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We derive a set of Bell-type inequalities for arbitrarily high-dimensional systems, based on the assumption

of partial separability in the hybrid local-nonlocal hidden variable model. Partially entangled states would not

violate the inequalities, and thus upon violation, these Bell-type inequalities are sufficient conditions to detect

the full N -particle entanglement and invalidity of the hybrid local-nonlocal hidden variable description.
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I. INTRODUCTION

Entanglement is one of the most fundamental features of

quantum mechanics, and it lies at the heart of recent quantum

information theory. As a result, many remarkable achieve-

ments, such as quantum teleportation [1] and the higher levels

of security in cryptography [2] have been attained owing to

the quantum entanglement.

GivenN -particle quantum systems, the correlations among

them have been the subject of several recent studies [3–8].

This is also motivated by the question whether the correlations

in recent experiments on 3- or 4-particle systems are due to

the full N -particle entanglement and not just combinations of

quantum entanglement of smaller number of particles [9, 10].

For N = 2, the entanglement type of the bipartite system

is humdrum, i.e., it is either entangled or separable. How-

ever, the situation is dramatically changed when N ≥ 3, be-

sides the totally separable states, there are partially entangled

states and fully N -particle entangled states. Consider all pos-

sible decompositions of aN -particle state as a mixture of pure

states ρN =
∑

i pi|Ψi〉〈Ψi|, if for any decomposition there is

at least one |Ψi〉 showing N -particle entanglement, then we

shall say that ρN exhibits full N -particle entanglement; if the

state is not separable or not fully N -particle entangled, then

we call that ρN is partially entangled.

Entanglement has been studied extensively in connection

with the Bell inequality. The Bell inequality was originally

proposed to ruled out local realism description of quantum

mechanics [11]. This presents us a concept, the so-called non-

locality, which is revealed by violations of the Bell inequal-

ity. Generally, entanglement and nonlocality are two different

concepts. Although there exist entangled states not violating

the known Bell inequalities, the violation of Bell inequality

means the studied system is entangled, allowing us to detect

entanglement. The conventional “N -particle Bell inequali-

ties” are designed to deny the local hidden variable (LHV)
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models [12–14]. For N -particle quantum systems, the par-

tially entangled states and the fullyN -particle entangled states

may violate the same Bell inequality, namely, the conventional

Bell inequalities do not distinguish at all the partially entan-

gled states and the fullyN -particle entangled states. Actually,

a particle can decay into several particles, this gives rise to a

natural question: Are the resultant decaying systems in a fully

entangled state or just a partially entangled state? In 1987,

Svetlichny triggered the problem and proposed a Bell-type in-

equality to distinguish full three-qubit entanglement from par-

tially two-qubit ones [3]. The Svetlichny inequality is essen-

tially different from the conventional Bell inequality, because

the former is designed for a hybrid local-nonlocal hidden vari-

able (HLNHV) model and the latter is for a LHV model. As

the name implies, HLNHV models utilize the fusion of local

and nonlocal descriptions based on the assumption of partial

separability. Fifteen years later, Seevinck et al. and Collins et

al. independently generalized the Svetlichny inequality from

three-qubit case to arbitrarily N -qubit case [4, 5]. Upon vio-

lation, these N -qubit Bell-type inequalities are sufficient con-

ditions for detecting full N -qubit entanglement.

In this paper, we generalize the Svetlichny inequalities from

the qubit case to N arbitrarily d-dimensional systems (N -

qudit). These Bell-type inequalities are derived based on the

assumption of partial separability, or more generally speak-

ing, on the so-called HLNHV models, thus the quantum me-

chanical violations of these inequalities provide experimen-

tally accessible conditions to detect the fullN -qudit entangle-

ment and rule out the HLNHV models. The paper is orga-

nized as follows. We present the N -qudit Bell type inequality

based on the HLNHV model in Sec. II. The proof of the N -

qudit inequality begins with the cases of N = 3, 4, and the

result is generalized to the case of arbitraryN . In Sec. III, we

investigate quantum violation of the N -qudit inequality. We

show that the Greenberger-Horne-Zeilinger (GHZ) states vio-

late our Bell type inequality and find the explicit form of the

violation which depends on particle numberN and dimension

d. We also investigate noise resistance of the inequality by

using the so-called critical visibility. It is found that our Bell-

type inequality is more noise resistant than the Svetlichny one

forN qudits when d ≥ 3. We end with conclusions in the last
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section.

II. N -QUDIT BELL-TYPE INEQUALITY

Consider an experimental situation involving N particles

in which two measurements in = 1, 2 (n = 1, · · · , N ) can

be performed on each particle. Each of the measurements

has d possible outcomes: xin
= 0, 1, · · · , d − 1. We now

follow Svetlichny’s splendid ideas [3, 4] and make the fol-

lowing assumption of partial separability: The N -qudit sys-

tem is composed of many subsystems, which might be cor-

related in any way (e.g. entangled) but are uncorrelated with

respect to each other. Since we can always take any two sub-

systems jointly as a single one but still uncorrelated with re-

spect to the others, we only need to focus on the case that

the composed system consists of only two uncorrelated sub-

systems involving m < N and N − m < N qudits, respec-

tively. For simplicity, we also assume that the first subsystem

is formed by the first m qudits and the other by the remaining

qudits. Denote the probability of observing the results xin
by

P (xi1 , xi2 , · · · , xiN
), then the partial separability assumption

can be expressed as

P (xi1 , xi2 , · · · , xiN
) =

∫

Γ

P1(xi1 , xi2 , · · · , xim
|λ)

×P2(xim+1
, xim+2

, · · · , xiN
|λ) ρ(λ)dλ, (1)

where P1(xi1 , xi2 , · · · , xim
|λ) and P2(xim+1

, · · · , xiN
|λ)

are probabilities conditioned to the hidden variable λ; Γ is

the total λ space and ρ(λ) is a statistical distribution of λ,

which satisfies ρ(λ) ≥ 0 and
∫

Γ
dλρ(λ) = 1. Other decom-

positions can be described with a different value of m and

different choices of the composing qudits. A HLNHV model

can then be well defined based on the assumption of partial

separability and the formula of the factorizable probability,

readers who are interested in it may refer to Refs. [5, 15]. If

the probability factorization can be

P (xi1 , · · · , xiN
) =

∫

Γ

dλρ(λ)P1(xi1 |λ) · · ·PN (xiN
|λ), (2)

the HLNHV model then reduces to the usual LHV model.

For convenience, we introduce two functions:

g1(x+ st) =
S −M(x+ st, d)

S
,

g2(x+ st) =
S −M(−x− st, d)

S
. (3)

Here S = d−1
2 is the spin value of the particle; st means

a shift of the argument x; M(x, d) = (x,mod d) and 0 ≤
M(x, d) ≤ d− 1. The N -qudit Bell-type inequality reads

IN = −
( 2

∑

i1,i2,··· ,iN =1

Qi1i2···iN

)

≤ 2N−1, (4)

with

Qi1i2···iN
≡

d−1
∑

xi1
,··· ,xiN

=0

f i1i2···iNP (xi1 , xi2 , · · · , xiN
). (5)

Let I ≡i1i2· · ·iN , and t(I) denotes the times that the index

“2” appears in the string I, we then abbreviate the coefficient

as follows:

fI(xi1 , xi2 , · · · , xiN
, st) ≡ g1

= 1 −M(xi1 + · · · + xiN
+ st, d)/S (6)

if t(I) is even and

fI(xi1 , xi2 , · · · , xiN
, st) ≡ g2

= 1 −M(−xi1 − · · · − xiN
− st, d)/S (7)

if t(I) is odd, and st≡st(I) = 3 × (1 − [ t(I)
2 ]), where [ t

2 ]

means the integer part of t
2 . The above inequality is sym-

metric under permutations of the N particles. Essentially, the

inequality (4) is a kind of probabilistic Bell-type inequality if

substitute Eq. (5) into inequality (4). We express it in the form

of inequality (4) for two reasons: (i) to make the inequality

succinct and (ii) QI may be regarded as generalized correla-

tion functions ofN -qudit in comparison to the typical form of

correlation functions of qubits. As for the coefficient fI , its

possible values are equal to Sz/S ∈ {−1,−1 + 1/S, · · · , 1},

where Sz is expectation value of the z-component of the spin

operators. Especially fI has only two possible values ±1
when S = 1/2, QI reduces to the typical form of correla-

tion functions of qubits.

In the following, we shall prove that the upper bound of the

inequality is 2N−1.

Three qudits.—Our inequality for three qudits reads

I3 = −Q111 −Q112 −Q121 −Q122

−Q211 −Q212 −Q221 −Q222 ≤ 4, (8)

with f111 = f122 = f221 = f212 = g1 and f222 = f112 =
f121 = f211 = g2; the shift st(111) = st(112) = st(121) =
st(211) = 3 and st(122) = st(212) = st(221) = st(222) = 0.

We assume that, for three qudits, the two uncorrelated sub-

systems are the first two qudits and the third qudit. Hence,

in a HLNHV model with two-setting scenario, four possible

outcomes for the first two qudits xi1 + xi2 and two outcomes

for the third qudit xi3 are independent of each other. We then

simply denote xi1 +xi2 by a single variable ξij and xi3 by ζk,

both are from 0 to d− 1. Moreover, since any nondeterminis-

tic local variable model can be made deterministic by adding

additional variables [16], we only need to consider the deter-

ministic versions [17] of the HLNHV model in which for each

value of λ, the measurement outcomes are completely deter-

mined, namely, the probability of obtaining each possible out-

come is either 0 or 1. For each λ, we have predetermined

values for the outcomes of ξij and ζk (i, j, k = 1, 2).
Another preliminary knowledge is about our two-qudit in-

equality

I2 = −Q11 −Q12 −Q21 −Q22 ≤ 2, (9)

where f11 = f22 = g1, f
12 = f21 = g2, st(11) = st(12) =

st(21) = 3, and st(22) = 0. From the definition of Qi1i2 , we

have the explicit form of inequality (9) as

I2 = −g1(r11 + 3) − g2(r12 + 3) − g2(r21 + 3) − g1(r22),(10)
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here rij≡αi + βj , αi being the outcome of the first qudit for

the i-th measurement and βj being that of the second qudit for

the j-th measurement. In the following, we show that inequal-

ity (9) is an equivalent form of the well-known Collins-Gisin-

Linden-Massar-Popescu (CGLMP) inequality [18], which is

usually of the form

ICGLMP = Q11 +Q12 +Q21 −Q22 ≤ 2. (11)

In our notation, the CGLMP inequality can be rewritten as

ICGLMP = g2(r
′
11) + g1(r

′
12) + g1(r

′
21) − g1(r

′
22), (12)

with r′ij≡α′
i + β′

j . By using g1(x) = −g2(x + 1), inequality

(9) [or (10)] is of the form

I2 = g2(r11 + 4) + g1(r12 + 2) + g1(r21 + 2) − g1(r22).(13)

Let α′
1 = α1 + 2, α′

2 = α2, β′
1 = β1 + 2, and β′

2 = β2,

one immediately finds that I2 and ICGLMP are of the same

form. Hereafter we simply call inequality (9) as the CGLMP

inequality. The proof of inequality (4) resorts to I2 ≤ 2.

To prove I3 ≤ 4, we write I3 = I1 + I2 with

I1≡−Q111 −Q112 −Q121 −Q122

I2≡−Q211 −Q212 −Q221 −Q222. (14)

According to the definition of Qi1i2i3 , we have

I1 = −g1(ξ11 + ζ1 + 3) − g2(ξ11 + ζ2 + 3)

−g2(ξ12 + ζ1 + 3) − g1(ξ12 + ζ2). (15)

From Eq. (10), if one sets ξ11 = α1, ξ12 = α2, ζ1 = β1,

ζ2 = β2, then one easily finds that I1 is equivalent to I2, thus

I1 ≤ 2. Similarly, we find

I2 = −g2(ξ21 + ζ1 + 3) − g1(ξ21 + ζ2)

−g1(ξ22 + ζ1) − g2(ξ22 + ζ2), (16)

and set ξ22 = α1 + 3, ξ21 = α2, ζ1 = β1, ζ2 = β2, then I2 is

equivalent to I2, so I2 ≤ 2. Thus we have I3 = I1 + I2 ≤ 4.

Four qudits.—Our inequality for four qudits reads

I4 = −Q1111 −Q1112 −Q1121 −Q1211 −Q2111

−Q1122 −Q2211 −Q1212 −Q2121 −Q1221

−Q2112 −Q1222 −Q2122 −Q2212 −Q2221

−Q2222 ≤ 8, (17)

with f1111 = f1122 = f2211 = f1212 = f2121 = f1221 =
f2112 = f2222 = g1, and the others are g2; the shift st(1111) =
st(1112) = st(1121) = st(1211) = st(2111) = 3, st(2222) = −3,

and the others are zero. The process to obtain the upper bound

is similar to that of the three qudits. We first write the 4-qudit

inequality as I4 = I1 + I2 + I3 + I4 with

I1≡−Q1111 −Q1112 −Q1211 −Q1212,

I2≡−Q2211 −Q2212 −Q2111 −Q2112,

I3≡−Q1221 −Q1222 −Q1121 −Q1122,

I4≡−Q2121 −Q2122 −Q2221 −Q2222. (18)

For four qudits, the system may consist of three-qudit and

one-qudit subsystems, or of two two-qudit subsystems when

we study partial entanglement. For the former case, define

rijkl≡ξijk + ζl and write I1 as

I1 = −g1(r1111 + 3) − g2(r1112 + 3)

−g2(r1211 + 3) − g1(r1212)

= −g1(ξ111 + ζ1 + 3) − g2(ξ111 + ζ2 + 3)

−g2(ξ121 + ζ1 + 3) − g1(ξ121 + ζ2). (19)

If we set ξ111 = α1, ξ121 = α2, ζ1 = β1, ζ2 = β2, we

find that I1 is equivalent to I2 and so I1 ≤ 2; similarly if

we set ξ221 = α1 + 3, ξ211 = α2, ζ1 = β1, ζ2 = β2, then

I2 ≤ 2; if we set ξ122 = α1 + 3, ξ112 = α2, ζ1 = β1,

ζ2 = β2, then I3 ≤ 2; if we set ξ212 = α1 +3, ξ222 = α2 +3,

ζ1 = β1, ζ2 = β2, then I4 ≤ 2, and thus we find I [4] =
I1+I2+I3+I4 ≤ 8. For the latter, we define rijkl≡ξij+ζkl. If

we set ξ11 = α1, ξ12 = α2, ζ11 = β1, ζ12 = β2, then I1 ≤ 2;

if we set ξ22 = α1 + 3, ξ21 = α2, ζ11 = β1, ζ12 = β2, then

I2 ≤ 2; if we set ξ12 = α1 +3, ξ11 = α2, ζ21 = β1, ζ22 = β2,

then I3 ≤ 2; if we set ξ21 = α1 + 3, ξ22 = α2 + 3, ζ21 = β1,

ζ22 = β2, then I4 ≤ 2. Thus I [4] = I1 + I2 + I3 + I4 ≤ 8.

ArbitraryN qudits.— Based on the CGLMP inequality (9),

now we can prove the N -qudit Bell-type inequality (4) as

what we have done in the three- and four-qudit cases. For

further convenience and without losing the generalization,

we abbreviate the correlation function −QI by (k), here

k = t(I). For examples, (0) means that i1 = · · · =
iN = 1 in Qi1i2···iN

, or (0) = −Q11···1; (1) means that

one of the index {i1, i2, · · · , iN} is 2 and the others are 1,

or (1) = −Q21···1/ − Q12···1/ · · · / − Q11···2; and (k) repre-

sents the correlation function −QI in which there are k “2”
and (N − k) “1” in the index I. It is easy to see that the

number of (0) is C0
N , that of (1) is C1

N , and so on. In this lan-

guage, the four-qudit Bell-type inequality can be expressed as

I4 =
∑4

j=1 Ij ≤ 8 with

I1≡(0) + (1) + (1) + (2),

I2≡(1) + (2) + (2) + (3),

I3≡(1) + (2) + (2) + (3),

I4≡(2) + (3) + (3) + (4). (20)

For N = 4, the 24 correlation functions are divided into four

subgroups with each subgroup possessing the feature of

G(k) ≡ (k) + (k + 1) + (k + 1) + (k + 2) (21)

as shown above. One more thing worth to note is that Ij are

grouped according to the index string i1i2i3i4. Take I1 as an

example, I1 = −(Q111 +Q112)⊗ (Q1 +Q2) for the case that

the four-qudit system consists of three-qudit and one-qudit

subsystems; and I1 = −(Q11 + Q12) ⊗ (Q11 + Q12) for

the case that the system consists of two two-qudit subsystems.

One can find t(111)+ 1 = t(112) and t(1) + 1 = t(2) for the

former case, and t(11)+1 = t(12) for the latter case. Similar

results can be obtained for other Ij .

Now let us look at N qudits. First we show that the N -

qudit Bell-type inequality can be rearranged into a grouping
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with each subgroup of the form G(k), that is

IN =

N−2
∑

k=0

T (k) × G(k), (22)

here T (k) indicates the times that the element G(k) appears.

We obtain iterative equations for the coefficients T (k)

T (0) = C0
N = 1,

T (1) = C1
N − 2T (0) = C1

N − 2C0
N ,

T (2) = C2
N − 2T (1) − T (0) = C2

N − 2C1
N + 3C0

N ,

...

T (k) =

k
∑

i=0

(−1)k−i(k + 1 − i)Ci
N . (23)

The summation of T (k) yields
∑N−2

k=0 T (k) = 2N−2. Since

there are four terms in each T (k), so the total number of terms

4
∑N−2

k=0 T (k) = 2N is exactly the number of terms in a N -

particle inequality for two settings. Therefore such a rear-

rangement always exists in our inequality.

Secondly, consider aN -qudit system consisting of two sub-

systems of m qudits and N − m qudits. According to our

two-setting scenario, in subsystem m we have a set of 2m in-

dex strings i1i2 · · · im and in subsystem N −m we have a set

of 2N−m index strings im+1 · · · iN ; by connection of index

strings of two subsystems we have totally 2m·2N−m = 2N in-

dex strings i1i2 · · · imim+1 · · · iN indicating the kind of mea-

surement for each qudit in the whole system. This implies the

correlation functionQi1···imim+1···iN
= Qi1···im

⊗Qim+1···iN
.

Let the four correlation functions in each subgroup be of the

form

−Qi1···imim+1···iN
−Qi1···imi′

m+1
···i′

N

−Qi′
1
···i′

m
im+1···iN

−Qi′
1
···i′

m
i′
m+1

···i′
N
. (24)

As stated above, the rule for grouping correlation functions is

based on the index strings. The general rule is

t(i1i2 · · · im) + 1 = t(i′1i
′
2 · · · i′m),

t(im+1 · · · iN) + 1 = t(i′m+1 · · · i′N). (25)

Use the property t(i1 · · · imim+1 · · · iN) = t(i1 · · · im) +
t(im+1 · · · iN), and let k = t(i1 · · · imim+1 · · · iN ), we find

k + 1 = t(i1 · · · imi′m+1 · · · i′N) = t(i′1 · · · i′mim+1 · · · iN),
and k+2 = t(i′1 · · · i′mi′m+1 · · · i′N ), we then exactly have the

simple form of G(k) from the expression (24).

Next we show that G(k) ≤ 2 by considering two cases of

k = even and k = odd.

Case a: k is even, we obtain

G(k) =

g1(ri1···imim+1···iN
+ 3 − 3[k/2])

+g2(ri1···imi′
m+1

···i′
N

+ 3 − 3[(k + 1)/2])

+g2(ri′
1
···i′

m
im+1···iN

+ 3 − 3[(k + 1)/2])

+g1(ri′
1
···i′

m
i′
m+1

···i′
N

+ 3 − 3[(k + 2)/2]). (26)

As theN -qudit system consists of two subsystems ofm qudits

andN−m qudits, we have ri1i2···iN
= ξi1···im

+ζim+1···iN
. If

we set ξi1···im
= α1+3a, ξi′

1
···i′

m
= α2+3a, ζim+1···iN

= β1,

ζi′
m+1

···i′
N

= β2, and a = k/2, then this group of correlation

functions is equivalent to the CGLMP inequality (9) and thus

its upper bound is 2.

Case b: k is odd, we have

G(k) =

g1(ξi′
1
···i′

m
+ ζim+1···iN

+ 3 − 3[(k + 1)/2])

+g2(ξi′
1
···i′

m
+ ζi′

m+1
···i′

N
+ 3 − 3[(k + 2)/2])

+g2(ξi1···im
+ ζim+1···iN

+ 3 − 3[k/2])

+g1(ξi1···im
+ ζi′

m+1
···i′

N
+ 3 − 3[(k + 1)/2]). (27)

If we set ξi1···im
= α2 + 3(b − 1), ξi′

1
···i′

m
= α1 + 3b,

ζim+1···iN
= β1, ζi′

m+1
···i′

N
= β2, and b = (k + 1)/2, then

G(k) is equivalent to the CGLMP inequality (9) and thus its

upper bound is 2.

Based on the above analysis, such a group of correlation

functions G(k) is always less than 2. There are totally 2N−2

subgroups in IN , therefore IN ≤ 2N−1. This ends the proof.

III. QUANTUM VIOLATION OF THE N -QUDIT

BELL-TYPE INEQUALITY

We now turn to study quantum violations of the inequality

(4) for the GHZ states

|ψ〉NGHZ =
1√
d

d−1
∑

j=0

|jj · · · j〉, (28)

which are fully entangled states of N -qudit. Quantum me-

chanical joint probability is calculated by

PQM(xi1 , xi2 , · · ·, xiN
) = Tr[ρN (Ui1 ⊗ Ui2 ⊗ · · · ⊗ UiN

)

×(Πi1 ⊗ Πi2 ⊗ · · · ⊗ ΠiN
)(U †

i1
⊗ U †

i2
⊗ · · · ⊗ U †

iN
)], (29)

where Πin
= |xin

〉〈xin
| and Uin

(n = 1, 2, ..., N) are pro-

jectors and unitary transformation operators for correspond-

ing qudits. As for Uin
, it is sufficient to consider the unbiased

symmetric multi-port beamsplitters [19] when we study the

GHZ states. A photon entering at any input ports of a symmet-

ric d-port beam splitter has an equal chance as 1/d of exiting

at any output ports. The action of the multiport beam splitter

can be described by a unitary transformation T with elements

Tkl = 1√
d
ωkl, where ω = exp( i2π

d ). In front of the i-th input

port, there is a phase shifter to adjust the phase of the incom-

ing photon by φi. The phase shifts can be denoted as a d-

dimensional vector ~φ = (φ0, φ1, · · · , φd−1). The symmetric

d-port beam splitter together with the d phase shifters perform

the unitary transformation Uin
(~φ) with elements Ukl(~φ) =

ωkl exp(iφl)√
d

. Specifically, take the first qudit as an example,

the phase angles are ~φi1=1 = (φ10, φ11, · · · , φ1(d−1)) and

~φi1=2 = (φ20, φ21, · · · , φ2(d−1)) due to the two-setting sce-

nario.
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Numerical calculations show that maximal violation of the

Bell-type inequality for the GHZ states can be found with the

following optimal angle settings

~φin=1 = ~φi1=1

= (0,
m1π

2d
, 2
m1π

2d
, · · · , (d− 1)

m1π

2d
), (30)

~φin=2 = ~φi1=2

= (0,
m2π

2d
, 2
m2π

2d
, · · · , (d− 1)

m2π

2d
), (31)

where m1 = 15/N , m2 = m1 − 6. For N = 2, our result

correctly recovers that of the CGLMP inequality [18], namely

[I2]max = 4d

[d/2]−1
∑

k=0

(1 − 2k

d− 1
)(qk − q−(k+1)), (32)

where qc = 1
2d3 sin2[π(c+1/4)/d]

. The maximal violations in-

crease with dimension d, for examples, [I2
d=2]

max = 2
√

2 ≃
2.828 and [I2

d=3]
max = (12 + 8

√
3)/9 ≃ 2.873. For arbitrary

N -qudit, the maximal violation is

[IN ]max = 2N−2 × [I2]max. (33)

One can show how sensitive the inequality (4) is by consider-

ing the factor R defined by maximal violation of the inequal-

ity over upper bound for true N -body entanglement [8], i.e.,

R = [IN ]max/2N−1. (34)

It is easy to have R = [I2]max

2 for two qudits, and this con-

firms that inequality (4) is an equivalent form of the CGLMP

inequality when N = 2. For d = 2, the Bell-type inequality

(4) is an equivalent version of the Svetlichny inequality for N
qubits, and accordingly R =

√
2. Our result is in accordance

with Refs. [4, 5] (see Eq. (14) in [5]).

So far we have discussed the violations of the pure GHZ

states. If white noise is added, the pure state turns to a mixed

state as

ρN (V ) = V ρGHZ + (1 − V )ρnoise, (35)

where ρnoise = 1
dN , 1 is the unit operator, V is the so-called

visibility, and 0 ≤ V ≤ 1. We find that the mixed state vio-

lates inequality (4) if V > Vcr, where Vcr = 1
R is the critical

value of visibility. The critical values decrease when dimen-

sion d goes up, for examples, Vcr = 0.707 for d = 2 and

Vcr = 0.696 for d = 3. The HLNHV description of the state

is not allowed if V > Vcr. The less the value of Vcr is, the

more noise tolerant the Bell inequality is. Moreover, for any

partially entangled states

ρN = ρm ⊗ ρN−m, (36)

the quantum joint probability are factorizable, i.e.,

PQM(xi1 , xi2 , · · · , xiN
) = PQM

1 (xi1 , xi2,··· ,xim
)

×PQM
2 (xim+1

, xim+2
, · · · , xiN

). (37)

Consequently, our inequality holds for any partially entangled

states or any convex mixture of them. Any violation of our in-

equality is a sufficient condition to confirm fullN -particle en-

tanglement and rule out the HLNHV description. Let us point

out that the N -qubit Svetlichny inequality can also be used to

test the invalidity of the HLNHV description for N qudits by

dividing the d outcomes into two sets, provided that V > V s
cr

with V s
cr being the critical visibility for the Svetlichny inequal-

ity. It is easy to see that V s
cr = 1√

2
does not depend on di-

mension d, and Vcr < V s
cr when d ≥ 3. Thus our Bell-type

inequality is more noise resistant than the Svetlichny one for

N qudits when d ≥ 3.

IV. CONCLUSION

Based on the assumption of partial separability we have

derived a set of Bell-type inequalities for arbitrarily high-

dimensional systems. Partially entangled states would not vi-

olate the inequalities, thus upon violation, the Bell-type in-

equalities are sufficient conditions to detect the full N -qudit

entanglement and rule out the HLNHV description. It is ob-

served that the Bell-type inequalities for multi-qudit (d ≥ 3)

violate the hybrid local-nonlocal realism more strongly than

the Svetlichny ones for qubits, and the quantum violations in-

crease with dimension d. Furthermore, how to generalize the

Bell-type inequality to the multi-setting one remains a signif-

icant topic to be investigated further.
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Note added.— Ref. [20] also presents a similar inequality

to our inequality (4).
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