
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Understanding cavity resonances with intracavity
dispersion properties

Jiteng Sheng, Haibin Wu, M. Mumba, J. Gea-Banacloche, and Min Xiao
Phys. Rev. A 83, 023829 — Published 28 February 2011

DOI: 10.1103/PhysRevA.83.023829

http://dx.doi.org/10.1103/PhysRevA.83.023829


 1

Understanding cavity resonances with intracavity 

dispersion properties 
 

Jiteng Sheng, Haibin Wu, M. Mumba, J. Gea-Banacloche, and Min Xiao 

Department of Physics, University of Arkansas, Fayetteville AR 72701, USA 

 

We experimentally study the strongly-coupled three-level atom-cavity system at both 

cavity and coupling frequency detuning cases. Side peak splitting and anti-crossing-like 

phenomena are observed under different experimental conditions. Intracavity dispersion 

properties are used to explain qualitatively the complicated cavity resonance structures in 

the composite system of inhomogeneously-broadened three-level atoms inside an optical 

ring cavity with relatively strong driving intensities.  
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I. INTRODUCTION 

Coupled atom-cavity systems under strong coupling condition, which are typically 

classified as cavity quantum electrodynamics (cavity-QED), have been of great interest in 

recent years [1-3]. Many experiments have been performed in strongly coupled two-level 

atom-cavity systems, in which the “normal-mode splitting” (or Rabi splitting) 

phenomenon has been observed [4-15]. When three-level coherently-prepared (or 

electromagnetically induced transparency (EIT) [16,17]) atoms are placed inside an 

optical cavity, a third polariton branch (i.e. dark-polariton [18]) appears in the middle of 

the cavity transmission spectrum. Recently, coupled three-level atom-cavity systems have 

been experimentally investigated with cold atoms [19], hot atomic vapor [20], and a 

single atom [21]. 

In investigating simple systems, such as cavity coupled with 

homogeneously-broadened two-level atoms [4] or with three-level atoms on resonance 

[20], it is possible to explain the cavity transmission peak structures by solving 

Maxwell-Bloch or density-matrix equations. When fully considering the transmission 

spectrum of an atom-cavity system coupled with three-level Doppler-broadened atoms 

(including frequency detunings), we show here that by combining the atomic dispersion 

properties [5] with the round-trip phase for the intracavity medium, the complicated 

cavity transmission spectra can be well explained under different experimental conditions. 

The linear/nonlinear intracavity dispersion properties give a good physical picture to 

understand the complicated peak structures in the cavity transmission spectra from such 
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coupled three-level atom-cavity system, even with cavity，and coupling field frequency 

detunings.   

 

II. THEORETICAL CONSIDERATIONS 

We will mainly use the linear dispersion property to first qualitatively explain the 

cavity transmission, and then include the nonlinear dispersion contribution in fitting the 

experimental data. The advantage of only considering the linear dispersion is that it is 

sufficient to understand the main features of the cavity transmission peaks (such as the 

number of peaks and their positions). The nonlinear effect only changes the shapes of the 

cavity transmission peaks and slightly modifies their positions, when the nonlinearity is 

not very strong.   

The linear complex susceptibility of the three-level Doppler-broadened EIT atoms is 

given by [17] 
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where 12p pω ωΔ = −  is the probe frequency detuning and 32c cω ωΔ = −  is the coupling 

frequency detuning; cΩ  is the Rabi frequency of the coupling field; / 2u  is the 

root-mean-square atomic velocity. The decay rates are given by ( ) / 2ij i jγ = Γ + Γ , where 
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iΓ  is the natural decay rate of the energy level |i>.  

In general, the intensity transmission function of the coupled atom-cavity system is 

given by (see Ref. [5]) 
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where T and R are the transmissivity and the reflectivity of the mirrors, respectively, and 

exp[ "/ ]pl cκ ω χ≡ −  describes the intracavity absorption. ' "iχ χ χ= +  with 'χ  being 

the dispersion and "χ  the absorption components. p θΔ = Δ − Δ  describes the total 

frequency detuning, where 12cavθ ω ωΔ = −  is the cavity frequency detuning. If the 

coupling and cavity frequency detunings are both zero, the system is said to be on 

resonance [22]. When ( / 2 ) 'pl Lω χΔ +  equals to zero, the intensity transmission 

function ( )pS ω  has its maximum value, which corresponds to a peak in the cavity 

transmission spectrum. We define the detuning line as −Δ , and the modified dispersion 

curve as ( / 2 ) 'pl Lω χ  in plotting Eq. (3). When these two curves have an intersection, 

there is a peak in the transmission (transmission intensity vs probe frequency detuning). 

Even when the detuning line ( −Δ ) and the modified dispersion curve ( ( / 2 ) 'pl Lω χ ) 

don’t have intersections, the places, where the absolute difference between the detuning 

line ( −Δ ) and the dispersion curve ( ( / 2 ) 'pl Lω χ ) has the minimum value, could still 

generate transmission peaks (e.g. maximum values in Eq. (3) in the transmission). 

First, let’s consider two on-resonance ( 0cθΔ = Δ = ) cases [20,22], as shown in Fig. 

1. One could observe three cavity transmission peaks in both cases as shown in Figs. 1(c) 
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and 1(d), respectively. In case (a), the detuning line ( p−Δ = −Δ ) does not cross the 

dispersion curve ( ( / 2 ) 'pl Lω χ ) except at 0pΔ = , however, there still exist two broader 

side peaks at points where the difference between the dispersion curve ( ( / 2 ) 'pl Lω χ ) and 

the detuning line ( p−Δ = −Δ ) is minimum (Fig. 1(c)). In case (b), the detuning line 

( p−Δ = −Δ ) crosses the dispersion curve ( ( / 2 ) 'pl Lω χ ) at several places. Since there are 

five crossings, one could expect to observe five peaks under certain experimental 

conditions [22]. However, since the absorption is large near the resonance as shown by 

the dotted curve in Fig. 1(b), at a relatively low probe intensity, the two peaks close to the 

probe resonance are severely absorbed (barely seen) leaving a three-peak structure (Fig. 

1(d)) with two narrower side peaks.  

Now, we can explain the cavity transmission spectrum when the cavity is detuned 

from its resonance using the dispersion picture. Figure 2 depicts the cavity detuning case 

for the situation shown in Fig. 1(a). The calculated dispersion function ( / 2 ) 'pl Lω χ  is 

plotted as a solid red curve. The green dashed lines give the detuning line 

( )p θ−Δ = − Δ − Δ  at different cavity detunings. The left dashed green line (i) is for the 

on-resonance case ( 0cθΔ = Δ = ), which shows three symmetric peaks in the cavity 

transmission (Fig. 1(c)); the middle dashed green line (ii) and the right dashed green line 

(iii) are for the cases with cavity detunings ( 0, 0cθΔ ≠ Δ = ), which lead to the 

complicated, asymmetric cavity transmission spectra. Before going into such complicated 

cavity transmission cases, we will present our experimental observations. 
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III. EXPERIMENTAL OBSERVATIONS 

The experimental setup is shown in Fig. 3. A three-mirror optical ring cavity is 

composed of an input mirror M1 and an output mirror M2 with 3% and 1.4% 

transmissivities, respectively; and a high reflector M3 mounted on a PZT for cavity 

frequency scanning and locking. The cavity length L=37 cm. The rubidium vapor cell is 5 

cm long with Brewster windows, and is wrapped in μ-metal sheets for magnetic field 

shielding and in heat tape for heating. Three energy levels in D1 line of 87Rb atoms are 

used for the three-level Λ-type EIT system [20]. The coupling beam is injected through a 

polarization beam splitter (PBS), which does not circulate in the cavity. The probe beam 

is injected into the cavity via the input mirror M1 and circulates in the cavity as the cavity 

field, and the output is detected by an avalanche photo-diode detector (APD). The radii of 

the coupling and probe beams are estimated to be 600 μm and 100 μm at the center of the 

atomic cell, respectively. The empty cavity finesse is about 100. When the atomic cell and 

PBS are included, the cavity finesse decreases to about 48. 

Figure 4 plots the experimentally measured and theoretically calculated positions of 

the cavity transmission peaks versus the probe frequency detuning ( pΔ ) for different 

cavity detuning ( θΔ ) values. One can see the similar transmission spectrum as reported in 

Ref. [20] (at a slightly higher temperature of T=80.3 ºC) in Fig. 4(d1), at the resonant 

case ( 0cθΔ = Δ = ), with symmetric side peaks. When the cavity is positively detuned to 

around 20 MHz, the right side peak begins to split into two peaks (Fig. 4(c1)). As the 
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cavity detuning ( θΔ ) further increases, one of the split peaks moves outwards and another 

moves inwards (Fig. 4(b1)). When ∆θ≈160 MHz, as shown in Fig. 4(a1), the 

inward-moving peak merges with the central peak. If the cavity is negatively detuned, 

one can see a similar behavior for the left side peak (Figs. 4(e1)-(g1)).  

The central peak positions in Figs. 4(a1)-(g1) have slight changes, as shown in the 

inset of Fig. 5. The position of the central peak is determined by the frequency-pulling 

equation [23]: 
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 defines the frequency-locking coefficient. This is quite different 

from the result presented in Ref. [19], in which the cavity detuning θΔ  could not get too 

large since the atomic density in that experiment is relatively low, and the dispersion 

slope around the EIT resonance is too sharp ( ' 25
2

p

p

l
L
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) to observe the frequency 

shift of the central peak due to the frequency pulling effect. In the current experimental 

system, the dispersion slope around the center (near resonance) is not that sharp and the 

cavity can be detuned as far as 250 MHz, so it is possible to observe the frequency shift 

of the central peak position (frequency pulling) beyond noise range as predicted by Eq. 

(4). By measuring the slope in the inset of Fig. 5, one can roughly calculate the group 

index and the group velocity. Looking at the dispersion curve in Fig. 2, we would get the 

same solution as in Fig. 2. The left dashed green line (i) in Fig. 2 gives the resonant case 
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for the cavity, which corresponds to the case in Fig. 4(d1); the middle dashed green line 

(ii) in Fig. 2 corresponds to the splitting of the right side peak, which is the case in Fig. 

4(c1); and the right dashed green line (iii) in Fig. 2 gives the case where the central peak 

and one of the split peaks begin to merge, which corresponds to Fig. 4(a1). We can 

choose 12ω  as the origin (i.e. zero detuning) and rewrite Eq. (4) as 1
1r θη

Δ = Δ
+

 with 

12r rω ωΔ = − . From the inset of Fig. 5, the slope can be determined to be / 0.1r θΔ Δ ≈ , 

which gives ' 9
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 in the current case. The group index of the intracavity 

dispersive medium can be written as 1 '
2g p

p

n n χω
ω

∂≈ +
∂

, which gives ng≈68 under the 

current experimental condition.  

Figures 4(a2)-(g2) present the results of the numerical calculations based on full 

nonlinear theory. In this calculation, unlike in our previous publications, no plane-wave 

approximation is made for the probe beam (cavity field) although the coupling beam is 

still assumed to be a plane wave. The paraxial wave propagation equation is integrated 

numerically with the calculated nonlinear susceptibility for a number of cavity 

roundtrips, starting from a zero cavity field until it converges into a steady state. As one 

can see that the basic features of the experimentally observed spectra showing in Figs. 

4(a1)-(g1) can be found in the corresponding theoretically stimulated curves (Figs. 

4(a2)-(g2)). However, in spite of the relative sophistication of this calculation, the 

agreement with the experimental data is still only qualitative, suggesting that more work 
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still needs to be done on the modeling of this coupled nonlinear system. 

Next, we consider the second cavity detuning case shown in Fig. 1(b). When the 

detuning line is moved parallel to itself, the positions of the side peaks also move, leading 

to an anti-crossing-like curve. Figure 6(a) shows the experimentally measured 

transmission spectrum at the cavity detuning of ∆θº-200 MHz, and Fig. 6(b) plots the 

positions of the three peaks as a function of the cavity detuning, which exhibits an 

anti-crossing-like behavior for the two side (the “bright polariton”) peaks. One can easily 

explain such anti-crossing behavior as in the coupled two-level atom-cavity systems [8]. 

One of the main differences between this coupled three-level atom-cavity system and the 

two-level atom-cavity system is that in such three-level system, there will always be gaps 

between the central peak and the two side peaks, which depend on the shape of the 

dispersion curve. 

Now, we examine the case with coupling frequency detuning. When the coupling 

detuning is very small, the dispersion curve is slightly shifted in the horizontal direction 

while the detuning line still passes through the origin. This actually is quite similar to the 

cavity frequency detuning case, where the dispersion curve is fixed with a moving 

detuning line. Of course, when the coupling detuning becomes large, the shape of the 

dispersion curve will significantly change. However, one can qualitatively understand the 

cavity transmission spectrum even under such conditions. Figure 7 gives the case for a 

homogeneously-broadened medium. Since in the homogeneously-broadened case, the 

value of | |χ  is about 2 orders of magnitude larger than in the 
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inhomogeneously-broadened case, a lower atomic density can be used to simulate the 

system. Figure 7(a) plots the on-resonance case with ∆θ=0 and ∆c=0, and Fig. 7(b) shows 

the coupling detuning case with ∆θ=0 and ∆c=115 MHz. Although there are five crossing 

points for the dispersion curve with the detuning line (Fig. 7(a)), two of them are always 

close to the high-absorption positions. So, as in Fig. 7(c) only three peaks survive. In Fig. 

7(b), the cavity is detuned to the right peak position and the dispersion curve is 

significantly distorted, but one still finds only three peaks in the transmission spectrum 

(Fig. 7(d)) (two of the five peaks are absorbed), which corresponds to the situation as 

described in Ref. [24]. 

Figure 8 presents the experimental results in the inhomogeneously-broadened 

three-level atomic system. Figure 8(a) depicts the cavity transmission spectrum at the 

coupling detuning of ∆c=-75 MHz, and Fig. 8(b) presents the positions of the three peaks 

as a function of the coupling detuning. Again, one can see the anti-crossing-like behavior 

for the two side peaks. The center (“dark polariton”) peak position changes quasi-linearly 

with the coupling detuning. 

 

IV. CONCLUSION 

We presented our experimental investigations of the cavity transmission spectra with 

inhomogeneously-broadened three-level atoms inside an optical ring cavity with cavity 

and coupling frequency detunings. The complicated cavity transmission peak structures 

can be qualitatively understood by plotting the linear dispersion curves together with the 
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detuning lines. The observed three-peak cavity transmission structures and their positions 

can be well explained by the crossing points between the dispersion curves of the 

intracavity medium and the detuning line. The near-resonance absorption peaks 

significantly affect the cavity transmission spectra and need to be considered in 

identifying the cavity transmission peaks. This study helps us to better understand the 

interactions between the strongly coupled three-level atoms and the optical cavity, which 

can find applications in quantum information processing. 

We acknowledge the funding support of the National Science Foundation through 

the grant PHY-0652970.  
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FIGURE CAPTIONS 

Fig. 1. (Color online) Theoretical plots of dispersion curves and cavity transmission 

spectra versus probe frequency detuning for a Doppler-broadened three-level medium. (a) 

and (b): red solid curves are intracavity dispersion curves; blue dotted curves give the 

absorption (which are suppressed [10]); and green dashed lines are the detuning lines. (c) 

and (d) are the cavity transmission spectra corresponding to (a) and (b), respectively. The 

parameters used in the calculation are: decay rate for the probe transition 

21 2 3 MHzγ π= × , the ground-state dephasing rate 31 2 0.1 MHzγ π= × , 

2 32c MHzπΩ = × , the coupling detuning 0cΔ = , the cavity detuning 0θΔ = , and the 

atomic density 10 31.5 10N cm−= ×  or 10 35 10N cm−= ×  for (a) and (b), respectively. 

 

Fig. 2. (Color online) Dispersion picture at different cavity frequency detuning values. (i), 

(ii), and (iii) give the detuning line p−Δ  at different cavity detuning values. Other 

parameters used in the calculation are the same as in Fig. 1(a).  

 

Fig. 3. (Color online) Experimental setup. PBS: polarization beam splitter; M1-M3: 

cavity mirrors; APD: avalanche photo-diode detector; and PZT: piezoelectric transducer. 

 

Fig. 4. (Color online) Cavity transmission spectrum for different cavity detuning values. 

(a1)-(g1):The experimentally measured transmission spectra. The experimental 

parameters are Pp=1.7 mW, Pc=13.7 mW, ∆c=0, and T=80.3 ºC. (a1) ∆θ≈160 MHz, (b1) 
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∆θ≈140 MHz, (c1) ∆θ≈20 MHz, (d1) ∆θ≈0 MHz, (e1) ∆θ≈ -40 MHz, (f1) ∆θ≈ -120 MHz, 

(g1) ∆θ≈ -160 MHz. (a2)-(g2): The theoretically calculated results corresponding to the 

measured spectra shown on (a1)-(g1), respectively. (a2) ∆θ≈80 MHz, (b2) ∆θ≈40 MHz, 

(c2) ∆θ≈20 MHz, (d2) ∆θ≈0 MHz, (e2) ∆θ≈ -20 MHz, (f2) ∆θ≈ -40 MHz, (g2) ∆θ≈ -80 

MHz. 

 

Fig. 5. (Color online) Measured cavity transmission peak positions as a function of cavity 

detuning. The experimental parameters are the same as in Fig. 4. Inset: the enlarged 

display of the center “dark polariton” peak. 

 

Fig. 6. (Color online) (a) Measured cavity transmission spectrum with ∆θ= -200 MHz. (b) 

The positions of the polariton peaks as a function of the cavity detuning. The 

experimental parameters are T=84.2ºC, Pp=1.2 mW, Pc=20.8 mW. 

 

Fig. 7. (Color online) Calculated dispersion and cavity transmission curves versus the 

probe detuning for a three-level homogeneously-broadened medium. (a) and (b): red solid 

curves show the dispersion plots; blue dotted curves present the absorptions; and green 

dashed lines show the detuning lines. (c) and (d) are the transmission spectra 

corresponding to (a) and (b), respectively. The parameters used in the calculation are: 

21 2 3 MHzγ π= × , 31 2 0.1 MHzγ π= × , 2 8c MHzπΩ = × , 8 33 10N cm−= × , and 
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0cΔ =  (or 115c MHzΔ = ) for (a) (or (b)). 

 

Fig. 8. (Color online) (a) Measured cavity transmission spectrum with ∆c= -75 MHz. (b) 

The positions of the polariton peaks as a function of the coupling detuning. The 

experimental parameters are T=76.7 oC, Pp=0.5 mW, Pc=7.0 mW. 
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Figure 1, Sheng et al. 
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Figure 2, Sheng et al. 
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Figure 3, Sheng et al. 
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Figure 4, Sheng et al. 
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Figure 5, Sheng et al. 
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Figure 6, Sheng et al. 
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Figure 7, Sheng et al. 
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Figure 8, Sheng et al. 

 


