. Evolution in higher excitation manifolds

Since highly mixed states include states with sup-
port in all the spin excitation manifolds, we first an-
alyze the evolution of higher excitation energy eigen-
states. Thanks to the fact that it conserves the spin
excitation number, the xx-Hamiltonian [Eq. (1)] can
be diagonalized in each excitation subspace. Let the
eigenstates in the first excitation subspace be denoted

by |Ek〉 (e.g., |Ek〉 =
√

2
n+1

∑

j sin (κj)|j〉 in the homo-

geneous case). Since the xx-Hamiltonian describes non-
interacting fermions, eigenfunctions of the higher mani-
folds can be exactly expressed in terms of Slater deter-
minants of the one-excitation manifold. Consider for ex-
ample the case of the 2-excitation manifold, described by
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states |pq〉 = |0...1p..0..1q...0〉. The eigenstates |Ekh〉 are

|Ekh〉 =
1

2

∑

pq

(

〈Ek|p〉〈Eh|q〉 − 〈Ek|q〉〈Eh|p〉
)

|pq〉, (6)

with eigenvalues Ekh = Ek + Eh. We can then calculate
the time evolution as

Uxx(t)|pq〉 =
∑

k,h e
−i(ωk+ωh)t〈Ekh|pq〉〈rs|Ekh〉|rs〉
=

∑

r,sApq,rs(t)|rs〉,

where

Apq,rs(t) =

∣

∣

∣

∣

Apr(t) Aps(t)
Aqr(t) Aqs(t)

∣

∣

∣

∣

, (7)

and Apr(t) describes the amplitude of the transfer in the
one-excitation manifold, Apr(t) = 〈r|Uxx(t)|p〉.

More generally, for an arbitrary initial eigenstate of Z,
|~p〉 = |p1, p2, . . .〉, with pk ∈ {0, 1}, the transfer amplitude
to the eigenstate |~r〉 is given by

A~p ~r(t) =

∣

∣

∣

∣

∣

∣

Ap1r1
(t) Ap1r2

(t) . . .
Ap2r1

(t) Ap2r2
(t) . . .

. . . . . . . . .

∣

∣

∣

∣

∣

∣

. (8)

We can then evaluate the transfer of any initial mixed
state ρa =

∑

~p,~q a~p ~q|~p〉〈~q| to another mixed state ρb by
calculating the relevant correlation between the evolved
state and the final desired state,

Mab(t) =
∑

~r,~s,~p,~q

b~r~s a~p ~qA~p ~r(t)A
∗
~q ~s(t). (9)

It is important to stress that the above expressions al-
low us to calculate the evolution of an arbitrary mixed
state for any choice of couplings in the xx-Hamiltonian
of Eq. (1), as we only used the property that this Hamil-
tonian describes non-interacting fermions [83]. Thus, the
higher excitations are seen to propagate simultaneously
at the same group velocity. This result can be used to
search for coupling distributions that give better state
transfer properties than the equal-coupling case. In par-
ticular, because the transfer of the one-spin polarization
state δρj

z is found to have the same expression as the
spin-excitation state transfer, we can use known results
for the latter to find optimal coupling distributions.

C. Perfect state transfer for engineered

Hamiltonians

Although spin excitations propagate through the chain
for any xx-Hamiltonian, as seen in the homogeneous case
this does not always allow for perfect state transfer be-
cause of wave-packet dispersion [25, 26]. Good transport
properties have been found for a class of Hamiltonians
that have been suitably engineered, either by modifying
the coupling strengths among the spins or by introducing

an additional spatially varying magnetic field [6, 27]. In
particular, the Hamiltonian

Ho
xx =

n−1
∑

j=1

2d

√

j(n− j)

n2
(σj

+σ
j+1
− + σj

−σ
j+1
+ ) (10)

allows for optimal transport of the excitation from the
first to the last spin in the chain. Not only does this
choice of couplings allow for perfect transport [6, 28, 29]
but it does so in the shortest time [30, 31]. Notice that
in Eq. (10) we expressed the couplings in terms of the
maximum coupling constant d, since typically this will be
constrained in experimental implementations, as opposed
to the more common choice in the literature, whereby

dj = d′

2

√

j(n− j), with d′ = 4d/n.
The optimal coupling Hamiltonian Ho

xx can be diago-
nalized by the following fermion operators [32, 33]:

ao
k =

∑

j αj(k)cj ,

αj(k) = 2
n+1

2
−j

√

k
j

(

n
k

)

/
(

n
j

)

J
(j−k,j+k−n−1)
n−j ,

(11)

where J
(a,b)
n is the Jacobi polynomial evaluated at 0. The

eigenvalues read ωo
k = 2d

n [2k− (n+1)]. The transfer am-
plitude Ao,xx

jl (t) between spin j and spin l then becomes

Ao,xx
jl (t) =

∑

k αj(k)αl(k)e
−iωo

kt, which yields the trans-

fer function P o,xx
jl (t) = |Ao,xx

jl (t)|2. Using these results, we
can calculate the transfer probability from spin 1 to spin
n of the one-spin excitation in a pure-state chain,

P o,xx
1n = [sin(τ)]

2(n−1)
, τ =

4d t

n
. (12)

The same expression also describes the transport of the
spin-polarization (δρj

z) in a mixed-state chain. Notice
that at a time t⋆ = π

2
n
4d , perfect transfer is achieved.

This optimal time reflects the maximum speed of the
transport, which is given by the group velocity, vg = 4d 2

π ,
of the spin wave traveling through the chain [25, 26].

Perfect state transfer is achieved not only for the choice
of couplings in Eq. (10) but, more generally, for a class
of xx-Hamiltonians that support either a linear or a
quadratic spectrum [34–37]. It was observed in fact that
these Hamiltonians allow for perfect mirror inversion of
an arbitrary (pure) input state. A different approach to
perfect pure state transfer, with a generic Hamiltonian
spectrum, is to confine the dynamics of the system to
an effective two-qubit subspace [38–40] (which by con-
struction is always mirror-symmetric) or to restrict the
evolution between two or three quasi-resonant eigenvec-
tors [15, 41, 42]. The confinement is obtained by weaken-
ing the couplings of the first and last qubit in the chain.
This approach has been shown to achieve perfect trans-
fer with the Hamiltonian in Eq. (1) even for mixed-state
chains [15] and in the presence of disorder in the cou-
plings [15, 38], provided that d1, dn−1 ≪ di. The scheme
could be applied as well to the Hamiltonian that will be
discussed in the next section, Eq. (13). For more gen-
eral long-range Hamiltonians, such as the XXZ dipolar



4

0

2

4

6

8

5

10

15

20

τ

A

0

2

4

6

8

5

10

15

20

τ

B

FIG. 1: (Color online) (A) Transport of polarization under the xx-Hamiltonian with optimal couplings, Eq. (10). Shown is the
intensity of the polarization at each spin site Co,xx

1,ℓ (t) = P o,xx

1,ℓ (t) as a function of normalized time τ = 4dt/n for a propagation

starting from spin 1. The chain length n = 21 spins. (B) Transport of polarization under the dq-Hamiltonian Co,dq

1,ℓ (t), Eq.

(14), with the same parameters as in (A).

Hamiltonian considered in [38, 39], the equivalence of the
evolution between pure and mixed state is lost and it is
thus not possible to directly apply this strategy.

D. Transport via double-quantum Hamiltonian

In the previous sections we showed that the transport
features of xx-Hamiltonians relied on the mapping to free
fermions and the conservation of spin (or magnon) exci-
tation number. It is therefore surprising to find other
classes of Hamiltonians that show very similar transport
properties even if they do not conserve the number of
single-spin excitations. Consider the so-called double-
quantum (dq) Hamiltonian

Hdq =
∑

j
dj

2 (σj
xσ

j+1
x − σj

yσ
j+1
y )

=
∑

j dj(σ
j
+σ

j+1
+ + σj

−σ
j+1
− ).

(13)

As this Hamiltonian does not conserve the spin excitation
number, [Hdq, Z] 6= 0, we would not expect it to support
the transport of single-spin excitations. However, as ob-
served in [7, 43], the dq-Hamiltonian is related to the
xx-Hamiltonian by a simple similarity transformation,
U xx

dq =
∏

j σ
2j+1
x . Therefore, the dq-Hamiltonian com-

mutes with the operator Z̃ =
∑

j(−1)j+1σj
z and it can

be block-diagonalized following the subspace structure
defined by the (degenerate) eigenvalues of Z̃ [84]. The
dq-Hamiltonian allows for the mirror inversion of states
contained in each of the subspaces defined by the eigen-
values of Z̃ (the equivalent of single-spin excitation and
higher excitation manifolds for Z). For pure states, these
states do not have a simple interpretation as local spin
excitation states, and the dq-Hamiltonian is thus of lim-
ited practical usefulness for state transfer. Interestingly,
however, the situation is more favorable for the transport
of spin polarization in mixed-state chains. Indeed, states
such as δρj

z are invariant, up to a sign change, under the
similarity transformation U xx

dq. Thus we can recover the
results obtained for the polarization transport under the

xx-Hamiltonian for any coupling distribution:

Cdq

jl (t) = (−1)j−l|Axx
jl (t)|2. (14)

In figure 1 we illustrate the transport of polarization
from spin j = 1 as a function of the spin number ℓ and
time. Comparing figure 1(A) with figure 1(B), that show
the transport under the optimal coupling xx- and dq-
Hamiltonian respectively, we see enhanced modulations
due to the positive-negative alternation of the transport
on the even-odd spin sites. Despite this feature, per-
fect transport is possible even with the dq-Hamiltonian,
which, unlike the xx-Hamiltonian, can be easily obtained
from the natural dipolar Hamiltonian with only collective
control [44, 45].

III. PROTOCOL FOR MIXED STATE

QUANTUM INFORMATION TRANSPORT

In the previous section we showed that mixed-state
chains have transport properties similar to pure-state
chains, as in both cases transport relies on the charac-
teristics of the Hamiltonian (e.g., conservation of exci-
tation number, mirror symmetry,...). However, while a
pure eigenstate of the Z operator is transported using a
mixed-state chain, coherences are not. This means that
it is possible to transfer a bit of classical information by
encoding it in the |0〉 and |1〉 states of the first spin in the
chain, and that the same result can be obtained by en-
coding the information in the sign of the polarization us-
ing the states δρ± = ±σ1

z . This encoding is not enough,
however, to transfer quantum information: this would
require the additional transfer of information about the
phase coherence of a state, for example by transporting
a state δρ± = ±σ1

x. The problem is that evolution of this
state creates a highly correlated state, as σ1

x evolves to
∏n−1

i=1 σ
i
zσα, where α = x(y) for n odd (even). Although

particle-conserving Hamiltonians (such as the ones con-
sidered) allow for state transfer in any excitation mani-
fold (and mirror-symmetric Hamiltonians achieve perfect
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FIG. 2: (Color online) Transport of the four logical states as a function of time (normalized by the coupling strength). (A)
Entanglement fidelity, F = 1

4

P

α Ch
αL, for the transport under the homogeneous xx-Hamiltonian, for chains of n = 10 (blue,

solid line), 15 (red, dotted line), and 20 (black, dashed line) spins. (B) Transport of the four logical basis states under the
engineered optimal-coupling xx-Hamiltonian in a 20-spin chain. σxL: Blue, dash-dotted line. σyL: Black, dashed line. σzL:
Red, solid line. σ11L: Green, dotted line.

state transfer), a manifold-dependent phase is associated
with the evolution [46–49], thus only states residing en-
tirely in one of these manifolds can be transferred.

Information can be extracted from the resulting highly
correlated state only with a measurement [13], at the cost
of destroying the initial state and of introducing classi-
cal communication and conditional operations. Alterna-
tively, a simple two-qubit encoding allows for the trans-
port of a bit of quantum information [14]. For evolution
under the xx-Hamiltonian, such encoding corresponds to
the zero-eigenvalue subspace of the operator σ1

z + σ2
z . A

possible choice of logical qubit observables is given by

σxx
xL =

σ1
xσ2

x+σ1
yσ2

y

2 σxx
yL =

σ1
yσ2

x−σ1
xσ2

y

2

σxx
zL =

σ1
z−σ2

z

2 11xx
L =

11−σ1
zσ2

z

2 ,
(15)

which corresponds to an encoded pure-state basis |0〉xxL =
|01〉 and |1〉xxL = |10〉. If we perform the transport via the
dq-Hamiltonian, the required encoding is instead given

by the basis |0〉dq
L = |00〉 and |1〉dq

L = |11〉, as follows
from the similarity transformation between xx- and dq-
Hamiltonians. Accordingly, the operator basis for the
transport via mixed states under the dq-Hamiltonian is

σdq

L =
σ1

xσ2
x−σ1

yσ2
y

2 σdq

yL =
σ1

yσ2
x+σ1

xσ2
y

2

σdq
zL =

σ1
z+σ2

z

2 11dq
L =

11+σ1
zσ2

z

2 .
(16)

We can calculate the transport functions CαL(t), α =
{x, y, z, 11}, from the overlap of the evolved state with
the desired final state. For example for xx transport this
yields expressions of the form

CyL(t) =
1

2
Tr

{

Uxx(t)σ
xx
yLU

†
xx(t)(σ

n
y σ

n−1
x − σn

xσ
n−1
y )

}

.

For the homogenous xx-Hamiltonian we find

Ch
11L(t) =

1

2
{1 +

[

Ah
1,n−1(t)A

h
2,n−1(t) −Ah

1,n(t)Ah
2,n(t)

]2},

Ch
(x,y)L(t) =

2(±1)n+1

(n+ 1)2

∑

k,h

(−1)h+keit(ωh∓ωk)

× [sin(2η) sin(κ) + sin(η) sin(2κ)]
2
, (17)

Ch
zL(t) =

1

2

[

P h,xx
1,n (t) − 2P h,xx

1,n−1(t) + P h,xx
2,n−1(t)

]

,

where we have defined η = πh/(n+ 1). Note that the
same expressions hold for the evolution of the states in
Eq. (16) under the dq-Hamiltonian.

The transport under the homogenous Hamiltonians
is, however, imperfect, not only because the transfer fi-
delity of each basis state is less than 1, but also be-
cause the maximum values occur at slightly different
times. In Fig. 2 we plot the reduced entanglement fi-
delity [50, 51] of such a transport process, computed as
F (t) = 1

4

∑

α C
h
αL(t), for chains of different lengths.

The transport of the logical states under the engineered
Hamiltonian Ho

xx with optimal couplings is given by:

Co
11L(t) =

1

2

[

1 + sin(τ)4(n−2)
]

,

Co
xL(t) = sin(τ)2(n−2),

Co
yL(t) = sin(τ)2(n−2)

[

1 − 2(n− 1) cos2(τ)
]

, (18)

Co
z =

1

2

{

sin(τ)2(n−3)
[

(n− 1) cos2(τ) − 1
]2

+ sin(τ)2(n−1) − 2(n− 1) cos2(τ) sin(τ)2(n−2)
}

.

At the time t⋆ defined in Section II C the basis states
are transported with fidelity one. It is then possible to
transfer an arbitrary state with unit fidelity (Fig. 2).
Note that because of the interplay of the mirror inver-
sion operated by the xx-Hamiltonian and the similarity
transformation between the xx- and dq-Hamiltonians, an
additional operation is needed to obtain perfect trans-
port with the latter Hamiltonian. Specifically, for chains
with an even number of spins, a π rotation around the x-
axis is required, which can be implemented on the whole
chain or on the last two spins encoding the information.
As this is a collective rotation, independent of the state
transported, arbitrary state transfer is still possible.

It is also worth noting that the above encoding protocol
can be extended to more than a single logical qubit, for
example by encoding an entangled state of two logical
qubits into four spins [52, 53], such as an encoded Bell

state |ψ〉 = (|01〉L + |10〉L)/
√

2. Provided that the extra
encoding overhead can be accommodated, this will in
principle allow perfect transport of entanglement through
a completely mixed chain.
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Altogether, these results point to a strategy for per-
fect transport in spin wires, without the need of initial-
ization or control, but only exploiting control in a two-
qubit (possibly four-qubit) register at each end of the
wire. The simplicity of such a protocol opens the pos-
sibility for experimental implementations, as we proceed
to discuss next.

IV. EXPERIMENTAL PLATFORMS

While many theoretical advances have been made in
the study of information transfer in spin chains, exper-
imental implementations are still limited. Since depar-
tures from the idealized theoretical models, due for in-
stance to long-range couplings, the presence of a bath, or
variations in the coupling strengths, make real systems
much more complex to analyze analytically, experimen-
tal investigations able to study these issues are needed.
Studying quantum transport properties in highly mixed
spin chains thus serves a dual purpose. First, the simi-
larities of transport properties of pure and mixed states
makes the latter a good test-bed for experiment. Second,
protocols for perfect state transfer via mixed-state quan-
tum wires allow us to relax some of the requirements for
QIP architectures.

Mixed-state spin chains are encountered in a number
of physical applications. Examples range from phos-
phorus defects in silicon nanowires [18], to quantum
dots [16, 28], from polymers such as polyacetylene [54]
and other molecular semiconductors [55], to solid state
defects in diamond or silicon carbide [56, 57]. In par-
ticular, the completely mixed-state chain studied here,
corresponding to the infinite temperature limit, may of-
ten be a better approximation to the thermal states of
these systems than low-temperature thermal states that
may be viewed as perturbations to the ground state [85].

In what follows, we describe two experimental plat-
forms that best exemplify the advantages of transport
via mixed-state chains.

A. Simulations in solid-state NMR systems

Recently, nuclear spin systems in apatite crystals have
emerged as a test-bed to probe quasi-one-dimensional
(1D) dynamics, including transport and decoherence [19,
20, 26, 58, 59]. Because the nuclear spins in apatites are
found in a highly mixed state at room temperature, they
are particularly well-suited to the protocol for quantum
information transport outlined in the previous section.
NMR techniques enable this exploration even in the ab-
sence of single-spin addressing and readout.

The crystal structure of fluorapatite [Ca5(PO4)3F] and
hydroxapatite [Ca5(PO4)3(OH)] presents a favorable ge-
ometry where 19F or 1H nuclear spins are aligned in linear
chains along the crystal c-axis with inter-spin spacings
much shorter than the distance to other parallel chains.

In a sufficiently strong magnetic field, the nuclear spins
interact via the secular dipolar Hamiltonian [44],

Hdip =
n

∑

j<l

djl

[

σj
zσ

l
z − 1

2
(σj

xσ
l
x + σj

yσ
l
y)

]

, (19)

where the couplings depend on the relative positions as
djl = (µ0/16π)(γ2

~/r3jl)(1 − 3 cos2 θjl), with µ0 being
the standard magnetic constant, γ the gyromagnetic ra-
tio, rjl the distance between nucleus j and l, and θjl the
angle between ~rjl and the z-axis, respectively. The ap-
atite geometry gives a ratio of intra-chain to inter-chain
couplings of about 40, allowing the evolution to approx-
imate well the expected 1D dynamics over sufficiently
short time scales [20].

Known pulse sequences [45, 60, 61] are able to synthe-
size the dq-Hamiltonian from the secular dipolar Hamil-
tonian. Furthermore, by relying on the symmetry break-
ing due to defects and on incoherent control, we showed
in Ref. [19, 20] how to prepare the initial state of rele-
vance for polarization transport, δρ1,n

z ∝ σ1
z + σn

z (notice
that because of the symmetries in the chain and con-
trol Hamiltonians, it is not possible to prepare the state
δρ1

z ∝ σ1
z).

Similar control protocols can be used to prepare other
states for the transport of quantum information. Specif-

ically, we want to prepare states such as σdq
xL and σdq,L

yL .

To do so, one can first prepare the state δρ1,n
z and then let

the system evolve under the dq-Hamiltonian for a short
time [86]. A so-called double-quantum filter then selects

the desired state δρL
y ∝ σdq,L

yL

∣

∣

∣

1,2
+ σdq,L

yL

∣

∣

∣

n−1,n
, that is,

δρL
y ∝ (σ1

yσ
2
x + σ1

xσ
2
y)/2 + (σn−1

y σn
x − σn−1

x σn
y )/2. (20)

Similarly, a π/4 collective rotation around z, prior to the
double-quantum filter, is needed to select the δρL

x oper-
ator. The double-quantum filter is a form of temporal
averaging [62], consisting in phase shifts of the pulse se-
quences in successive experiments. When averaging the
experimental results, such phase shifts cancel out con-
tributions to the signal arising from states outside the
double-quantum coherence manifold. Similar techniques
are well established in NMR [63], and have been used to
study transport in fluorapatite [19].

A suitable metric of transport would then be given
by the correlation of the evolved state with the ini-
tial state, C(t) = Tr {δρ(t)δρ(0)}, since this contains
the usual transfer terms (correlation of the evolved
state with the desired final state at the chain end,

Tr

{

σdq,L
yL (t)

∣

∣

∣

1,2
σdq,L

yL

∣

∣

∣

n−1,n

}

). Even if the techniques

just outlined are able to prepare the desired initial
state, single-spin detection is not possible in conventional
NMR, preventing quantum information transport to be
directly measurable. Still, there exist other signatures
that reliably indicate when the transport from one end
of the chain to the other has occurred. These signa-



7

2 4 6 8 10 12 14

-0.5

0.5

1.0

dt

C(t)
A

2 4 6 8 10 12 14

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

dt

J0(t)B

FIG. 3: (Color online) Transport of single-spin polarization δρ1,n
z (blue, dashed) and logical-y state δρL

y (red), Eq. 20, in a
n = 21-spin chain. (A) correlation of the evolved state with the initial state, C(t) = Tr {ρ(t)ρ(0)}, which also indicates transport
from one end of the chain to the other. (B) Zero quantum coherence intensities for the two initial states.

tures can be extracted experimentally from the measure-
ment of collective magnetization, via so-called multiple
quantum NMR techniques [44, 61]. These techniques are
extremely useful to probe multi-spin processes and gain
insight into many-body spin dynamics [45, 58, 61, 64], as
they reveal the multiple quantum coherence (MQC) in-
tensities of a spin state, thus effectively allowing a partial
state tomography.

The nth order MQC signal (when the observable is the
total magnetization Z) is given by

J n
ρ (t) = Fϕ{Tr [ e−iϕnZU(t)ρ(0)U(t)†eiϕnZ

×U(t)ZU(t)†
]

}, (21)

where Fϕ{·} is the Fourier transform with respect
to the phase ϕ and U(t) is evolution under the dq-
Hamiltonian [45]. For an arbitrary initial state ρ(0), this
corresponds to

J n
ρ (t) = Tr

{

Pn[ρj(t)] P−n[U(t)ZU(t)†]
}

, (22)

where Pn[·] denotes the projector onto the +n coherence
manifold.

Although in 3D systems high coherence orders can be
created, the 1D, nearest neighbor dq-Hamiltonian creates
only two-spin excited states (zero and double quantum
coherences), and thus it does not populate higher coher-
ence order manifolds [65]. Furthermore, it was observed
in Ref. [7] that upon preparation of the state relevant for
transport, δρ1,n

z , the zero- and double quantum intensi-
ties J 0,2

z (t) produced a clear signature of the transport.
In the nearest-neighbor approximation, with d =

−µ0γ
2
~/(8πr3nn) and rnn being the nearest-neighbor dis-

tance, the MQC intensities can be calculated analytically,
in the form

J 0,2
z (t) =

α0,2

n+ 1

n
∑

k=1

sin2(κ) cos2(2ωkt+ φ0,2), (23)

where (φ0=0, α0=2) for the zero quantum and
(φ2=

π
2 , α2=1) for the double quantum intensities, respec-

tively. Similarly, we can calculate the MQC intensities
for the initial states corresponding to δρL

x,y and evolving
under the dq-Hamiltonian. Using the transformation to

Bogoliubov operators [19], we obtain:

J 0,2
yL (t) =

α0,2

n+ 1

n
∑

k=1

sin(κ) sin(2κ) sin (4ωkt+ 2φ0,2)

(24)
whereas the state δρL

x gives a zero signal.

In figure 3, we compare the transport metric C(t) with
the MQC intensities J 0(t). A signature of transport from
one end to the other of the chain is apparent in the coher-
ence intensities. The observed local maxima in the MQC
intensities at the mirror time t∗ ∼ n/(2d) [20] is due to
constructive interferences when the propagation has trav-
eled the length of the chain and is reflected back [26].
The MQC signature would be amenable to experimen-
tal tests in solid-state NMR systems, by following the
distinctive features of the MQC evolution. Other, more
comprehensive forms of state tomography [66] inspired
by MQC techniques, could eventually be used to gather
more information about the evolved state.

B. A quantum computing architecture in diamond

We now turn to a promising implementation [15, 23]
of the protocol for perfect quantum information trans-
fer described in Sec. III. Distributed quantum comput-
ing schemes [1–3] could play an important role in re-
cently proposed solid-state quantum computing architec-
tures based on defects in diamond. The nitrogen-vacancy
(NV) center in diamond has emerged as an ideal qubit
candidate [22, 67, 68], thanks to its long coherence times
and the possibility of optical initialization and readout
even at room temperature. This defect can be created
by implanting Nitrogen defects in diamond and allow-
ing vacancies to recombine with them at high temper-
ature. While Nitrogen implantation can be done with
high precision [69–72], the Nitrogen to NV conversion is
limited. The remaining Nitrogen defects (P1 centers [73])
are electronic spin 1/2 that can be used as quantum wires
to connect the NV-center qubits, as suggested in Refs.
[15, 23, 74]. While NV centers can be initialized to their
ground state and controlled individually by a combina-
tion of microwave and optical control [75], the P1 centers
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will be found in a highly mixed state and will only be
able to be controlled collectively.

The ideas developed in the previous sections find an
ideal implementation in this engineered QIP system at
room temperature. Control on the NV centers at each
end of the chain allows to create the logical states [Eq.
(16)] comprising the first neighboring P1 center (notice
that control on just the end chain spin could allow full
controllability of the chain [11, 12], although this might
not be efficient [10, 76]).

The Nitrogens could be implanted at separations

ri,i+1 = rmin

3
√

n/2

6
√

j(n−j)
, with rmin being the minimum sep-

aration, in such a way that the couplings follow the ideal
distribution that yields optimal transport. Although the
implantation precision is low at present, technological
advances should be able to reach the regime where the
transfer protocol becomes robust against errors in the
coupling strength [77]. The P1 centers will then interact
via the dipolar interaction, which can be truncated to its
secular part, Eq. (19), at high enough magnetic fields
(in practice less than ≈ 100 Gauss for a minimum dis-
tance between Nitrogens rmin ∼ 15 nm, corresponding to
a coupling strength of ≈ 15kHz).

Using multiple pulse sequences [45], the dipolar Hamil-
tonian is modulated into the dq-Hamiltonian that we
have shown allows for perfect state transfer. At the same
time, the pulse sequence refocuses the hyperfine interac-
tion with the Nitrogen nuclear spin [87] as well as the
coupling to the quasi-static 13C nuclear spin-bath. As-
suming a 5% error in the Nitrogen positioning, chains of
n ∼ 15 spins with minimum separation of 15nm would
allow for information transport in about t⋆ = 200µs, with
high fidelity [30, 77]. Local operations at the NV center,
enhanced by a register of nuclear spins [22], would allow
for quantum error correction, while the separation be-
tween NV centers achieved thanks to the P1 wires would
enable individual addressing of the NV qubits by sub-
diffraction-limit optical techniques [75, 78]. Ultimately,
this scheme could then serve as the basis for a scalable,
room temperature quantum computer [15, 23].

V. CONCLUSIONS

We have investigated the properties of quantum infor-
mation transport in mixed-state spin chains. Focusing,
in particular, on the infinite temperature limit, we have
identified strong similarities between pure- and mixed-
state transport. These similarities enable the simula-
tion of pure-state transport properties using more readily

accessible high-temperature mixed states. Specifically,
we could apply results derived for pure-state transport
to achieve perfect state transfer with an engineered xx-
Hamiltonian. Other recently proposed schemes, involv-
ing for instance weaker couplings of the chain ends [39,
40] or modulation of an external bias magnetic field [79],
should be further explored to determine under which con-
ditions they could be extended to mixed-state chains with
different coupling topologies. More generally, it would
be interesting to investigate the wave-dispersion proper-
ties [25] of mixed-state chains versus pure-state chains,
as mixed-state systems are ubiquitous in experimental
implementations.

In this paper, we have discussed in particular a poten-
tial experimental platform provided by apatite crystals
controlled by NMR techniques. Experimental simula-
tions of pure-state transport would allow exploring the
effects of disordered and long-range couplings, interac-
tion with an environment, and other non-idealities that
are bound to appear in practical implementations and
that are not amenable to direct analytical and/or nu-
merical studies.

Furthermore, it becomes possible to use known results
of pure-state transport to devise protocols for perfect
spin transfer even using highly mixed states. Specif-
ically, we have shown that combining a simple encod-
ing of the transmitted state into one or more spin pairs
with engineered couplings in the chain allows for the per-
fect transfer of quantum information and potentially of
entanglement. An additional advantage of mixed-state
chains is that they enable transport of relevant states via
a non-spin-excitation conserving Hamiltonian, the dq-
Hamiltonian, which can be obtained by coherent aver-
aging from the naturally occurring magnetic dipolar in-
teraction. These results have been combined to obtain
a proposal for scalable quantum computation architec-
ture using electronic spin defects in diamond [15, 21, 23],
which may be experimentally viable with existing or
near-term capabilities.
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