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We propose a high efficiency scheme to tomographically reconstruct an unknown quantum state of the qubits,

by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the

qubits are implemented by probing the stationary transmissions through a driven dispersively-coupled resonator.

It is shown that only one kind of QND measurements is sufficient to determine all the diagonal elements of

the density matrix of the detected quantum state. The remaining non-diagonal elements can be similarly de-

termined by transferring them to the diagonal locations after a series of unitary operations. Compared with

the tomographic reconstructions based on the usual destructive projective measurements (wherein one kind of

such measurements can determine only one diagonal element of the density matrix), the present reconstruc-

tive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the

experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.

PACS number(s): 03.65.Wj, 42.50.Pq, 03.67.Lx, 85.25.Cp

I. INTRODUCTION

Reconstruction of an unknown quantum state by a series of quantum measurements is called quantum-state tomography [1],

which is particularly important in the study of quantum mechanics and quantum information processing. Recently, many the-

oretical analysis and experimental demonstrations have been devoted to the implementations of the desirable quantum-state

tomographies with, e.g., the polarized photons [2, 3], trapped ions [4], and the solid-state qubits [5], etc. Generally, to tomo-

graphically reconstruct a d-dimensional quantum state (corresponding to a d× d density matrix), one needs to determine d2 − 1
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real parameters by quantum measurements.

Usually, one kind of projective measurements (PMs), i.e., projecting the detected quantum system to one of the basis states,

can be directly utilized to determine one of the diagonal elements of the density matrix. For instance, the current flowing

through the SET is detected [6, 7] to read out the charge state |1〉 for directly determining the diagonal element |1〉〈1| in the

density matrix of the single charge qubit. Similarly, the diagonal element |1 · · · 1〉〈1 · · · 1| of the N -qubit density matrix can

be directly determined by the direct projection
⊗N−1

l=0 (|1l〉〈1l|) (to the basis |1 · · · 1〉). Note that the directly projective setups

in most experiments are fixed, additional quantum operations are thus required to beforehand transfer the other elements to the

diagonal location for detections. Therefore, a series of quantum operations plus the direct projection (called as a series of PMs)

are required to reconstruct the density matrix. Generally, d2 − 1 kinds of PMs are required to determine d2 − 1 independent

parameters in the d × d density matrix. A typical example is that 15 kinds PMs are required to tomographically reconstruct

an unknown two-qubit quantum state [5]. Here and thereinafter, one kind of PMs refers to the measurements either by the

projective measurements to directly determine one diagonal element in the density matrix or by the measurements after the

unitary operations used for transferring a non-diagonal element to that diagonal location.

The PMs utilized above must destroy the detected quantum state [7, 8]. Consequently, the fidelities of these measurements are

usually limited by the inevitable back-action noises. Fortunately, besides the usual PMs, quantum state can also be detected by

other strategies, typically such as the quantum nondemolition (QND) measurements. In these approaches other objects, rather

than the dispersively-coupled qubits, are destructively measured. As a consequence the measurement-induced noises acting on

the qubits could be effectively suppressed [9]. Therefore, QND measurements are practically regarded as the indirect but ideal

PMs of the qubits.

Historically, QND measurements were proposed to explore the fundamental limitations of quantum measurements, and have

been demonstrated in various fields of physics, such as the gravitational-wave detections [9], quantum optics [10–12], quantum

controls [13], and the telecommunications [14], etc. In particular, the QND measurements have also been successfully applied

to probe the atomic qubits in cavity quantum electrodynamics (QED) [15, 16], and the superconducting qubits in the circuit

QEDs [17–23]. Specifically, the QND measurements demonstrated in circuit QEDs were implemented by measuring the trans-

missions of the microwave signals through the transmission line resonators. With such a strategy the qubit states can be read

out by detecting the shifted frequencies of the resonator. This is because that different basis states of the qubit(s) cause different

frequency-shifts of the resonator, and thus can be effectively distinguished.

Motivated by the above circuit-QED experiments, in a recent work we proposed a scheme to nondestructively detect the

superposition of the basis states by the QND measurements [24]. Taking account of the full quantum correlations between
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the cavity and dispersively-coupled qubit(s), we find that each of the basis states can be projected with a relevant probability.

Therefore, the detected transmission spectra should reveal multiple peaks: each of them marks one of the basis states, and the

relative height of such a peak is related to the probability of the corresponding basis state superposed in the detected state.

Consequently, just one kind of the QND measurements can determine all the diagonal elements of the relevant density matrix.

This is a manifest advantage over the usual PMs, wherein only one fixed basis was projected. Furthermore, by other kinds

of QND measurements all the non-diagonal elements of the density matrix can then be determined, via performing certain

suitable unitary operations to transfer them to the measurable diagonal locations. Since one kind of QND measurements can

determine all the diagonal elements of the density matrix, the tomographic reconstruction based on such measurements should

have significantly high efficiency, compared with the previous reconstructive approach based on the usual PMs.

The paper is organized as follows. Sec. II gives our generic model to describe the transmission of a driven resonator, and shows

how to implement the tomographic reconstruction of a single-qubit state by the proposed QND measurements. The extension to

the two-qubit case is given in Sec. III, where the advantage of our proposal over the previous tomographic reconstruction based

on the usual PMs is apparent. Indeed, 6 kinds of QND measurements are sufficient to tomographically reconstruct a two-qubit

state, while 15 kinds of PMs are required by the previous approach. The possible generalization to the N -qubit (with N > 2)

case and summarization of our main results are finally given in Sec. IV.

II. TOMOGRAPHIC RECONSTRUCTION OF A SINGLE-QUBIT STATE BY QND MEASUREMENTS

For generality, we consider a cavity QED system consisting of N qubits. The Hamiltonian of the system reads

H = ~ωrâ
†â+

N
∑

j=1

[
~ωj

2
σzj

+ ~gj(σ+j
â+ σ−j

â†)], (1)

where a(†) and σ±j
are ladder operators for the photon field and the jth qubit, respectively. Also, ωr is the cavity frequency, ωj

the jth qubit transition frequency and gj the coupling strength between the jth qubit and the resonator. The coherent drivings of

the cavity can be described by

Hd = ~ǫ(â†e−iωdt + âeiωdt), (2)

with ǫ being the real amplitude and ωd the frequency of the applied drivings.

Under the usual Born-Markov approximation, the dynamics of the whole system with dissipations and dephasings is described

by the following master equation [25]

˙̺N = − i

~
[HN , ̺N ] + κD[â]̺N +

N
∑

j=1

γ1,jD[σ−j
]̺N +

N
∑

j=1

γφ,j

2
D[σzj

]̺N , (3)

HN = H +Hd.
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Here, ̺N is the reduced density operator and the dissipation superoperator is defined by D[A]̺N = A̺NA
† − A†A̺N/2 −

̺NA
†A/2. The parameters in the last three terms in Eq. (3), i.e., κ, γ1,j , and γφ,j , are the decay and dephasing rates of the

cavity photons and the jth qubit, respectively.

In what follows, we begin with the master equation (3) to calculate the frequency-dependent transmission of the cavity, which

is proportional to the steady-state mean photon number 〈â†â〉 in the cavity. Technically, to satisfy the basic criteria for the

desirable QND measurements of the N -qubit system, the dispersive conditions

0 <
gj

∆j

,
gjgj′

∆j∆jj′
,

gjgj′

∆j′∆jj′
≪ 1, j 6= j′ = 1, 2, ..., N (4)

should be satisfied. These conditions assure also that the interbit interactions are negligible. In the above, ∆j = ωj −ωr denotes

the detuning between the jth qubit and the cavity, and ∆jj′ = ωj − ω′
j the detuning between the jth and j′th qubits.

Below, we investigate the simplest case, wherein a single qubit with transition frequency ω1 is dispersively coupled to the

cavity mode, to explain the basic idea of our generic proposal.

A. Nondestructive detection of a single qubit by cavity transmissions

The Hamiltonian for the present simpler system reads (~ = 1 throughout the paper)

H̃1 =
ω̃1

2
σz1

+ (−∆dr + Γ1σz1
)â†â+ ǫ(â† + â), (5)

with the cavity-driving detuning ∆dr = ωd − ωr, ω̃1 = ω1 + Γ1 and Γ1 = g2
1/∆1. The corresponding master equation for the

single-qubit plus the driven resonator takes the form

˙̺1 = −i[H̃1, ̺1] + κD[â]̺1 + γ1,1D[σ−1
]̺1 +

γφ,1

2
D[σz1

]̺1. (6)

Obviously, the desirable quantity 〈â†â〉 can be determined by solving the following coupled equations of motion:

d〈â†â〉
dt

= −κ〈â†â〉 − 2ǫIm〈â〉, (7a)

d〈â〉
dt

= (i∆dr −
κ

2
)〈â〉 − iΓ1〈âσz1

〉 − iǫ, (7b)

d〈âσz1
〉

dt
= (i∆dr −

κ

2
− γ1,1)〈âσz1

〉 − (iΓ1 + γ1,1)〈â〉 − iǫ〈σz1
〉, (7c)

and

d〈σz1
〉

dt
= −γ1,1(〈σz1

〉 + 1). (7d)
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One can see that the additional measurement-induced dephasing rate γφ,1 does not influence the solutions of the equations. As

the decay γ1,1 of the qubit is significantly less than the decay rate κ of the driven cavity, the average of σz1
could be safely

assumed to be unchanged during the detections. In fact, the characterized time of the detection is determined mainly by the

decay of the cavity κ. Such a quantity is about 2π×1.69 MHZ [22], which is obviously larger than γ1,1 = 2π×0.02 MHZ [19].

Experimentally, the time interval of completing a single QND detection is about Te = 40ns [22], this is significantly shorter

than the decoherence time T1 ∼ 7.3µs [19]. Therefore, during such a readout the decay of the qubit is really negligible, i.e.,

〈σz1
(Te)〉 = exp(−γ1,1Te)(〈σz1

(0)〉 + 1) − 1 ≈ 〈σz1
(0)〉.

Under the steady-state conditions, we obtain

〈â†â〉ss

ǫ2
=

2

κ
[(
κ

2
+ γ1,1)(

κ2

4
+
γ1,1κ

2
+ Γ2

1 − ∆2
dr) + (∆dr + Γ1〈σz1

(0)〉)(κ∆dr + γ1,1∆dr + γ1,1Γ1)]

[(
κ2

4
+
γ1,1κ

2
+ Γ2

1 − ∆2
dr)

2 + (κ∆dr + γ1,1∆dr + γ1,1Γ1)
2]−1, (8)

which is strongly related to the the initial state of the qubit.

The measured cavity transmissions (normalized to the peak height of the empty cavity (EMC) transmission) versus the probe

frequency detunings are plotted in Fig. 1. Generally, the qubit is assumed to be prepared initially in the state |ψ〉1 = β0|0〉+β1|1〉.

Obviously, when β0 = 0 (or 1), it reduces to the single basis state |1〉 (or |0〉). Compared with the empty cavity transmission (see

Appendix), which is also plotted as the dark line in Fig. 1, one observes that the existence of the qubit leads to a right (left) shift

of the single peak by a quantity −Γ1 (Γ1). This result is well agreement with the experimental observations in Refs. [17, 18].

This indicates that, the shifts of the peaks can be used to mark the basis states of the qubit. If the qubit is prepared at the

superposition of the two basis states, e.g., |β1|2 = 0.2, 0.4, and 0.5, respectively, the spectra show the two-peak structures: the

peak-locations coincide with that for the single basis states, but the relative heights of them correspond clearly to the superposed

probabilities, i.e., |β0|2 and |β1|2, respectively.

Now, we discuss the physical mechanism why the above two-peak phenomenon can appear. Before applying the driving to

detect the qubit, the qubit (prepared at the superposed state β0|0〉+β1|1〉) entangles to the pulled cavity. Roughly, the dispersive

coupling Hamiltonian Γ1σz1
â†â generates an qubit-cavity entangled state |0〉 ⊗ |f0〉 + |1〉 ⊗ |f1〉, with |f0〉 and |f1〉 being

the cavity states (with the frequency shifts −Γ1 and Γ1, respectively). Since only the resonant incident photon can transmit

the cavity, the cavity will be collapsed to either the state |f0〉 or the state |f1〉. Certainly, the probability of transmitting the

photon with frequency shift −Γ1 (or Γ1) is |β0|2 (or |β1|2). After such a disentangled measurement process, the qubit would

be collapsed to the state |0〉 (or the state |1〉). Experimentally, a number of measurements are performed on many copies of

the detected state, and parts of them obtain the photon with the frequency shift −Γ1 and others with the frequency shift Γ1.

This is why the two peaks can be observed statistically in the transmission spectra of the cavity. In the original definition of the
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QND measurement, the measured operator (here σz1
) has the eigenstates that are also the eigenstates of the dispersive-coupling

Hmiltonian. This means that the expectation value of the measured operator is conserved. Once the detector is projected to one

of its eigenstates, the system is meanwhile collapsed to its relevant eigenstate. As a consequence, successive PMs give the same

result as that obtained by the initial PM [26]. Similarly, in the measurements used in our work, decay of the detected resonator is

dominant and the observables of the qubit operators are still conserved. Different eigenstates of the qubit operator pull the cavity

with the different frequency shifts. Once the transmitted photon is detected, the frequency shift of the cavity is determined,

and thus the qubit is collapsed to one of its basis states. Consequently, the sequential measurements after this detection must

result in the same output. In this sense, the present measurements could also be regarded as the nondemolition ones, since their

measurements are repeatable and all the subsequent measurements give exactly the same result as that obtained by the initial

measurement.

B. Tomographic reconstruction of a single-qubit state

Above investigation indicates that partial information of the qubit state, i.e., the diagonal elements of the relevant density

matrix, can be directly obtained by only one kind of the QND measurements. However, to extract the full information of an

unknown qubit state, one should tomographically reconstruct all the elements of its density matrix. To completely define a

d-dimensional density matrix ρ, one needs to determine d2 − 1 real parameters.

Now we demonstrate how to perform the tomographic constructions of an arbitrary single-qubit state |ψ〉1 = β0|0〉 + β1|1〉

with the density matrix

ρ1 =







ρ00 ρ01

ρ10 ρ11






. (9)

An efficient and widely used technique is to parameterize the density matrix ρ1 on a Bloch sphere [5],

ρ1 =
1

2
(I +

∑

i=x,y,z

riσi) =
1

2







1 + rz rx − iry

rx + iry 1 − rz






. (10)

Here, I denotes the identity matrix, σi the Pauli matrices, and ri real parameters. Therefore, in order to determine the single-

qubit state, we must identify the three components (rx, ry, rz) of the Bloch vector ~r. As discussed in the previous section, two

diagonal elements ρ00 and ρ11 can be directly determined by measuring the occupation probabilities |β0|2 and |β1|2. This means

that the parameter rz can be determined by the relation rz = ρ00−ρ11 = |β0|2−|β1|2. To obtain the other two parameters rx and

ry , we need to determine the non-diagonal elements. To this end, we perform the single-qubit operations Ux1
= exp (iπσx1

/4)
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and Uy1
= exp (iπσy1

/4) to transfer the left non-diagonal elements to the relevant diagonal locations. For example, after the

operation Ux1
, the density matrix ρ1 is changed to

ρ′1 = Ux1
ρ1U

†
x1

=
1

2







1 − ry rx − irz

rx + irz 1 + ry






. (11)

Then performing another kind of QND measurements the parameters |β′
0|2 and |β′

1|2 are determined. Consequently, the coef-

ficient ry can be determined via the relation ry = |β′
1|2 − |β′

0|2. Similarly, by performing the quantum operation Uy1
on the

original density matrix ρ1, another new density matrix

ρ′′1 = Uy1
ρ1U

†
y1

=
1

2







1 + rx −rz − iry

−rz + iry 1 − rx






(12)

can be obtained, and the coefficient rx is determined in the same way. Note that the number of the unitary operations required

to implement the present tomographic reconstructions is the same as that required by the previous approach based on the usual

PMs. Thus, for the single-qubit case the complexity of the present approach is the same as that in the previous one, and the

efficiency is not enhanced.

The remaining task is to implement the single-qubit operations required above for transferring the non-diagonal elements to

the diagonal locations. In a circuit-QED system, a superconducting charge qubit is strongly coupled to the transmission line

resonator [17]. Following Ref. [27] and under a displacement transformation, the effective Hamiltonian of the resonator plus

qubit system can be written as

H̃ = −∆drâ
†â+

∆a

2
σz1

+ g1(â
†σ−1

+ âσ+1
) +

Ω

2
σx1

,

(13)

with the qubit-driving detuning ∆a = ω1 − ωd and the Rabi frequency Ω = 2ǫg1/(−∆dr). In the dispersive regime, i.e.,

|g1/∆1| ≪ 1, and after the transformation U1 = exp [−g1(â†σ−1
− âσ+1

)/∆1], the above Hamiltonian becomes

Hx = −∆drâ
†â+

∆̃a

2
σz1

+
Ω

2
σx1

, (14)

with ∆̃a = ∆a + Γ1. First, if the condition ∆̃a = 0 is satisfied, then the Hamiltonian (14) produces a rotation of the qubit

state about the x axis, i.e., Ux1
is generated by choosing the evolution time tx = π/(2Ω). Second, if the driving is sufficiently

detuned from the qubit, another approximate Hamiltonian

Hz = −∆drâ
†â+

1

2
(∆̃a +

1

2

Ω2

∆a

)σz1
(15)
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can be obtained by further performing a transformations U2 = exp (β∗σ+1
− βσ−1

), β = Ω/(2∆a) on the Hamiltonian (14).

Obviously, the desirable operation Uz1
can be implemented by the evolution under the Hamiltonian (15) with the dura-

tion tz = π∆a/(2∆a∆̃a + Ω2). Third, the desirable operation Uy1
could be constructed as Uy1

= exp(iπσy1
/4) =

exp(iπσz1
/4) exp(i3πσx1

/4) exp(i3πσz1
/4). Finally, the duration tx (or tz) of the single-qubit operation required above is

estimated as ∼ 100ps with the experimental parameters: ǫ ∼ 2π × 20MHz [21], and ∆dr ∼ κ/2 [27]. This is significantly less

by at least two orders than the qubit decoherence time, which is measured as T1 ∼ 7.3µs [19, 27]. Therefore, the required gate

operations are accessible and the proposed tomographic reconstructions is experimentally feasible.

As an example, we assume that the three parameters rx = 0.5, ry =
√

2/2, rz = 0.5 are obtained through the above

reconstructions, then the reconstructed state can be written as ρ1 = 0.75|0〉〈0|+(0.25− i
√

2/4)|0〉〈1|+(0.25+ i
√

2/4)|1〉〈0|+

0.25|1〉〈1|, whose real ρ
(R)
ij and imaginary ρ

(I)
ij parts (i, j = 0, 1) are graphically represented in Fig. 2.

III. TOMOGRAPHIC RECONSTRUCTION OF A TWO-QUBIT STATE BY QND MEASUREMENTS

A. Nondestructive detection of an unknown two-qubit state by cavity transmissions

In this section we extend the above single-qubit QND measurements to the two-qubit case. The transition frequencies of the

two qubits are represented as ω1 and ω2, respectively. The effective Hamiltonian of the present system is

H̃2 = (−∆dr + Γ1σz1
+ Γ2σz2

)â†â+
ω̃1

2
σz1

+
ω̃2

2
σz2

+ ǫ(â† + â), (16)

where Γj = g2
j /∆j and ω̃j = ωj + Γj , j = 1, 2. Similarly, the relevant master equation reads

˙̺2 = −i[H̃2, ̺2] + κD[â]̺2 +
∑

j=1,2

γ1,jD[σ−j
]̺2 +

∑

j=1,2

γφ,j

2
D[σzj

]̺2 (17)

and the equations of motion for the mean values of various expectable operators are

d〈â†â〉
dt

= −κ〈â†â〉 − 2ǫIm〈â〉, (18a)

d〈â〉
dt

= (i∆dr −
κ

2
)〈â〉 − iΓ1〈âσz1

〉 − iΓ2〈âσz2
〉 − iǫ,

(18b)

d〈âσz1
〉

dt
= (i∆dr −

κ

2
− γ1,1)〈âσz1

〉 − (iΓ1 + γ1,1)〈â〉 − iΓ2〈âσz1
σz2

〉 − iǫ〈σz1
〉, (18c)

d〈âσz2
〉

dt
= (i∆dr −

κ

2
− γ1,2)〈âσz2

〉 − (iΓ2 + γ1,2)〈â〉 − iΓ1〈âσz1σz2
〉 − iǫ〈σz2

〉, (18d)
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d〈âσz1
σz2

〉
dt

= (i∆dr −
κ

2
− γ1,1 − γ1,2)〈âσz1

σz2
〉 − iǫ〈σz1

σz2
〉 − (iΓ2 + γ1,2)〈âσz1

〉 − (iΓ1 + γ1,1)〈âσz2
〉,

(18e)

d〈σz1
〉

dt
= −γ1,1(〈σz1

〉 + 1), (18f)

d〈σz2
〉

dt
= −γ1,2(〈σz2

〉 + 1), (18g)

d〈σz1
σz2

〉
dt

= −(γ1,1 + γ1,2)〈σz1
σz2

〉 − γ1,1〈σz2
〉 − γ1,2〈σz1

〉. (18h)

Likewise, due to the relatively-long decoherence time of the qubits and their sufficiently short measurement time, the influences

of the additional measurement-induced dephasing and decays of the qubits are also unimportant. Thus, the expectation values

of the qubit operators can still be regarded as unchanged, i.e., 〈σzj
(t)〉 ≈ 〈σzj

(0)〉 and 〈σz1
(t)σz2

(t)〉 ≈ 〈σz1
(0)σz2

(0)〉, during

the QND measurements. As a consequence, one can easily solve the above Eqs. (18a-e) and finally obtain the exact steady-state

distributions of the intracavity photon number

〈â†â〉ss

ǫ2
=

2

κ
Re

{

F (
∑

j,j′ BjDj′Gj +D1D2) +B1B2[G12(D1 +D2) +
∑

j,j′ EjGj′ ] −
∑

j BjEj(Dj +BjGj)
∑

j,j′ BjEj(Dj′F +DjA) − (B1E1 −B2E2)2 −AD1D2F

}

,

j, j′ = 1, 2, j 6= j′. (19)

Here, A = i∆dr − κ/2, Bj = iΓj , Dj = i∆dr − κ/2− γ1,j , Ej = iΓj + γ1,j, F = i∆dr − κ/2− γ1,1 − γ1,2, Gj = 〈σzj
(0)〉,

and G12 = 〈σz1
(0)σz2

(0)〉.

We now investigate the above distributions schematically for various two-qubit states expressed by |ψ〉2 = α1|00〉+α2|01〉+

α3|10〉 + α4|11〉. First, we assume that the two-qubit is initially prepared at only one of the four basis states, i.e., only one

of the four probability amplitudes equals 1. For this case Fig. 3 clearly shows that single peaks reveal, and these peaks can be

well distinguished by the shifts of the central frequencies of the transmission spectra. In practical, the peaks with frequency

shifts −Γ1 − Γ2, −Γ1 + Γ2, Γ1 − Γ2, and Γ1 + Γ2 mark respectively the state |00〉, |01〉, |10〉, and |11〉. These results are well

agreement with the observations in Ref. [23], and clearly indicate that the pulls of the cavity strongly depend on the states of the

qubits. Also, the relative heights of all these single peaks are exactly equivalent to 1, which is the same height as that for the

EMC case.

Typically, if the two-qubit is prepared at the superposition of the four basis states, then the situations are quite different. It

is seen from Fig. 3(a) that, if the two-qubit is prepared initially as one of the Bell states, i.e., (|α1|2, |α2|2, |α3|2, |α4|2) =
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(0.5, 0, 0, 0.5), then the transmitted spectrum of the cavity reveals two peaks with the same relative height 0.5. The locations of

these two peaks are at the same positions for the states |00〉 and |11〉, respectively. Furthermore, for a more generic superposed

state (|α1|2, |α2|2, |α3|2, |α4|2) = (0.1, 0.2, 0.3, 0.4), four peaks reveal: the central positions of these peaks locate at the

corresponding positions of basis states |00〉, |01〉, |10〉, and |11〉, respectively. The relative heights of these four peaks are

0.1, 0.212, 0.308, and 0.4, respectively. Note that the relative heights of the peaks marking the states |00〉 and |11〉 are exactly

equivalent to the superposed probabilities |α1|2 and |α4|2, respectively. While, the relative heights of the peaks marking the

states |01〉 and |10〉 deviate from the corresponding superposed probabilities |α2|2 and |α3|2. This is because the two neighboring

peaks are not well distinguished due to their partial overlap. In Fig. 3 (b) we modify the relevant parameters as Γ′
1 = 1.05Γ1

and Γ′
2 = 0.85Γ2, and then find that each of the four peaks is well separated from the others. In this case the relative height of

each peak equals exactly to the expectable superposed probability of the corresponding basis state in the superposed state.

B. High efficiency tomographic reconstructions of a two-qubit state

The two-qubit state tomography can be done in the similar way as that for the above single-qubit state. Now, there are 15 real

parameters to be determined for reconstructing a 4-dimensional density matrixρ2. Generally, the 4-dimensional density matrix

for a two-qubit state |ψ〉2 = α1|00〉+ α2|01〉 + α3|10〉 + α4|11〉 can be presented as

ρ2 =























ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44























, (20)

in the bases: {|1〉2 = |00〉, |2〉2 = |01〉, |3〉2 = |10〉, |4〉2 = |11〉}. It can also be rewritten as [5]

ρ2 =
1

4

∑

m,n=0,x,y,z

rmnσm1
⊗ σn2

=

1

4























r00 + r0z + rz0 + rzz r0x + rzx − ir0y − irzy rx0 + rxz − iry0 − iryz rxx − ryy − irxy − iryx

r0x + rzx + ir0y + irzy r00 − r0z + rz0 − rzz rxx + ryy + irxy − iryx rx0 − rxz − iry0 + iryz

rx0 + rxz + iry0 + iryz rxx + ryy − irxy + iryx r00 + r0z − rz0 − rzz r0x − rzx − ir0y + irzy

rxx − ryy + irxy + iryx rx0 − rxz + iry0 − iryz r0x − rzx + ir0y + irzy r00 − r0z − rz0 + rzz























.

(21)
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Here, σm=x,y,z are the Pauli operators, σ0 is identity matrix, and sixteen real parameters rmn are to be determined. Note that

the first and second subscripts of the matrix elements ρij (i, j = 1, 2, 3, 4) in Eq. (20) and rmn in Eq. (21) are labeled for the

first and second qubit, respectively.

As in the above discussions, performing the QND measurements on the two-qubit state can directly determine all the four

diagonal elements ρ11, ρ22, ρ33 and ρ44, by the measured results |α1|2, |α2|2, |α3|2 and |α4|2, respectively. As a consequence,

the parameters r00, r0z , rz0 and rzz can be determined by

r00 = |α1|2 + |α2|2 + |α3|2 + |α4|2 = 1,

r0z = |α1|2 − |α2|2 + |α3|2 − |α4|2,

rz0 = |α1|2 + |α2|2 − |α3|2 − |α4|2,

rzz = |α1|2 − |α2|2 − |α3|2 + |α4|2. (22)

To determine the other 12 parameters, we need to perform certain unitary operations to transfer them to the diagonal locations

for other QND measurements.

It is well known that arbitrary two-qubit operation assisted by arbitrary rotations of the single qubits can generate an universal

set of quantum gates. So, the key to implement the above required operations for quantum state tomography is to realize a two-

qubit gate. For the experimental circuit QED system with two superconducting charge qubits, such a gate could be implemented

by using the so-called FLICFORQ protocol [27]. In fact, if the cavity is driven by two external fields satisfying the sideband

matching condition: ωd2
− ωd1

= Ω1 + Ω2, an effective Hamiltonian

H̃FF = ωrâ
†â+

g1g2(∆
′
1 + ∆′

2)

16∆′
1∆

′
2

(σy1
⊗ σy2

+ σz1
⊗ σz2

)

(23)

can be induced in a quadruply rotating framework. Here, ∆′
j = ω

j
+ 2Ω2

jj′/∆jdj′
− ωr, with Ωjj′ = 2gjǫj′/(ωdj′

− ωr) and

∆
jdj′

= ω
j
− ωdj′

, j, j′ = 1, 2, j 6= j′. Obviously, the evolution under the above Hamiltonian with the duration, e.g., around

100ps for the experimental parameters [27], can produce a two-qubit operation

UFF = exp[iπ(σy1
⊗ σy2

+ σz1
⊗ σz2

)/4]. (24)

On the other hand, the typical single-qubit gates Uxj
, Uyj

and Uzj
(j = 1, 2) can be relatively easy to produce by using the

similar approaches presented in Sec. II. With such a two-qubit operation and other single-qubit gates, we show how to perform

the desirable unitary operations for transferring the non-diagonal elements to the diagonal locations in the table. For example,

by performing a selected operational sequence W = UFFUx1
on the original density matrix ρ2, we have a density matrix
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ρ′2 = Wρ2W
†, and the new diagonal elements are

ρ′11 =
1

4
(r00 + rxy − ryz + rzx),

ρ′22 =
1

4
(r00 + rxy + ryz − rzx),

ρ′33 =
1

4
(r00 − rxy + ryz + rzx),

ρ′44 =
1

4
(r00 − rxy − ryz − rzx). (25)

By the QND measurements the values of |α′
1|2, |α′

2|2, |α′
3|2, and |α′

4|2 are given. Consequently, the desirable parameters r00,

rxy , ryz and rzx are obtained by the relations

r00 = |α′
1|2 + |α′

2|2 + |α′
3|2 + |α′

4|2 = 1,

rxy = |α′
1|2 + |α′

2|2 − |α′
3|2 − |α′

4|2,

ryz = −|α′
1|2 + |α′

2|2 + |α′
3|2 − |α′

4|2,

rzx = |α′
1|2 − |α′

2|2 + |α′
3|2 − |α′

4|2. (26)

Similarly, other non-diagonal elements can also be determined. Note that here only six kinds of QND measurements are sufficient

to tomographically reconstruct a two-qubit state. This is obviously simpler than the previous tomography based on the usual

PMs, wherein 15 kinds of measurements are required [5, 23]. Thus, the present tomography is essentially high efficient.

After performing all the QND measurements listed in the table, a two-qubit state can be completely reconstructed. For

example, six kinds of QND measurements can determine these parameters























r00 r0x r0y r0z

rx0 rxx rxy rxz

ry0 ryx ryy ryz

rz0 rzx rzy rzz























=























1 0 0 −0.2

0 0.25 0 0.6

0 0 −0.25 0

−0.4 0.125 0 0























,

(27)

then a two-qubit state can be effectively reconstructed by the following representation
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ρ2 =























ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44























=























0.1 0.0313− i0.0313 0.15 − i0.15 −i0.125

0.0313 + i0.0313 0.2 0.125 −0.15 + i0.15

0.15 + i0.15 0.125 0.3 −0.0313 + i0.0313

i0.125 −0.15− i0.15 −0.0313 + i0.0313 0.4























.

(28)

The simulated reconstruction is graphically shown in Fig. 4, where ρ
(R)
ij and ρ

(I)
ij are the real and imaginary parts of the recon-

structed state in the complete bases |1〉2 = |00〉, |2〉2 = |01〉, |3〉2 = |10〉, |4〉2 = |11〉, with i, j = 1, 2, 3, 4.

IV. DISCUSSIONS AND CONCLUSIONS

Generally, the quantum state tomographic constructions demonstrated above can be extended to the case includingN (N > 2)

qubits in a straightforward manner. This is because that the proposed QND measurements can be directly applied to determine

all the diagonal elements of the arbitrary N -qubit state; various basis states can be inferred from the relevant positions of the

measured peaks, and the probabilities of the corresponding bases superposed in the measured state can be extracted from the

relative heights of the peaks (if they are sufficiently separated from the others). Moreover, all the required operations for the

tomographic reconstructions can be implemented from the universal set of the gates. Thus, the efficiency of the tomographic

reconstruction of the multi-qubit should be greatly improved by using the proposed QND measurements.

Note that the family of QND measurements (which are constructed by certain operational sequences) listed in the above table

is not unique, and the other sets of measurements can also be used to do the desirable tomography. Hence, some parameters can

be determined by different kinds of QND measurements. This property can be utilized to check the accuracy of the designed

quantum operations. We also emphasize that the practically-existing decays of the qubits are safely-neglected in our treatments.

The validity of these neglects depends on three parameters: the duration Te for obtaining an experimental data of cavity trans-

mission, the cavity decay time Tc = 1/κ and the decay time T1,j = 1/γ1,j of the detected qubits. The so-called steady-state

transmission condition implies that Te ∼ Tc is in the same order of around tens of nanoseconds. As the qubit decay is practically

very slow, e.g., T1 = 7.3µs [19], neglecting the effect from the qubit decays should be reasonable.
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In summary, we have proposed a scheme to perform the quantum state tomography by the QND measurements. Detailed

operations for reconstructing single- and two-qubit states are presented, respectively. Similarly, the proposal can be directly

generalized to the multi-qubit case. Differing from the usual tomography based on the PMs, our reconstruction is based on

a series of QND measurements. Since all the diagonal elements of the density matrix of an unknown quantum state can be

determined by a single kind of the QND measurements, the efficiency of the present tomographic reconstruction is significantly

higher for multiple qubits. Specifically, our proposal is demonstrated with the current circuit QED setups with a few charge

qubits, and could also be generalized to other qubit-systems, at least in principle.
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APPENDIX: TRANSMISSION OF A DRIVEN EMPTY CAVITY

In this appendix, the transmission of a driven empty cavity is calculated. The Hamiltonian of the simplified system reduces to

H0 = ωrâ
†â+ ǫ(â†e−iωdt + âeiωdt). (A1)

After performing the time-dependent unitary transformation defined by the operator R = exp(−iωdtâ
†â), we get the effective

Hamiltonian

H̃0 = R†H0R− iR†∂R/∂t = −∆drâ
†â+ ǫ(â† + â), (A2)

where ∆dr = ωd − ωr is the detuning of the cavity from the driving. Then we get the master equation for such a driven empty

cavity

˙̺0 = −i[H̃0, ̺0] + κ(â̺0â
† − â†â̺0/2 − ̺0â

†â/2),

(A3)

where ̺0 is the density matrix of the empty cavity.

From the above master equation, one can easily obtain the equations of motion for the expectation values of the relevant

operators, such as mean photon number inside the cavity 〈â†â〉 = Tr(â†â̺0):

d〈â†â〉
dt

= −κ〈â†â〉 − 2ǫIm〈â〉, (A4a)
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with

d〈â〉
dt

= (i∆dr −
κ

2
)〈â〉 − iǫ. (A4b)

The steady-state solution of Eq. (A4a) gives

〈â†â〉ss

ǫ2
=

1

(ωd − ωr)2 + (κ
2 )2

. (A5)

Obviously, the transmission spectrum of an empty cavity, which is proportional to 〈â†â〉, is the well-known Lorentzian: centered

at ωd = ωr with the half-width κ. When ωd does not sufficiently match the cavity frequency, no photon penetrates the cavity

and thus no transmission is recorded.
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FIG. 1: (Color online) Cavity transmission for the single-qubit states versus the probe detuning ωd − ωr . Five cases of the qubit states for

|β1|
2 = 0, 0.2, 0.4, 0.5, and 1 are shown. For comparison, the empty cavity (EMC) transmission is also plotted in black line. The peak shifts

by −Γ1 or Γ1 correspond to single basis state |0〉 or |1〉. For the superposition states, the double-peak relative heights (in contrast to the peak

height of the empty cavity transmission) present clearly the superposed probabilities of the two basis states. Here, the parameters are selected

as (Γ1, κ, γ1,1) = 2π × (−7.38, 1.69, 0.02)MHz [19, 22].
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FIG. 2: (Color online) Graphic representations of the density matrix ρ1 for a single-qubit state. The real ρ
(R)
ij and imaginary ρ

(I)
ij parts of the

density matrix elements ρij = 〈i|ρ|j〉 (i, j = 0, 1) are plotted in (a) and (b), respectively.
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FIG. 3: (Color online) (a). Cavity transmission versus the probe detuning ωd−ωr for certain selected two-qubit states with |α1|
2 = 1, |α2|

2 =

1, |α3|
2 = 1, |α4|

2 = 1, (|α1|
2, |α2|

2, |α3|
2, |α4|

2) = (0.5, 0, 0, 0.5), and (|α1|
2, |α2|

2, |α3|
2, |α4|

2) = (0.1, 0.2, 0.3, 0.4), respectively.

For comparison, the empty cavity (EMC) transmission is also plotted in black line. Here, The parameters are (Γ1, Γ2, κ, γ1,1, γ1,2) =

2π×(−11.11,−9.11, 1.7, 0.02, 0.022, )MHz [19, 23]. In (b) only the parameters Γ1 and Γ2 are modified as Γ′
1 = 1.05Γ1 and Γ′

2 = 0.85Γ2.

In this case, the relative heights of the peaks are exactly equivalent to the corresponding probabilities of the single basis states superposed in

the measured superposition state.
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FIG. 4: (Color online) Schematic representations of the density matrix ρ2 for a two-qubit state. The real ρ
(R)
ij and imaginary ρ

(I)
ij parts

(i, j = 1, 2, 3, 4) of the density matrix elements in the complete bases are plotted in (a) and (b), respectively.
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Tables
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TABLE I: The operational combinations before the QND measurements to determine the parameters for tomographically reconstructing a

two-qubit state. The subscript “1(2)” of U is labeled for the operation of qubit 1(2).

quantum operation W determined parameters

no r00, rzz, r0z , rz0

UFFUx1
r00, rxy, ryz, rzx

UFFUy1
r00, ryx, rzy, rxz

UFFUz1
r00, rxx, ryy, rzz

Uy1
Uz1

UFF r00, r0x, ry0, ryx

Uy2
Uz2

UFF r00, rx0, r0y, rxy


