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We report measurements and simulations of disorder-induced heating in ultracold neutral plasmas.
Fluorescence from plasma ions is excited using a detuned probe laser beam while the plasma relaxes
from its initially disordered non-equilibrium state. This method probes the wings of the ion velocity
distribution. The simulations yield information on time-evolving plasma parameters that are difficult
to measure directly, and make it possible to connect the fluorescence signal to the rms velocity
distribution. The disordered-induced heating signal can be used to estimate the electron and ion
temperatures ∼ 100 ns after the plasma is created. This is particularly interesting for plasmas in
which the electron and ion temperatures are not known.

PACS numbers: 32.50.+d, 52.20.-j, 52.65.Rr, 37.10.De

I. INTRODUCTION

Strongly coupled neutral plasmas combine elements of
atomic physics, plasma physics, and condensed matter
physics [1–6]. Many of the simplifying approximations
used in these different fields can be tested in strongly cou-
pled systems. For example the number of particles per
Debye sphere can be continuously adjusted over a wide
range by changing the initial electron energy and plasma
density. This makes it possible to study the transition
from an ideal plasma to a strongly coupled Coulomb sys-
tem in a regular and highly controlled manner.

Ultracold neutral plasmas are created by photoion-
izing laser-cooled atoms [7–12]. Although the initial
ion temperature is typically 1 mK, it rapidly increases
by a few orders of magnitude due to Coulomb inter-
actions with neighboring ions [5, 10–13]. The strong
coupling parameter is thereby limited to Γ ≈ 2, where
Γ = e2/4πǫ

0
awskBT is the ratio of nearest-neighbor po-

tential energy to kinetic energy, aws = (3/4πn)1/3 is the
Wigner-Seitz radius, and n is the density. This heating
mechanism, raising the ion temperature from essentially
zero to near the correlation temperature

Tc =
2

3

e2

4πǫ0awskB

, (1)

is called “disorder induced heating” (DIH). This is a
nonequilibrium, ultrafast relaxation, similar to what oc-
curs in high density laser-produced plasmas and laser-
driven fusion plasmas, as well as many other systems [14].
Interestingly, for the case of ultracold neutral plasmas, if
the initial spatial distribution of ions was highly ordered
and periodic this heating would not occur [5, 15]. This
suggests that DIH measurements could be used to mea-
sure disorder in systems such as BEC Mott-Insulators
[16] and Rydberg crystals [17].

Plasma ions reach Tc approximately when tωp ∼ 1

[10, 18–20], where ωp =
√

ne2/miǫ0 is the ion plasma
frequency and mi is the ion mass. This is a quasi-
universal behavior of dense plasma systems including
Z-pinch and high intensity laser ablation experiments

when the the initial electrical potential energy is greater
than the kinetic energy. The initial ion motion is domi-
nated by nearest-neighbor interactions [18] when the ions
push on each other. Even though single particle motion
in a plasma is tightly coupled to collective modes, col-
lective motion does not begin until approximately one
ion plasma period (ω−1

p ) after DIH begins. Studies of
DIH therefore necessarily explore the cross-over time that
spans the transition from nearest-neighbor interactions
to collective behavior.

Electrons screen interactions between ions in neutral
plasmas. The typical screening distance is the Debye
screening length, λD =

√

kBT ǫ
0
/ne2. When the Debye

length λD is comparable to the distance between ions
aws, screening reduces the ion-ion potential energy, slows
the ion motion during the DIH phase, and reduces the
final ion temperature.

The influence of electron screening on the ion tempera-
ture has been studied [10, 18–20]. For systems in thermo-
dynamic equilibrium, simulations of Yukawa fluids have
found interaction energies and self-consistent tempera-
tures displaying this effect [15, 21–23]. Experimentally,
studies have been published showing that the ion tem-
perature scales with density as shown in Eq. (1) and
that the DIH rise time scales as ω−1

p . Figure 3 of [20]
may suggest a change in the DIH time scale with density
and temperature. However, no definitive studies or mea-
surements of changes in the DIH process with electron
screening appear to have been published.

In this paper we present a new study of the density
and temperature dependence of DIH in ultracold neu-
tral plasmas. We measure this time using experimental
measurements and computer simulations. Fluorescence
is excited by passing a narrowband cw probe laser beam
through the plasma. It is detuned a few linewidths from
the ion resonance transition. The fluorescence signal is
sensitive to the wings of the velocity distribution. We
observe oscillations in the width of the ion velocity dis-
tribution and from this determine the time scale for the
DIH process to occur. From the simulations we deter-
mine relationships between the electron screening param-
eter and the ion temperature and the rms velocity width.
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At high density and low temperature the observed DIH
time scale departs from the expected n−1/2 density scal-
ing, and the role of electron screening in lengthening the
DIH time scale is measured. We show how measuring the
DIH time scale at known plasma density makes it possi-
ble to determine both the electron and ion temperatures
50 to 200 ns after the plasma is created.

II. METHODS

By combining experimental measurements with simu-
lations we are able to relate observed signals to the de-
tails of the ion velocity distribution. The details of the
experiment and simulation are described in this section.

A. Experiment

In the experiment, twenty million 40Ca atoms are
laser-cooled and trapped in a magneto-optical trap
(MOT) [12]. The trap density is approximately n(r) =
n

0
exp(−r2/2σ2), where n

0
≤ 10(5)×1010 cm−3 and σ is

0.3 mm. Atoms in the trap are photoionized using pulsed
lasers at 423 (the 4s2 1S

0
→ 4s4p 1P

1
transition) and 390

nm (4s4p 1P1 → continuum) with pulse durations of 3
ns. The initial electron energy is typically determined by
the wavelength of the 390 nm laser and is equal to the dif-
ference between the combined laser photon energy of the
ionizing lasers and the atomic ionization potential. How-
ever, when the photon energy of the 390 nm pulsed laser
ionizes the calcium atoms right at threshold the initial
electron energy is determined by the bandwidth of the
laser to approximately 1 cm−1 ∼ 0.5 K.

After the plasma is generated, plasma ions are ex-
cited using a standing-wave cw probe laser beam de-
tuned about four linewidths (a total of 90 MHz) below
the 4s 2S

1/2
→ 4p 2P

1/2
transition at 397 nm. The

probe laser beam is collimated to a Gaussian waist of
0.62 mm, making the rms size of the probe laser beam
somewhat larger than the initial rms size of the ultra-
cold plasma. The maximum probe laser beam intensity
is approximately s0 = I/Isat = 2 times the saturation

intensity, where Isat = 46 mW/cm
2
. Fluorescence at

397 nm is collected using a lens, isolated using a opti-
cal band-pass interference filter, detected using a 1 GHz
bandwidth photomultiplier tube, and recorded using a 1
GHz bandwidth digital oscilloscope.

Sample fluorescence data are shown in Fig. 1. Ion flu-
orescence is plotted as a thin black line. The plasma is
generated at time t = 0. The ground state ions begin to
scatter photons from the probe laser beam. A strongly
damped Rabi oscillation in the ion population is visible
near 7 ns. The time at which this signal maximizes de-
pends on the probe laser beam detuning and intensity.
This peak is followed by a broader shoulder in the fluo-
rescence signal at 70 ns. The time at which this shoulder
appears depends primarily on the plasma density and
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FIG. 1. Typical fluorescence signal and analysis, Te = 20
K, n0 = 5 × 1016 m3, ∆f = −90 MHz, and s0 = 1.7. The
fluorescence signal is plotted as a thin black line. The strongly
damped Rabi oscillation gives a peak near 7 ns. The shoulder
on the data near 70 ns is due to DIH broadening of the velocity
distribution. The much broader signal peak near 600 ns is
due to the accelerated expansion of the plasma. The heavy
dashed line is a linear fit to the fluorescence signal between
100 and 300 ns. The inset shows the signal with this linear
fit subtracted. The DIH signal now appears as a peak above
a flat background. The heavy solid line shows a parabolic fit
to the background subtracted data near the DIH peak. The
time at which this fitted curve reaches its maximum is the
characteristic DIH time, t0.

also on the electron temperature. This signal arises from
broadening of the ion velocity distribution due to DIH,
increasing the number of ions Doppler-shifted into res-
onance with the probe laser beam. At later times, the
ion velocity distribution is further broadened by the out-
ward radial acceleration and expansion of the plasma.
This broadening gives rise to the very broad peak in the
fluorescence signal at times near 1 µs, again depending
on density and temperature.

The data analysis method is also shown in Fig. 1. The
visibility of the DIH shoulder is increased by fitting the
fluorescence signal in the 100 to 300 ns range to a straight
line. This is shown as the dashed line in Fig. 1. The DIH
peak in the background-subtracted signal, shown as the
inset in Fig. 1, is fit using a parabolic. The maximum
of this parabolic fit is called t

0
. It is an indicator of the

time at which the width of the DIH-broadened velocity
distribution reaches a maximum. As is shown in Sec. III,
this time t0 is offset a few percent from the time at which
the velocity distribution reaches a local maximum.

B. Yukawa simulation

To better understand the experimental data and to
test our data analysis, we simulate the fluorescence sig-
nal from the plasma. The simulation is described in Ref.
[24]. It is performed by integrating the optical Bloch
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equations for a collection of ions in a cell. The ions inter-
act via the Yukawa potential. The potential on ion j can
be written as φY =

∑

i e exp(−rij/λ)/(4πǫ
0
rij), where

rij is the distance between plasma ions i and j, and the
sum runs over all the ions in the cell with i 6= j. This
treatment inherently assumes an isothermal electron dis-
tribution which is valid at early times as long as Γe < 1
[25].

Plasma ions are randomly distributed over a cubic cell
with wrapped boundary conditions. The cell dimension
is much smaller than the rms size of the plasma but larger
than the Debye screening length. The ions move under
the influence of the screened Coulomb force of the other
ions in the cell. The force on ion j is ~Fj = −e∇ijφY

where the divergence is calculated with respect to the
distance rij . This part of the simulation is similar to
that of Ref. [18].

At each time step, we solve the optical Bloch equa-
tions for each ion in the cell. The fluorescence signal
is proportional to the excited state fraction. This frac-
tion depends on the detuning of the laser beam from the
397 nm resonance transition for each ion. The detun-
ing depends on the initial offset of the probe laser beam
from the 397 nm resonance transition, on the ion mo-
tion due to DIH through the Doppler shift, and also on
the overall accelerated plasma expansion. It has been
shown that the plasma expansion at late times is non-
trivial when the initial electron temperature approaches
TC (or when the electron Γ ≈ 1) [25]. However, as the
details of the plasma expansion plays a minor role dur-
ing the first few hundred ns and we are careful to en-
sure the electron Γ ≪ 1 in our simulation, the details
of the expansion are relatively unimportant to our anal-
ysis. During the earliest part of the calculation we use
v(r, t) = r(2kBTe/mσ2)t to calculate the velocity of the
cell, where r is the radial coordinate of the cell. For
times longer than ∼ 50 ns we find the radial acceleration
by solving the Gaussian expansion equations [26]. In this
case, the size of the plasma σ increases with time.

A comparison of the simulated fluorescence data and
the experimentally measured fluorescence data is shown
in Fig. 2. Both signals show the heavily damped Rabi
oscillation, the DIH shoulder, and the broad background
due to the plasma expansion. The apparent height of the
Rabi oscillation relative to the other fluorescence depends
on the laser intensity and inhomogeneities in the experi-
mental setup. However the times at which these features
appear agree well in the simulated and measured data,
over a wide range of density and temperature.

Using the simulation we can extract information about
the plasma that is not easy to measure directly. This
includes the details of the ion velocity distribution, the
ion temperature as a function of time, and the influence
of screening on ion equilibration.
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FIG. 2. A comparison of the simulated fluorescence signal
(thick gray line) and the experimentally measured one (thin
black line). Both signals show the heavily damped Rabi os-
cillation, the DIH shoulder, and the broad background due
to the plasma expansion. For this plot the peak density is
n0 = 5(3) × 1010 cm−3.

III. DENSITY AND TEMPERATURE SCALING

OF DIH IN A GAUSSIAN PLASMA

The temperature and density dependence of the DIH
time t

0
is plotted in Fig. 3. Previous work has shown

that the DIH time is proportional to the inverse of the
nominal plasma frequency. Therefore one would expect
to find the relationship t0 ∝ n−1/2. We see this den-
sity dependence at high temperatures and low densities,
where the electron temperature is much greater than the
correlation temperature TC (see Eq. 1) and the screen-
ing length λD is much greater than the mean distance
between particles, aws. However as the density increases
and as the electron temperature approaches TC , the time

t
0

departs from the expected n−1/2 density scaling. This
departure is more apparent in the bottom panel of Fig.
3, where the quantity t

0
ωp is plotted as a function of

density. If there was no screening effect, all of the data
would fall on the same horizontal line near t

0
ωp ∼ 1.5.

It would be most valuable to connect the time t0 to
velocity distribution so that this time can be directly re-
lated to the true heating mechanism in the plasma. In the
expanding Gaussian plasma simulation, we compare t

0
to

the time at which the rms velocity distribution reaches
its first maximum. We observe a small time difference.
This difference, ∆t, depends most strongly on density as

∆t = 22 ns− (aws)(7.7ns/µm). (2)

For the densities in this study, this corresponds to a
≤ 15% correction in the measured DIH peak time. This
is much smaller than the factor of ∼ 2 increase we see in
the scaled time t

0
ωp. We also see a dependence of ∆t on

the initial electron temperature. For the T = 20, 40, and
60 K data in this study, the temperature correction is an
additional few percent. The correction in Eq. 2 is related
to the difference between the width of the rms velocity
distribution and the number of ions Doppler shifted into
resonance with the probe laser beam. If the velocity dis-
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FIG. 3. (color online) Experimental data. Top Panel: The
time at which the DIH fluorescence peak occurs. The gray
dashed line shows the expected time in the absence of screen-
ing effects. Bottom Panel: Scaled DIH peak time (data from
the top panel) with t0 corrected using Eq. (2). Open symbols
are from the simulation. This data would all fall on a flat line
if there was no screening.

tribution was exactly Gaussian, there would be no cor-
rection. However, the additional ions in the high-velocity
tail of the distribution increases the fluorescence signal
faster than the rms velocity distribution broadens. This
difference is discussed briefly in Sec. IVA and Fig. 4.

The data in the top panel of Fig. 3, shows our mea-
sured t

0
as a function of density for a range of temper-

atures. In the bottom panel of Fig. 3 we plot the DIH
peak time with the correction described in Eq. 2 applied
and then multiplied by the nominal ion plasma frequency.
The data clearly departs from a horizontal line as the
temperature decreases and as the density increases. This
observation shows the onset of many-body interactions in
the ultracold plasma as the description of the ion motion
changes from nearest-neighbor to many-body physics.

The data in Fig. 3 shows t
0

measurements in plas-
mas with the initial Te = 0 K. The DIH time lengthens
out more in this case compared to the higher temper-
ature plasmas. This lowest possible initial temperature
corresponds to ionizing the MOT atoms right at thresh-
old. The electrons themselves experience DIH during the
first few electron plasma periods, equilibrating to the cor-
relation temperature. They slowly heat up during the
next few hundred ns due to three-body recombination
and electron-Rydberg scattering [26–28]. This is an in-
teresting case because the density alone determines the
electron and ion temperatures and even the plasma time
scales.

Because the electron temperature is determined by the
density through TC the electron Γe should be about 1 for
all densities [13, 27]. A constant and density-independent
value of the electron Γe also means that the inverse scaled

screening length κ = aws/λD ∼ n1/6/T 1/2 ∼
√

Γe should
be constant. In light of Eq. 7 (see Sec. IVD) one

would therefore expect the scaled ion DIH time t
0
ωp to

be constant. However, it is apparent that t
0
ωp is density-

dependent. Future research is needed to determine if the
observed changes in t

0
are intrinsic to the relaxation of

the plasma ion velocity distribution, or if they are related
to effects described in Eq. 2.

IV. SIMULATIONS IN A UNIFORM DENSITY

PLASMA

To gain some insight into the relaxation of the plasma
without the potentially confounding influence of the
Gaussian spatial distribution and the accelerated plasma
expansion, we present some data in this section from
our simulation of a uniform plasma. The ions are still
generated with random initial positions and interact via
the Yukawa potential. Only the spatial distribution and
plasma expansion are changed in this simulation.

A. Ion velocity distribution

First we present the evolution of the ion velocity dis-
tribution. During the DIH phase, the ion velocity dis-
tribution is non-Gaussian [18]. The initial ion motion is
due to the electrostatic interaction of the (screened) ions.
The nearest neighbor distribution in the plasma gives rise
to a non-thermal initial velocity distribution. This dis-
tribution relaxes over time and approaches a Boltzmann
distribution.

A plot of the ion velocity distribution is shown in Fig.
4. The initial velocity distribution is Gaussian, corre-
sponding to a thermal distribution at the 1 mK neutral
atom temperature before the atoms are ionized. This dis-
tribution is quickly broadened due to DIH. Ions that are
nearer to their neighbors experience greater initial accel-
erations and reach relatively high velocities. Compared
to a thermal distribution, these ions overpopulate the
wings of the distribution and contribute to a relatively
high rms velocity. As shown in the top panel of Fig. 4,
these high velocity wings damp out on the time scale of
1000 ns as the ion velocity distribution thermalizes.

The bottom four panels of Fig. 4 show distributions
at 30, 160, 280, and 1990 ns after the plasma is formed.
The width of the distribution oscillates at early times.
It is apparent from these plots that the rms velocity is
skewed by the relatively few high velocity ions. The os-
cillations in the distribution decay on the time scale of
an oscillation period. However some oscillations persist
at long times. These oscillations can be used to extract
the plasma frequency as discussed in the following para-
graphs.
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FIG. 4. Velocity distributions and their evolution with time.
The top panel shows the rms velocity for n = 4.0× 109 cm−3

and an electron temperature of 60 K, plotted in the solid
black line. Also plotted is the rms width of a Gaussian fit
to the velocity distribution. High energy ions in the wings
of the distribution tend to make the rms width greater than
the Gaussian width. The four vertical thin gray lines in mark
times at which the velocity distribution is plotted in the bot-
tom four panels. The width changes in time, and the wings of
the distribution show variations compared to the Gaussian fit.
In these bottom four plots the black line is the distribution
from the simulation and the gray lines are the best Gaussian
fit to the distributions.

B. Plasma frequency and dispersion

In our uniform density plasma simulations, oscillations
in the velocity distribution are visible at times beyond
1000 ns (as shown in the top panel of Fig. 4). These
oscillations are a remnant of the initial hardening of the
ion-ion potential that occurred when the plasma was cre-
ated. It is as though the photo-ionization step gave a
delta-function impulse to the system. The velocity oscil-
lations at late times are a manifestation of the normal
modes of the system.

One might expect the oscillation frequency to be equal
to the nominal ion plasma frequency, ωp =

√

ne2/miǫ0.
However, the ion-ion interaction is moderated by the elec-
tron screening. A simple one-dimensional model suggests
how this screening might change the ion oscillation fre-
quency. One can imagine two ions fixed in space at lo-
cations of ±aws on the x−axis. A test charge of the
same sign is also placed on the x−axis, displaced a small
distance x from the origin. In this model, the particles
interact via the Yukawa potential with screening length
λD, and the particles are constrained to move only along
the x−axis. The potential energy is quadratic for small
displacements, and has the form

U(x) =
e2

4πǫ
0
a3

ws

(

1 + κ +
κ2

2

)

exp(−κ) x2 (3)

where κ ≡ aws/λD is the inverse scaled screening length.

The oscillation frequency of this harmonic oscillator is

ωmodel = ωpf(κ), (4)

where f(κ) =
√

2/3(1 + κ + κ2/2) exp(−κ), ωp is the ion
plasma frequency, and the relationships between aws, n,
and ωp have been invoked. It is not expected that this
oversimplified one-dimensional model will quantitatively
predict the ion oscillation frequency. However it hints
at some of the important physics in the system and sug-
gests that the frequency will get smaller as κ gets larger
(corresponding to λD getting smaller).

We will pursue the ion oscillation frequency just a little
further because it will help illustrate an important point
about the DIH time t

0
. We will show that the ion oscil-

lation frequency measured in our simulations agrees with
previously published work under appropriate conditions.
We will also show that the characteristic DIH time t0 in
our simulations depends on κ but is not simply propor-
tional to ω−1

p .
The residual oscillations in the ion velocity distribu-

tion can be calculated using the dispersion relation. The
dispersion relation gives the ion oscillation frequency as a
function of screening length and mode wavelength. Dis-
persion relations for strongly coupled plasmas are re-
ported in Ref. [29] for a wide range of ion and electron
temperatures and plasma densities. Equation (7) in that
paper,

ω(q, κ) = ωp

(

q2

q2 + κ2
+

q2

Γ
−

η∗2q4

4

)1/2

, (5)

gives the real part of the ion plasma frequency and is ap-
propriate for our plasmas. In this equation, q ≡ kaws =
2πaws/λ is the scaled wavevector of the ion acoustic
wave. Measurements probing the long-wavelength limit
of the dispersion relation have recently been reported
[30].

In our experiment, when an ultracold plasma is gen-
erated by ionizing the entire plasma, a wave packet is
launched through the plasma. The average mode fre-
quency can be obtained by averaging over an appropriate
range of q-values in Eq. 5. In essence, q becomes a fit
parameter for our data, and Eq. 5 tells us how the aver-
age ion oscillation frequency changes with the screening
length, κ.

These results are compared to Eq. (5) in Fig. 5. We
use the ion temperature from in the simulation at times
later than 1000 ns to calculate the ion Γ. We use the
initial electron temperature and density to calculate κ.
The best match of the data to the dispersion curve oc-
curs with q = 0.55. We find a similarly good match by
averaging Eq. 5 when q ranges from 0 to about 1.

C. t0 and the ion oscillation frequency

With the average ion oscillation frequency in hand, we
can show that the DIH time t

0
is not related either to



6

0.4 0.6 0.8 1
0.5

0.7

0.9

κ

ω
/ω

p

late time osc.

DIH time

 

 

T
e
 = 60 K

T
e
 = 40 K

T
e
 = 20 K

FIG. 5. (color online) The ion oscillation frequency as a func-
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ulated) plasma. The solid symbols show the frequency deter-
mined from late time ion velocity oscillations. The dashed
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ion oscillation frequency calculated by assuming that the DIH
peak occurs 1
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through the oscillation period.

this frequency or to the ion plasma frequency ωp. The
first DIH maximum in the ion velocity distribution width
occurs when the initially stationary ions accelerate away
from each other and before they collide with other neigh-
boring ions. If this was a plasma oscillation, one could
calculate the oscillation frequency ω by assuming that
t
0
ω = π/2. In Fig. 5 the frequency obtained in this

manner is plotted as a function of κ, represented as open
symbols.

This frequency is clearly not the ion plasma frequency
√

ne2/miǫ0 because our observed “frequency” depends
on κ. It is also clearly not the average mode frequency.
There are no physically relevant values of either Γ or q
that reproduce the observed dependence on κ.

This is perhaps not surprising. The relaxation of the
plasma begins when there is no true thermodynamic equi-
librium. As the system thermalizes, the plasma mode
description becomes more appropriate. Interestingly, the
changes in DIH time predicted by nearest neighbor mod-
els is much weaker than what we observe in Fig. 5. It
is clear, therefore, that the DIH time spans the crossover
from a regime in which nearest-neighbor interactions
dominate ion motion to one in which many-body physics
is appropriate.

D. Ion temperature and DIH time in a uniform

density plasma

In the simulations, the equilibrium ion temperature
depends on κ. In the simulation we can extract the rms
ion velocity at times beyond 1000 ns, after the initial
transient oscillations have damped out. From this we
can determine the ion temperature. We observe that
the equilibrium ion temperature depends on the electron
screening parameter as

Γ = 2.490 + 0.929κ + 0.785κ2. (6)

The DIH time t
0

also depends on on κ. The relationship
is

t0ωp = 1.445 + 0.467κ. (7)

These equations are valid for 0.3 < κ < 1.
In a plasma with known density, the DIH time can be

measured and Eqs. 6 and 7 can be used to first deter-
mine κ and then to determine Γ. Both the electron and
ion temperature can be determined by measuring only
t
0
. Because the ion velocity distribution doesn’t change

significantly after t0, this determination gives the tem-
peratures at early times in the plasma, as short as 50
ns after the plasma is generated. Future work could test
whether or not this continues to be true when the elec-
trons become strongly coupled or when three-body re-
combination and electron-scattering become important
in very low temperature (or high density) plasmas.

V. CONCLUSION

In conclusion, we have presented measurements and
simulations of laser-induced fluorescence from ultracold
neutral plasmas. We measure the time scale over which
disorder-induced heating (DIH) occurs for a range of den-
sities and temperatures. The DIH time departs from the
expected n−1/2 density scaling at high densities. It also
depends on temperature. We use a simulation to de-
termine the relationship between the observed DIH time
and the first maximum in the rms velocity distribution.
The DIH time depends on the electron screening length
and it spans the transition from a nearest-neighbor to
a many-body description of the system. Understanding
this dynamic non-equilibrium transition may provide in-
sights into other transient phenomena in laser physics
and other applications.

Our simulation shows that the DIH time can be used to
calculate the electron and ion temperatures in ultracold
neutral plasmas approximately 100 ns after the plasma
is created. This reduces the earliest time measurements
of electron temperature for these systems. Further re-
search could test these relationships (Eqs. 6 and 7) when
κ > 1 where recombination and scattering effects may
be important at these early times. Additional research is
also required to study the relationship between the flu-
orescence signal, which probes the wings of the velocity
distribution, and the first maximum in the width of the
velocity distribution. These future studies will require
full molecular dynamics simulations because the Yukawa
approximation is expected to be invalid in this regime.
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