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We study the quantum anomalous Hall states in the p-orbital bands of the honeycomb optical
lattices loaded with the single component fermions. Such an effect has not been realized in both
condensed matter and cold atom systems yet. By applying the available experimental technique
developed by Gemelke et al. to rotate each lattice site around its own center [1-3], the band
structures become topologically non-trivial. At a certain rotation angular velocity €2, a flat band
structure appears with localized eigenstates carrying chiral current moments. With imposing the
soft confining potential, the density profile exhibits a wedding-cake shaped distribution with insu-
lating plateaus at commensurate fillings. Moreover, the inhomogeneous confining potential induces
dissipationless circulation currents whose magnitudes and chiralities vary with the distance from
the trap center. In the insulating regions the Hall conductances are quantized, and in the metallic
regions the directions and magnitudes of chiral currents cannot be described by the usual local-
density-approximation. The quantum anomalous Hall effects are robust at temperature scales small
compared to band gaps, which increases the feasibility of experimental realizations.

PACS numbers: 03.75.Ss, 05.50.+q, 73.43.-f, 73.43.Nq

I. INTRODUCTION zero in each unit cell and there are no Landau levels.

The anomalous Hall effect appears in ferromagnets in
the absence of external magnetic fields which was discov-
ered soon after the Hall effect. The mechanism of the
anomalous Hall effect has been debated for a long time,
including theories of the anomalous velocity from the in-
terband matrix elements [4], the screw scattering [5], and
the side jump [6]. Recently, a new perspective has been
developed from topological band properties, the Berry
curvature of the Bloch wave eigenstates [7-12], which has
been very successful. The Berry curvatures serve as an
effective magnetic field in the crystal momentum space,
leading to an anomalous transversal velocity of electrons
when electric fields are applied [10]. The anomalous
transversal velocity of electrons gives the intrinsic con-
tribution to the observed anomalous Hall conductivity in
ferromagnetic semiconductors.

The integer quantum Hall effect (QHE) is the quan-
tized version of the Hall effect, in which Hall conduc-
tances are precisely quantized at integer values. This ef-
fect arises in the two dimensional electron gases in mag-
netic fields with integer fillings of Landau levels. The
quantization of the Hall conductance is protected by the
non-trivial band structure topology characterized by the
Thouless-Kohmoto-Nightingale-den Nijs (TKNN) num-
ber, or the Chern number [13, 14].

In order to achieve a non-zero Chern number pattern,
time-reversal symmetry needs to be broken, but Landau
levels are not necessary. Integer QHEs can appear as a
result of the parity anomaly of the 2D Dirac fermions
[15-17]. Haldane constructed a tight binding model in
the honeycomb lattice with Bloch wave band structures,
and showed that it exhibits quantum Hall states with
v = £1 [17]. This effect is termed “quantum anomalous
Hall effect” (QAHE) because the net magnetic flux is

The Haldane model has been taken as a prototype model
for QAHESs.

The Hall effect has been generalized into electron sys-
tems with spin degrees of freedom as “spin Hall effect”, in
which transverse spin currents instead of charge currents
are induced by electric fields [18-23]. Different from the
Hall effect, the spin Hall effect maintains time-reversal
symmetry. Topological insulators are the quantum ver-
sion of the spin Hall systems, which exist in both 2D and
3D systems. Their band structures are characterized by
the Zs-topological index [24-32]. These states have ro-
bust gapless helical edge modes with odd number of edge
channels in 2D systems [26, 33, 34], and odd number of
surface Dirac cones in 3D systems [30-32]. Topological
insulators have been experimentally observed in 2D quan-
tum wells through transport measurements [35], and also
in 3D systems of Bi,Sby_,, BisTes, BisSes, and ShoTes
through the angle-resolved photoemission spectroscopy
[36-39] and the absence of backscattering from scanning
tunnelling microscopy spectroscopy [40-42].

Among all these Hall effects mentioned above, only
the QAHE has not been experimentally observed yet.
Several proposals have been suggested to realize this
novel Hall effect in semiconductor systems with topo-
logical band structures by breaking time-reversal sym-
metry, such as ferromagnetic ordering [43-46]. Because
no external magnetic fields are involved, QAHE states
are expected to realize the dissipationless charge trans-
port with much less stringent conditions than those of the
quantum Hall effect. This is essential for future device
applications.

On the other hand, the development of cold atom
physics has provided a new opportunity for the study
of QHEs and QAHESs. Several methods to realize these
effects have been proposed including globally rotating



traps and optical lattices, or introducing effective gauge
potential generated by laser beams [47-54]. In particular,
the Haldane-like models were proposed in Refs [52-54].
Furthermore, the realization of the quantum spin Hall
systems has also been proposed [55]. All these proposals
involve experimental techniques to be developed.

In a previous paper [56], one of us has proposed to
realize the QAHE in the p-orbital bands in the honey-
comb optical lattices through orbital angular momentum
polarizations. This can be achieved by rotating each op-
tical site around its own center, but there is no overall
lattice rotation. The net effect of this type of rotation
is the “orbital Zeeman effect”, which breaks the degen-
eracy of the onsite p, + ip, orbitals. This gives rise to
non-trivial topological band structures, and provides a
natural way to realize the Haldane model. Increasing the
rotation angular velocity induces the topological phase
transition by changing the band structure Chern num-
bers. In the regime of large rotation angular velocities,
the band structures reduce into two copies of Haldane’s
model for each of the p, + ip, orbitals, respectively.

The main advantage of this proposal is that all the ex-
perimental techniques involved are available. The hon-
eycomb optical lattice was constructed long time ago
[57]. Recently, the superfluid-Mott insulator phase tran-
sitions of bosons have been observed in the honeycomb
lattice by Sengstock’s group [58]. The rotation technique
has been developed by Gemelke, Sarajlic, and Chu [1].
They have applied it to rotate the triangular lattice filled
with bosons to study the fractional quantum Hall physics
[2, 3]. For the purpose of studying QAHE, we only need
to apply this technique to the honeycomb lattice and load
it with fermions.

This proposal brings a natural connection between the
QAHE and orbital physics in optical lattices. Orbital is a
degree of freedom independent of charge and spin, which
was originally investigated in solid state systems. It plays
an important role in superconductivity, magnetism, and
transport properties in transition metal oxides. The key
features of orbital physics are orbital degeneracy and spa-
tial anisotropy. Optical lattices bring new features to
orbital physics which are not easily accessible in solid
state orbital systems. First, optical lattices are rigid and
free from Jahn-Teller distortions, thus orbital degener-
acy is robust. Second, the metastable bosons pumped
into high orbital bands exhibit novel superfluidity beyond
Feynman’s “no-node” theory [33, 59-63], which does not
appear in “He and the previous study of cold bosons. Ex-
citingly, this unconventional type of BECs have been ex-
perimentally observed recently [64, 65]. Third, p-orbitals
have a stronger spatial anisotropy than that of d and f-
orbitals, while correlation effects in p-orbital solid state
systems (e.g. semiconductors) are not that strong. In
contrast, interaction strength in optical lattices is tun-
able. We can integrate strong correlation effects with
strong spatial anisotropy more closely than ever in p-
orbital optical lattice systems [66-69]. Recently, we also
extend the research of orbital physics with cold atoms

into unconventional Cooper pairings, which includes the
f-wave Cooper pairing [70] in the honeycomb lattice, and
the “frustrated Cooper pairing” in the triangular lattice
[71].

This paper is as an expanded version of the previous
publication of Ref. [56] on QAHE in the p-orbital band
in optical lattices. We will also present new results in-
cluding the chiral flat band structures which occur at
an intermediate rotating angular velocity. The effects
of the confining potential are investigated in detail, in-
cluding the distributions of densities and anomalous Hall
currents. The quantized anomalous conductances appear
in the band insulating regime at commensurate fillings.
The magnitudes and chiralities of anomalous Hall cur-
rents in the metallic regions cannot be described by the
usual local-density-approximations.

The rest of the paper is organized as follows. In Sec.
1T, we give an introduction to the experimental setup and
the orbital Zeeman coupling. In Sec. III, a heuristic pic-
ture is given to arrive at the Haldane model at large ro-
tation angular velocities. In Sec. IV, the band structures
including Berry curvatures and flat bands are studied. In
Sec. V, the spatial distributions of the particle density
and anomalous Hall currents in the inhomogeneous har-
monic trap is studied. Finite temperature effects are also
studied. In Sec. VI, a brief discussion on the detection
of the anomalous Hall current is presented. Conclusions
are made in Sec. VII.

II. THE TIGHT-BINDING HAMILTONIAN
WITH THE ON-SITE ROTATION

In this section we describe the experimental setup by
Gemelke et al. to realize the on-site rotation of opti-
cal lattices [1-3], and then construct the effective tight-
binding model for such a system.

A. The experiment setup by Gemelke et al.

The honeycomb optical lattice was experimentally real-
ized quite some time ago [57, 58, 72, 73]. It is constructed
by three phase coherent coplanar laser beams with polar-
ization along the z-axis, intersecting each other with 120°
in the zy-plane. The schematic diagram of the experi-
ment setup is shown in Fig. 1. The potential minima of
the interference pattern form the honeycomb lattice if the
laser frequency is blue-detuned from the atom resonance
frequency. The advantage of this technique is that the
phase shift in the laser beams only leads to shift entire
lattices without destroying the lattice geometry.

The on-site rotation technique by Gemelke et al. was
originally applied to the triangular lattice [1, 3]. It would
be straightforward to apply the same method to the hon-
eycomb lattice. Two electro-optic modulators are placed
in two of the laser beams, and the phase modulated po-
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FIG. 1: (Color online) a) The sketch of the honeycomb optical
lattice. The three laser beams cross each other at 120° in the
zy-plane. Phase modulators are placed in the paths of the two
beams. b) The illustration of the on-site rotation by Gemelke
et al. [1-3]. The entire lattice takes the motions of a fast
oscillation with the frequency wrr and a slow precession with
the frequency (2, as schematically plotted with the red solid
lines in one lattice site. After taking the time average of the
fast oscillation, atoms feel that each site is rotating around its
own center with the precession frequency €2, which is plotted
with the red dot dash line around each site.

tential is [2]

V(7) = Vpleos(kr - 7+ ¢F) + cos(ky - 7+ ¢7)
+ cos(l%} F—¢t —97)), (1)

where k; = %ngk(lfg —qr); ¢i(1 = 1,2,3) are the wavevec-
tors of the three coplanar laser beams satisfying |q1| =
lg2| = |g3] = ¢. In the following of this paper, we use the
definition of recoil energy E, = h?¢*/(2M) where M is
the atom mass. Please note that this definition of E, is 3
times smaller than that used in Ref. [68] which is defined
as B?k*/(2M). In Eq. 1, ¢* = nsin(Qt + &) sin(wrpt)
where (2 is the slow precession frequency; n is a phase
modulating constant which determines the amplitude of
the oscillation; wry is the fast rotation frequency at radio
frequency. Atoms do not follow the fast oscillation and
only feel a time average of the potential as

3

V(i) = Vo > [Ai(t) cos(k; - )], (2)

=1

where A;(t) = Jo[nsin(Qt + i2F)]; Jo is the zeroth order
Bessel function; 7 is a small parameter [2].

Eq. 2 still maintains the same lattice translational
symmetry. Around each potential minimum 7y in the
original lattice without rotation, the potential can be ex-
panded to the second order, yielding a slightly anisotropic
harmonic potential:

L Vo g 87° N
V('I"—’r(),t) ~ IO{T (1—§) |T—T0|2+T

x |7 — 75| cos [%+2(Qt+90?7r‘o)]}v (3)

which rotates with a slow frequency of Q. Here pz_z, is
the polar angle of 7 — 7. The slight deformation of the
optical potential processes around each site center, which
can be regarded as an on-site rotation.

B. The tight-binding Hamiltonian

Now we construct the effective tight-binding model to
describe the above system. First of all, each lattice site
is rotating around its own center, and there is no overall
rotation of the entire lattice. In other words, the sys-
tem still has the lattice translational symmetry. There
should be no vector potential for inter-site hopping asso-
ciated with the Coriolis force. Within each site, the rota-
tion angular velocity couples to the onsite orbital angular
momentum through the orbital Zeeman coupling. Such a
coupling also exists in solid state systems in the presence
of external magnetic fields. However, the typical energy
scales of the Zeeman couplings, including both spin and
orbital channels, are at most at meV which are tiny com-
pared to band widths. They usually do not change the
band topology. The advantage of the experiments by
Gemelke et al. [1-3] is that the orbital Zeeman energy
scale can easily reach the order of kHz, which is compa-
rable to band widths.

The orbital Zeeman term from the onsite rotation is
important in all the orbital bands except the s-orbital
one. For the p, ,-orbital bands, one of us [56] introduced
the following coupling as

H; = _QZLZ(F) = ZhQZ {pLpr,r - p;;pz,r*}. (4)

It breaks the degeneracy between p, + ip, states, and
induces topologically non-trivial band structures as pre-
sented in later sections.

The remaining part of the tight-binding Hamiltonian is
as usual. In Ref [66, 68], one of us studied the p,, ,-orbital
bands in the honeycomb optical lattice filled with spin-
less fermions, which is the counterpart of graphene de-
scribed by the p,-orbital but exhibits fundamentally dif-
ferent properties. The tight-binding Hamiltonian reads

3
HO = t” Z Z {pI,Fpi;fq‘éi + hC} — M Z n(F)v(5)
FEA i=1 TeADB

where €12 = :I:@a? + %gj and é3 = —¢; A and B are
indices of two different sublattices; ¢ is the o-bonding



FIG. 2: (Color online) The pattern of the induced complex-
valued NNN hopping at €2 > t||, which is generated by the vir-
tual hopping between orbitals with opposite chiralities. From
Wu [56].

describing the longitudinal banding of p-orbitals along
the bond direction; u is the chemical potential; n(F) =
plj‘p;ﬂ,? + p;;py); is the filling number at site #. The
operators p; » are defined as the projection of p-orbital
along the vector &; as pr = p 7T + py7y. Rigorously
speaking, | should be time-dependent which depends on
the oscillation amplitude 7. Here we neglect this time-
dependence by assuming 7 is small. ) is positive as a
result of the odd parity of the p -orbitals. The m-bonding
t, is much weaker than the o-bonding. For example,
t1/t) can be easily suppressed around 1% [56] within
realistic experimental parameters of Vy/E, = 15, thus
the t| is not considered in most of this paper unless in
Sect. IVC. The band Hamiltonian to be investigated
below is the combination between Eq. 4 and Eq. 5 as

H=Hy+ Hy,. (6)

IIT. THE APPEARANCE OF THE HALDANE
MODEL AT LARGE ROTATION ANGULAR
VELOCITIES

Haldane proposed a tight-bonding model for the
QAHE effect whose Bloch wave band structure is topo-
logically non-trivial [17]. The Hamiltonian of the Hal-
dane model is defined in the honeycomb lattice, which
reads

H= —tz {a;raj + h.c.} + Z {tgjazaj + h.c.}, (7)

(ig) ((i5))

where (i) represents the nearest-neighbor (NN) hopping;
((ij)) represents the next-nearest-neighbor (NNN) hop-
ping. The NNN hopping ¢’ = |#|e*® is complex-valued
whose argument takes ¢ if the hopping from ¢ to j is
anticlockwise (clockwise) with respect to the plaquette
center. Eq. 7 breaks time-reversal symmetry. The band
spectra exhibit two gapped Dirac cones in the Brillouin
zone (BZ), whose mass values have opposite signs. The
band structure has the non-vanishing Chern numbers +1,

which leads to the QAHE with v = +1. In the system
with the open boundary condition, unidirectional edge
currents appear surrounding the system, i.e., the edge
currents are chiral.

Before the detailed study on the band structures of
our p-orbital Hamiltonian Eq. 6, we present an intuitive
picture that the on-site rotation induces complex-valued
NNN hopping terms in the limit of /¢ > 1 as in the
Haldane model. As a result, the Gemelke type rotation
provides a possibility to realize the QAHE state in the
cold atom experiments. In the presence of rotation, the
on-site eigen-orbitals become p, £ ip, with an energy
splitting of 2Q2. When Q > ¢, each level of p, + ip,
broadens into a band without overlapping each other.
We consider the case that € > 0, such that the low en-
ergy sector of the Hilbert space consists of the p, + ip,
orbital state. The leading order term of the effective
Hamiltonian in this sector is just the NN hopping with
the hopping integral of %t”. Moreover, the second order
perturbation process generates the NNN hopping with
complex-valued integral as explained below.

Let us consider the two-step virtual hopping process
illustrated in Fig. 2. In the first step, the atom starting
from the low energy sector of the p,+ip, orbital in the A-
site hops into the high energy sector of the p, —ip,, orbital
in the nearest neighbor B-site. The phases along the AB-
bond is 30° from the A-site and 150° from the B-site, thus
there is a phase mismatch of 120°. The corresponding
hopping integral is complex-valued with %tHei%”. Sim-
ilarly, during the second step the atom hops back into
the p, + ipy orbital in the NNN A-site with the com-
plex hopping integral %t”el%”. The hopping process is
(A+) — (B—) — (A’+) where =+ represents the chiral-
ity of p, £ ip, orbitals. The corresponding amplitude is
calculated as follows:

(A" + |Ho|B—)(B — |Ho|A+)
—20)

INNN =

th .
_8_96147r/3' (8)

All the NNN hoppings have the same phase value fol-
lowing the arrows, which is exactly the same as in the
Haldane model. The above analysis applies to the high
energy sector as well. Thus we have two copies of the
Haldane model, each for the p, +1ip, bands, respectively.

IV. BAND STRUCTURES IN THE
HOMOGENEOUS SYSTEM

In this section, we present the band spectra in the
homogeneous system with the periodical boundary con-
ditions (PBC). The general structure is studied in Sec.
IV A, and the interesting flat band structure is presented
in Sec. IV B.
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FIG. 3: (Color online) The band structures of the Hamilto-
nian Eq. [11]. With increasing rotation velocity from (a)
Q/ty = 0 to (f) Q/ty = 1.7. The flat bands appear at
Q/t = %. Energies are in unit of hopping strength ¢ and
wavevectors are in the unit of 1/a, which is the reciprocal of
the lattice constant. The energies of these two flat bands are

E/tH = i%.

A. The general band structures

We define the four-component spinor representation
for the two-orbital wavefunctions in the two sublattices
as

02) = [pas (F).pay (B2 (Bpmy (B)] - (9

After performing the Fourier transform, the Hamiltonian
Eq. 6 becomes

H = 3" (R Han (F) — Sansilin(F), (10)

where Hab(E) is written as

The band structure in the absence of rotation i.e.,
Q = 0, has been studied in Ref. [66, 68], which includes
both flat bands (the bottom and top bands) and two dis-
persive bands with Dirac cones as depicted in Fig. 3
(a). The flat bands and dispersive bands touch at the
center of the first BZ, and two dispersive bands touch
at Dirac cones. The location of the Dirac cones are at

k= (+ 34\/%1,0) [66, 68]. The band flatness means that

the corresponding band eigenstates can be constructed as
localized states in real space. Each hexagonal plaquette
supports one localized eigenstate whose orbital configu-
ration on each site is along the tangent direction as pre-
sented in Fig. 2a in Ref. [66]. When the filling is inside
the flat bands, interaction effects are non-perturbative.
This results in the exact solutions of the Wigner crys-
tallization for spinless fermions [66] and the flat band
ferromagnetism for spinful fermions [69]. For the dis-
persive bands, although their spectra are the same as
in graphene, their eigen-wavefunctions are fundamentally
different exhibiting rich orbital structures as presented in
Ref. [68].

When the on-site rotation is turned on, i.e., 2 > 0,
band gaps open. The previous touching points between
the first and second bands at 2 = 0 split. The lowest
band is no longer flat, and the center of the second band
is pushed up as depicted in Fig. 3 (b). The Dirac cones
between the middle two dispersive bands also become
gapped. In this case, the topology of each band n (n =
1 ~ 4) is characterized by the Chern number defined as

1 -
= — | d*k Fy . (k 12
Co = 5= [ @ Funy(F) (12)
where the Berry curvature F), ;. is defined as
Fn,wy(lg) = akm An,y(]z) - 6ky An,w(];)v (13)

and A, (¢ = z,y) is the Berry gauge potential in mo-
mentum space defined as

Apyy = 1 (8)|h, ¢ () (14)

The Chern number patterns at 2 > 0 have been cal-
culated in Ref. [56], and the distribution of the Berry
curvatures F}, ;,, in the BZ is depicted in Fig. 2 of Ref.
[56]. Below a critical value of the rotation angular veloc-
ity Q¢/t) = %, the Chern number pattern reads

Cl = —C4 = 1; Cg = —C3 =0. (15)

At Q./t) = %, a single Dirac cone connecting the second

and third bands shows up at k= (0,0), which triggers



a topological phase transition. Beyond ()., this Dirac
point becomes gapped, and the Chern number pattern
becomes

Ol :—02:1; 03:—04:—1. (16)
In this case, the band structure is qualitatively the same

as the two copies of the Haldane model as discussed in
Sec. III.

B. Flat bands at Q/t) = %

It is evident in Fig. 3 (c) that the second and third
bands become flat at Q/t; = 3. In this part, we discuss
various properties of the flat bands, including the local-
ized eigen-states, the distribution of the Berry curvature,
and the interaction effects.

1. Localized eigen-states

The band flatness usually means that the eigen-states
can be reconstructed as localized states in real space.
We assume that each localized eigenstate exists within a
single hexagon plaquette constructed as follows

6
lvg) = Z(—)jflei(%lw{ cos0|pjz) —sinb; ij,y>},

j=1

J (17)
where R is the coordinate of the plaquette center; j is the
site index within the same plaquette and 6; = (j — 1)%;
e'® is the phase factor to be determined satisfying the
periodical boundary condition e?? = 1; the factor of

1 —ik-e1Fix1 1 —ik-eaFixz
2¢ + €
1 V3 o —ik-e1Fixa
. . . 2 . .
i(%61£-61$1X1 4 Lleik-exFixa _ elk-€3$1X3) )
V3 ik-e1 Fix V3 ik-esFix
$(Te 1 1 _ Te 2F 2)

where 1/1;(12) represent eigenvectors for the bands with

E/t| = F3, respectively; x1 = X2 = %”, and x3 = 2.
The normalization factors N+ (k) read
. L. 9
Ny (k) = 2[3 - ;cos(k by F gﬁ)] (22)

These flat band Bloch wave states can be represented as

the linear superpositions of the localized eigenstates in
Eq. 17 as :

1 i E
g 2) = —F— > e Hypg) (23)
o VN=(k) &

(=)~ is a sign convention because of the odd parity of
the p-orbitals. The p-orbital configuration on each site j
is along the tangent direction. Substituting Eq. 17 into
the band Hamiltonian, we arrive at the condition for Eq.
17 to be the eigenstate as

Q:—?sinqﬁ, E:—gcosgb, (18)

where ¢ = O,ig,i%ﬂ,w. For the cases of ¢ = 0 and
m, they are the situations studied before in Ref. [66]
without the on-site rotation. The other four cases are

with the on-site rotation. Without loss of any generality,
we take ¢ = —% and ¢ = —2F such that Q/t; = 3 >0
and B/t = :l:%. The schematic diagram of these two
typical localized state is shown in Fig. 4 (a) and (b),
respectively.

The main difference between these two groups of local-
ized states at 2 = 0 and Q/t; = 3 is that there exists
a current around each plaquette for the latter case. The

current operator along each bond is defined as

A t

Jrsre, = i%{p; é)(Brsc, - é) —he b (19)
For the localized plaquette eigen-states of both bands
with F = :l:%t”, the currents have the same value and
chirality as

J=—V3. (20)

Eq. 20 indicates that the current direction is opposite
to the rotation and the magnitude is proportional to the
angular velocity €.

At Q/t| = 2, we solve the eigenvectors for the two flat
bands in momentum space as

_ —ikesFixs

_ YB3 —ikeaFixa
(21)

where |¢R) is defined in Eq. 17.

2. DBrief discussions on interaction effects

The band flatness means that interaction effects are al-
ways important compared to the vanishing kinetic energy
scale. In our previous studies [66, 68, 69], we have exam-
ined the non-perturbative effects in the flat bands (the
lowest and highest bands) in the same system at Q = 0.
In Ref. [66, 68], we have shown that the flat bands re-
sult in the exact solution of Wigner crystal configuration



FIG. 4: (Color online) Configurations of the localized eigen-
states of the two flat bands at Q/t = 2 for (a) E/t| = —2
and (b) E/t; = 3, respectively. w = €'% is the relative phase
factor between neighboring sites. The plaquette currents di-
rections are clockwise for both (a) and (b) in the opposite
direction of the €2.

(@) (b)

FIG. 5: (Color online) The Berry curvature Fyy(in unit of

a®) distribution at €2/t; = 2 for the 1st (a) and 2nd (b) bands.
The Chern numbers for the 1st and 2nd bands are 1 and 0,

respectively. The unit of wave vector is 1/a.

for spinless fermions in the lowest band. At (n) = %,
which corresponds to that % of the flat band plaquette
states are occupied, the occupied plaquettes form a trian-
gular lattice structure without touching each other. As
filling increases, exact solutions are no longer available.
Self-consistent mean-field theory calculation shows a se-
rials of insulating states with different orbital orderings
at commensurate fillings [68]. Similarly, in Ref. [69],
we found the exact flat-band ferromagnetism for spinful
fermions in the flat bands.

For the flat bands occurring at Q/t) = %, the physics
will be similar to the previous studies at 2 = 0. How-
ever, the flat bands here are in the middle. When p lies
in the flat bands, there are always background particles
or holes filling in the dispersive bands. The solutions
of the Wigner crystal and flat-band ferromagnetism is
only valid if the interaction energy scale is smaller than
the band gaps between the flat bands and the dispersive
bands. For example, when the filling is inside the second
band, the effect from the background filling cannot be
neglected, if the interaction energy scale is stronger than
the band gap.

3. Berry curvatures v.s. local eigen-states

The current carried by the localized eigenstates of the
flat bands depicted in Fig. 4 is chiral. It looks very sim-
ilar to the classic picture of cyclotron orbit of electrons
in the external magnetic fields. We would expect that
in a system with the open boundary condition, the fully
filled flat band would result in edge currents and con-
tributes to the quantized anomalous Hall conductance.
However, we need to be very careful with this, which
turns out to be incorrect. We have performed a pre-
liminary diagonalization for a finite size system with the
open boundary condition. The number of degeneracy for
the flat bands equals to the number of plaquettes plus
1. We conjecture that this extra state should not belong
to a particular plaquette but rather distribute along the
edge, which carries a current in the opposite direction
and cancels the contribution from other plaquette states.
Further examinations on this problem will be deferred to
a later publication.

We calculate the Berry curvature distributions at
Q/t; = 2 for the 1st and 2nd bands as presented in
Fig. 5 (a) and (b), respectively. Those of the 3rd (4th)
band are just with an opposite sign compared to the 2nd
(1st) band due to the particle-hole symmetry of the band
Hamiltonian. The 1st and 4th bands are topologically
non-trivial with the Chern number £1. However, the
2nd and 3rd bands, which are flat, are topologically triv-
ial with the zero Chern number. In fact, these two bands
should not contribute to quantum anomalous Hall con-
ductance when they are fully filled. This is confirmed
from the anomalous Hall current calculation in the inho-
mogeneous trap as presented in Sec. V.

C. Effects of the m-bonding to band structures

So far, we have neglected m-bonding ¢, which can be
easily suppressed around 1% of ¢ at intermediate optical
potential strength [68]. Here we explicitly present its ef-
fects to band structures for the case of a relatively weak
lattice potentials by taking ¢, /t| = 0.05. The projec-
tions of p, ,-orbitals perpendicular to the é; 3 3 directions

are defined as p} 5, = —3po E @py, Ph = g, respectively.

The 7-bonding Hamiltonian can be written as

H, = —t, Z {pgip/ﬂ_aém—kh.c.}, (24)
FEA,i=1~3

where the hopping integral of the w-bonding has the
opposite sign to that of the o-bonding. In momentum
space, Eq. 24 transforms into

He = —t1y (k) Heas(B)s(k),  (25)
k



FIG. 6: (Color online) The band structures with both -
bonding (t./t; = 0.05) and on-site rotation 2. Only the
lower two bands are presented, and the spectra of the other
two bands are symmetric with respect to zero energy. (a)
At Q/t) = 0, the two bands remain touching at the center
of the BZ. The lowest band develops dispersion at the order
of . (b) At Q/t; = 0.2, the gap opens between the lower
two bands. The lowest band is topologically non-trivial and
nearly flat.

with the martix kernel H, (k) as

0 0 %(ezlz e 4 ezk 62) + ezk.é3 %(_6113 é1 + 67,1_5 éo

0 0 %(_ezk &1 + zk-é’g) @(ezk-é’l + 6zk-é’2)
h.c. 0 0
0 0

(26)

The effects of m-bonding ¢, are presented in Fig. 6.
The spectra remain symmetric with respect to zero en-
ergy, and thus only the lower two bands are presented.
As presented in Ref. [68], at 2 = 0, the bottom bands
are no longer rigorously flat but develops a finite width
at the Qrder of t|. The lower two bands remain touch-
ing at k = (0,0) with parabolic spectra, and the bottom
band has a negative curvature. With increasing €2, as in
the case of t; = 0, the band gap at the order of {2 opens.
Furthermore, 2 lowers the energies of the bottom band
near the center of the BZ, which suppresses its disper-
sion. As a result, we arrive at a nearly flat band with
non-zero Chern number. The ratio between the width
of the bottom band and the gap between the lower two
bands can reach the order of 5 as shown in Fig. 6 b.
Recently, we notice that the nearly flat bands with non-
trivial Chern number have been attracting attention, for
its possible realization of fractional quantum Hall states
in the lattice [74-76].

V. ANOMALOUS HALL CURRENTS IN
HARMONIC TRAP POTENTIALS

In section IV, the homogeneous p-orbital system with
the PBC has been studied, in which the wavevector k is
a good quantum number. However, in reality the honey-
comb lattice is inhomogeneous with a soft harmonic con-
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FIG. 7: (Color online) The DOS of the p, ,-orbital model
Eq. 5 and Eq. 4 in the homogeneous system. The red solid
lines are the DOS at Q/t; = % whereas the blue dash lines

are the DOS at Q/t) = 3.

fining trap. In this section, we shall consider the anoma-
lous Hall currents in such a realistic system.

The trapping potential adds a new term in the band
Hamiltonian Hy + Hy, of Egs. 5 and 4 as

Hy = Y Ve (r)n (7). (21)
The trapping potential Vi (r) reads
1 2.2 _ Bty ry2
Vr(r) = g Muwpr® = 7(5) ’ (28)
where a is the lattice constant, 5 = %(%)2, lop =
MZT is the trapping length scale. The typical value

of the trapping frequency wr is in the order of 10Hz,
and that of the recoil energy E, is roughly several kHz
[77]. In Ref. [68], we have calculated that t/E, = 0.24
for Vo/E, = 15, thus hw/t| is at the order of 0.1. The
typical trapping length scale is several lattice constants.
Taking into account all these factors, we choose a conve-
nient value of § = 0.01 for later calculations.

In the inhomogeneous system with trapping potential,
the on-site rotation induces the circulating currents along
the azimuthal direction. We will study the spatial dis-
tributions of the these anomalous Hall currents and par-
ticle density. Because the band topology has a transi-
tion at Qc/t; = 3, the results are presented at different
sets of parameters below, at, and above €2.. Our results
are calculated by using the eigen-wavefunctions from the
numerical diagonalization of the free Hamiltonian in an
open lattice with the trapping potential. We also use
a modified local-density-approximation (LDA) to under-
stand the exact results. The size of the lattice is within
the circle of the radius r/a = 40.
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FIG. 8: (Color online) The particle density distributions
(n(7) v.s. the radius 7 at (a) Q/t; = % and (b) 2, which
exhibit a four-layer wedding cake shape (the blue dots). The
radius is in the unit of the lattice constant a. The DOS at
the local chemical potential poc(r) in the LDA approxima-
tion is plotted with the black dash lines. pioc(r)/t) = 2.3 at

the center of the trap and wT/tH =0.1.

A. Low rotation angular velocity

In this subsection the angular velocities are taken as
Q/t; = 5 and 2 below (2. The chemical potential is cho-
sen as ju/t)| = 2.3 to guarantee that all bands are filled
at the center of the trap. The spatial distribution of the
particle density exhibits a four-layered wedding cake-like
structure. The density plateaus correspond to the band
insulating regions, where the local chemical potential,
defined as poc(r) = p — Vp(r), lies inside band gaps.
Furthermore, the anomalous Hall currents flow along the
tangent direction, whose conductances are quantized in
the insulating regions.

1. The insulating plateaus of (n(r))

We first present the density of states (DOS) for the
p-orbital bands in the homogeneous system at /¢ = %,

and % in Fig. 7. The DOS is defined as

o(E) = [ Gs3b(B(E) ~ B). (29)

At Q/t) = 3, the strong divergence of the DOS is indi-
cated at the 2nd and 3rd bands due to the appearance of
the flat bands. At the small value of Q/t| = 3, the DOS
of the 1st and 4th bands are larger than the 2nd and 3rd
bands, which is a reminiscence of the band flatness at
Q = 0. Moreover, it is obvious that the band gaps open

0 5 10 15 20 25 30 35
Radius to the trap center
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FIG. 9: (Color online) The effective local Hall conductance
0p0(r) v.s. 1 defined in Eq. 31 at Q/t; = 3 (a) and 2 (b).
The radius is in the unit of the lattice constant a. The results
from diagonalizing the free Hamiltonian with the trapping po-
tential is marked with asterisks, and those from the modified
LDA are plotted with dashed lines. 0,0 is quantized in the
insulating plateaus with commensurate fillings of (n(r)).

at Q. > 0. For the chemical potential i lying in the band
gaps, the system is in the band insulating states with
the commensurate values of the particle number per site
(n) = %, 1, %, and 2, respectively.

In the inhomogeneous trap, the real space distribu-
tions of the filling number (n(7)) are calculated by us-
ing the eigenstate wavefunction obtained through diago-
nalizing the Hamiltonian, which are depicted in Fig. 8
for Q/t) = % and %. In both cases, plateaus appear at

(n) = %, 1, % These plateaus can be understood within
the LDA picture. Recall the band structure in Fig. 3 and
the DOS in Fig. 7. When p,.(r) lies in the band gaps,
the filling number stops increasing until py,.(r) reaches
next band edge. The local DOS at site # at the en-
ergy (1) is also plotted, which roughly proportional
to 9,n(r). Tt is clear that the locations of the plateaus of
(n(r)) are and band gaps are consistent.

Because the honeycomb lattice breaks the SO(2) ro-
tational symmetry down to the 6-fold one, lattice sites
with the same magnitude of r may have different values
of (n(r)). They are slightly scattered in the metallic re-
gions between different plateaus as depicted in Fig. 8
(a) and (b). In the case of Q/t; = 2, the distribution
of (n(r)) exhibit devil’s stair-like features as filling the
flat bands [78, 79]. The potential gradient slightly lifts
the degeneracy of the flat bands in the homogeneous sys-
tems, and results in the cliff-like features. If with interac-
tions, the flat band regime may further exhibit plateaus
of Mott-insulating states with orbital orderings, which
will be deferred to a later research.
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FIG. 10: (Color online) The pattern of the anomalous Hall
current in the honeycomb lattice with the confining trap at the
rotation of €2/t = 0.75. The blue dotted (red solid) lines rep-
resent the counterclockwise (clockwise) anomalous Hall cur-
rents, respectively. The color depth indicates the magnitude
of the current. The reversed direction of the anomalous Hall
currents (red solid lines) in the metallic regions between two
neighboring plateaus can be explained as the anomalous con-
tribution from the gradient of (n(r)).

2. QAHE currents in the insulating density plateaus

Due to the non-trivial topology of the band structure,
anomalous Hall currents circulate along the azimuthal di-
rection due to the radial potential gradient. The plateaus
of the filling number (n(r)) correspond to the insulat-
ing quantum anomalous Hall regions with quantized Hall
conductance. Compared with the usual quantum Hall
systems, the on-site rotation breaks time-reversal sym-
metry and brings non-trivial topology to the band struc-
tures without Landau levels.

The anomalous Hall current along each bond is calcu-
lated by using the eigen-wavefunctions obtained from the
diagonalization of the real space p-orbital Hamiltonian as

t 4 s X
Trgre, = ine > AL 6)(brie - &) —hcl). (30)

where (||} represents the ground state at T = 0 or thermal
average at finite temperatures. Let us focus on those
bonds orienting along the azimuthal direction, and define
the effective local Hall conductance as

e J
Upg(’r) = _ﬁa (31)

where r is the radius of the middle point of the bond;
jo is the current density; Vr is the trapping potential.
In our honeycomb lattice system, the current density is
defined as the current on each bond Jy#+¢, divided by
the distance between neighboring parallel bonds.
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In the homogeneous systems, the Hall conductance is
represented as

11 - .
Opp = E% Z/d2kﬂ,ry(k)nf(lvk)a (32)

where n; is the Fermi distribution function; ¢ is the band
index. When the chemical potential is inside band gaps,
0,0 is quantized as the sum of the Chern numbers of the
occupied bands [10, 13, 14]

1
O =7 > (33)

For the cases of Q/t) = %, %, the Chern number pattern is
the same as C; = —Cy =1 and Cy = —C5 = 0 [56]. The
quantized Hall conductances reads 0, 1, 1 and 1 as y lies
from above the band top down to the three consecutive
three band gaps.

The results of ozg(r) (defined in Eq. 31) v.s r are
marked as asterisks in Fig. 9 (a) and (b) for Q/t| = 3
and %, respectively, which are obtained by diagonaliz-
ing the free but inhomogeneous Hamiltonian. The real
space circulating current pattern at Q/t) = % is depicted
in Fig. 10. The quantized Hall conductances in the in-
sulating plateau regions can be understood within the
LDA picture. At the center, the local chemical poten-
tial p0c(r) lies above the band top, and the conductance
is therefore zero. As moving into the insulating density
plateaus of (n(r)) = %,1, and %, agg is quantized at
1/h. Counterclockwise currents are plotted as blue dash
line under the harmonic trap potential. When the radius
r > 30, the Fermi level is lower than the band bottom,
thus the current vanishes again.

3. Anomalous Hall currents in the metallic regions

Between two adjacent insulating plateaus, the system
is metallic with incommensurate fillings of (n(r)), there-
fore the anomalous Hall conductances are non-quantized.
The Hall current response to the radial potential gradi-
ent is non-local in these inhomogeneous metallic regions.
The effective Hall conductance 0,9 defined in Eq. 31 can-
not be obtained from Eq 32 of the homogeneous system
by using LDA with a local chemical potential pe(r).
For example, the currents can reverse the direction to
be clockwise in the metallic regions in Fig. 9 (a) and
(b). However, because of the Chern number pattern of
Cy =C3 =0 and C; = —Cy = 1, the Hall conductance
0,9 defined in Eq. 32 is always positive within the LDA
at £ < (n) <1 which corresponds to that fie.(r) lies in
the gap between the 1st and 2nd bands, The naive LDA
results would only give rise to counterclockwise Hall cur-
rents in these two metallic regions.

Now we propose a modified LDA method to fit the
above exact results from diagonalization. We define the
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FIG. 11: (Color online) The particle density distributions
(n(7) v.s. the radius r at (a) Q/t; = 2 and (b) 2 (the
blue dots). The radius is in the unit of the lattice con-
stant a. The DOS at the local chemical potential pioe(r) in
the LDA approximation is plotted with the black dash lines.

Hioc(r)/t) = 3.5 at the center of the trap and wr/t) = 0.1.

effective driving force as the derivative of the spatial-
dependent part of the ground state energy density as

F0) = 3 { (o) = Bol@)n(r)}

= Faure + Fairr, (34)

where Ep () is the band bottom energy; Fyyist and Fyig
are defined as

Fdrift = _aTVT (T)a
Mloc(r) - EB (Q)
n(r)

Fyrire comes from the gradient of the trapping potential,
while Fyig is the chemical pressure from the particle den-
sity gradient.

Correspondingly, the anomalous Hall currents can be

interpreted by two contributions from the “drift” and
“diffusive” Hall currents as

Jo(r) = Jarise,0(r) + Jaisr,o(r)
o (T‘){Fdrift (T‘) + Fdiﬂ‘('f')}, (36)

where o,9(r) is obtained from Eq. 32 in the LDA by
using the local chemical potential po.(r). Thus Uzg(T)

defined in Eq. 31 is related to o,6(r) through

Fag = orn(r). (35)

755) = o) {1+ 210, (37)

The results of the effective Hall conductance o (r) using
this modified LDA is presented in Fig. 9 with dashed
lines, which nicely agrees with the exact results.
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FIG. 12: (Color online) The effective local Hall conductance
0p0(r) v.s. 1 defined in Eq. 31 at Q/t; = 2 (a) and 2 (b).
The radius is in the unit of the lattice constant a. The results
from diagonalizing the free Hamiltonian with the trapping po-
tential is marked with asterisks, and those from the modified
LDA are plotted with dashed lines.

In the insulating plateaus, Fgig = 0, thus the modi-
fied LDA reduces back to the naive LDA. However, in
the metallic regions, d,n(r) has the opposite direction to
0-Vr. As a result, the direction of Jyig,¢ is also oppo-
site to that of Jarist,p. The reversed direction of the Hall
currents in the metallic regions can be understood as the
contribution of “diffusive” Hall current dominates over
that of the “drift” Hall current.

B. Large rotation angular velocities (Q/t) = 2,2)

In this subsection, we consider the large rotation angu-

lar velocities at Q/t = % and 2 which are at and above
Q./t) = %, respectively. The band structure topology

above 2. changes to a different Chern number pattern
of C4 = —Cy = C3 = —Cy = 1. The chemical potential
./t is chosen to 3.5, which guarantees that all bands are
filled at » = 0.

The distributions of the filling number (n(7)) are de-
picted in Fig. 11 at (a) Q/t; = 2 and (b) Q/t; = 2,
respectively. At Q/t) = %, the 2nd and 3rd bands touch
each other at a Dirac cone located at the center of the BZ.
The DOS vanishes linearly, and thus the density profile
exhibits a soft slope instead of a flat plateau in Fig. 11
(a). In both Fig. 11 (a) and (b), the density distributions
between the 1st and 2nd bands also exhibit soft slopes
although there do exist a band gap in the homogeneous
system. This is because the potential gradient increases
as r goes larger in the confining trap, which closes the
small gap between the 1st and 2nd bands at large values
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FIG. 13: (Color online) The radial distributions of (a) the
anomalous Hall conductance o,0(7,T) and (b) the entropy

S(#,T) with Q/t; = 2. The black dot, blue “+”, magenta

diamonds and red asterisks of the data represent temperatures
atT =0,T/t)y =0.1, T/t =0.2and T/t = 0.5, respectively.

of Q.

The local anomalous Hall conductances defined in Eq.
31 are depicted in Fig. 12 at Q/t; = 2 and 2. In the in-
sulating plateaus between the 3rd and 4th bands, o, is
close to the quantized value of 1/h for both rotation angu-
lar velocities. The small deviation comes from the finite
width of the insulating regions. In the region with soft
slopes of the distributions of (n(r)) between the 1st and
2nd bands, 0,4 is significantly smaller than 1/h because
this region is not rigorously insulating. In the inhomoge-
neous metallic regions, the values of the local anomalous
Hall currents are non-quantized which are determined by
the combined effects from the gradients of the trapping
potential and the density distribution.

C. Temperature effects

In this subsection, we briefly discuss the finite temper-
ature effects to the anomalous Hall conductance. The
QAHE is a topological property existing in band insulat-
ing regions, thus it is robust against finite temperatures
provided their scale is small compared to the band gap.
On the other hand, we do expect that the anomalous Hall
conductance in the metallic regions will be significantly
affected by finite temperatures.

The radial distribution of the local anomalous Hall
conductance ozg(r) v. s. r is plotted in Fig. 13 (a) at
different temperatures. The rotation angular velocity is
taken as Q/t) = %. In this case, the band gaps are at the
same order of ¢|| as shown in Fig. 7. 0,9 remains nearly
quantized in the insulating regions for 7'/t = 0.1 ~ 0.2.
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According to the calculation of band structures in Ref.
[68], t| ~ 0.24E, at Vy/E, = 15 and the typical energy
scale of E, is 0.1 ~ 0.2uk, thus the QAHE signature
should survive at the order of 10nK, which is an exper-
imentally accessible temperature scale. In the metallic
regions, naturally o,9’s are more strongly affected by fi-
nite temperatures. As T further increases to the half
value of ¢, the quantized signatures of o, disappear.

We also present the entropy distributions in real space
at various temperatures as shown in Fig. 13 (b). The
local entropy is defined as

S(R.T) = —kp Y () {ma(7) ()
+ L-nM) Wl -n (@), (38)

where kp is the Boltzmann constant; the subscript ¢
is the index of energy levels; v;(7) is the wavefunction
at the location 7 n;(T) is the Fermi distribution func-
tion. At low temperatures (e.g. 7'/t = 0.1 and 0.2),
S(7,T) concentrates in the gapless metallic regions, and
remains negligible in the band insulating regions. We
have the coexistence of the insulating QAHE regions and
the metallic regions to hold a significant amount of en-
tropy. The tolerance of the large residue entropy den-
sities in the trap greatly facilitates the experimental re-
alization of the QAHE state. As temperatures go high,
say, T/t = 0.5, the entropy distribution becomes more
uniform, and there are no clear distinctions between in-
sulating and metallic regions any more. This agrees with
the picture in Fig. 13 (a), in which the plateaus of quan-
tized anomalous Hall conductance disappear.

VI. EXPERIMENTAL DETECTIONS

In experiments, the plateaus of commensurate fillings
of atoms in Fig. 8 and Fig. 11 can be observed by mea-
suring the in-trap density distribution or the compress-
ibility of the lattice system, as clearly demonstrated in re-
cent experiments [80-83]. However, the density plateaus
cannot distinguish the conventional band insulators and
the quantum anomalous Hall insulators.

In solid state systems, the Hall conductivity are ob-
tained from transport measurements, which are very dif-
ficult for the cold atom experiments. Nevertheless, it
has been proposed to detect through the response of the
atom density to an external magnetic field [84], which
can be realized by further rotating the harmonic trap
[85] or coupling atoms with additional laser fields. In
particular, the motion of atoms in laser fields leads to
an artificial magnetic field, which has been observed in
a recent experiment [86]. In the presence of an artificial
magnetic field, the quantized anomalous Hall conductiv-
ity 0y = (g—g)#, according to the well-known Streda

formula [87] derived for the quantum Hall effects in the
solid state. Therefore the density of atoms changes lin-



early with respect to the applied magnetic field when o,
is quantized in some regions of the harmonic trap.

Another possible method to detect the anomalous Hall
current is as follows. We assume all atoms are initially
prepared in a hyperfine ground state |1). To detect the
anomalous Hall current shown in Fig. 9, we apply a local
two-photon Raman transition using two co-propagating
focused laser beams in a small area S to transfer atoms in
S to another hyperfine state |2). A subsequent time-of-
flight measurement of the velocity distribution of atoms
in state |2) gives the initial velocity distribution (thus the
current) of atoms in the state |1) in the optical lattice.
The above density and current measurements provide the
experimental signature of the quantum anomalous Hall
effects in the p-orbital honeycomb lattice.

VII. CONCLUSIONS AND OUTLOOK

In summary, we have proposed the realization of the
quantum anomalous Hall states in the cold atom optical
lattices based on the experimentally available technique
of the on-site rotation developed by Gemelke et al. This
rotation generates the orbital Zeeman coupling whose en-
ergy scale can reach the order of the band width. In the
p-orbital bands of the honeycomb lattice, the band struc-
tures become topologically non-trivial at any nonzero ro-
tation angular velocities. A topological transition occurs
at Q./t; = 2 with different band Chern number pat-
terns below and above Q.. At Q > Q., the band topol-
ogy is equivalent to a double copy of Haldane’s quantum
anomalous Hall model. Flat band structures are also
found at Q/t; = 3 whose localized eigenstates can be
constructed as circulating plaquette current states. The
flat band structures may bring strong correlation effects,
such as Wigner crystal and ferromagnetism, when inter-
actions are turned on.
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The effects of the spatial inhomogeneity to the p-
orbital quantum anomalous Hall states are also investi-
gated. At each commensurate filling of %, 1, %, and 2,
the density profile exhibits insulating plateaus, whose
Hall conductances are quantized at integer values. In
the metallic regions between two adjacent plateaus, the
anomalous Hall currents are determined by the non-local
response, which can be understood as the combined ef-
fects of the gradients of the confining potential and par-
ticle density. We have also showed that the QAHE is
robust at finite but low temperatures compared to band
gaps.

We further point out that the generation of the quan-
tum anomalous Hall states from this “orbital Zeeman”
effect is very general, not just for the honeycomb lat-
tice. The advantage of the p-orbital honeycomb lattice is
that an infinitesimal value of 2 is enough to generate the
quantum anomalous Hall states. For other generic lattice
structures, beyond a critical value of €2 which is compa-
rable to the band width, the orbital Zeeman effect gen-
erates inverted orbital bands of different orbital angular
momenta. The further hybridization among them brings
non-trivial band topology, which is a similar mechanism
to achieve topological insulators in semi-conducting sys-
tems through spin-orbit couplings. A systematic study
will be presented in a later publication.
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