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Steganography is the technique of hiding secret information by embedding it in a seemingly
“innocent” message. We present protocols for hiding quantum information by disguising it as noise
in a codeword of a quantum error-correcting code. The sender (Alice) swaps quantum information
into the codeword, and applies a random choice of unitary, drawing on a secret random key she
shares with the receiver (Bob). Using the key, Bob can retrieve the information, but an eavesdropper
(Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the
message from channel noise. We consider two types of protocols: one in which the hidden quantum
information is stored locally in the codeword, and another in which it is embedded in the space of
error syndromes. We analyze how difficult it is for Eve to detect the presence of secret messages, and
estimate rates of steganographic communication and secret key consumption for specific protocols
and examples of error channels. We consider both the case where there is no actual noise in the
channel (so that all errors in the codeword result from the deliberate actions of Alice), and the case
where the channel is noisy and not controlled by Alice and Bob.
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I. INTRODUCTION

Steganography is the science of hiding a message
within a larger innocent-looking plain-text message, and
communicating the resulting data over a communications
channel or by a courier so that the steganographic mes-
sage is readable only by the intended receiver. The word
comes from the Greek words steganos which means “cov-
ered,” and graphia which means “writing.” The art of
information hiding dates back to 440 B.C. to the Greeks
[1]. The term steganography was first used in 1499 by
Johannes Trithemius in his Steganographia, which was
one of the first treatises on the use of cryptographic and
steganographic techniques [2].

The modern study of steganography was initiated by
Simmons and the paradigm can be stated as follows [3].
Alice and Bob are imprisoned in two different cells that
are far apart. They would like to devise an escape plan,
but the only way they can communicate with each other
is through a courier who is under the command of the
warden (Eve, the adversary) of the penitentiary. The
courier leaks all information to the warden. If the war-
den suspects that either Alice or Bob are conspiring to
escape from the penitentiary, she will cut off all com-
munication between them, and move both of them to a
maximum security cell. Prior to their incarceration Alice
and Bob had access to a shared secret key—assumed to
be a sufficiently long string of random bits—which they
later exploit to send secret messages hidden in a cover
text. Can Alice and Bob devise an escape plan without
arousing the suspicion of the warden?
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Julio Gea-Banacloche [4] introduced the idea of hid-
ing secret messages in the form of error syndromes by
deliberately applying correctable errors to a quantum
state encoded in the three-bit repetition quantum error-
correcting code (QECC). In his paper, however, he did
not address the issue of an innocent-looking message—in
the protocol he proposed, the messages would not re-
semble a plausible quantum channel. The latter is one
of the major contributions of our work. Curty et. al.
propose three different quantum steganographic proto-
cols [5]. However, none of these protocols address the
issue of communicating an innocent message over a noisy
classical channel or a general quantum channel, or give
key-consumption rates. Natori provides a simple treat-
ment of quantum steganography that is a modification of
super-dense coding [6]. Martin also introduced a notion
of quantum steganographic communication [7]. His pro-
tocol is a variation of Bennett and Brassard’s quantum-
key distribution protocol (QKD), in which he hides a
steganographic channel in the QKD protocol.

There are two major goals in quantum steganography.
Communication: Alice wants to send classical or quan-
tum information to Bob over a quantum channel. While
most of the protocols above are for sending classical infor-
mation, we will show that it is also possible to send quan-
tum information. Secrecy: a monitoring Eve should
be unable to detect the presence of the secret message.
Ideally, a protocol should maximize the rate of commu-
nication as much as possible, consistent with the secrecy
requirement. A third requirement may or may not be im-
posed: Security. That is, in some cases we may require
that Eve be unable to read the steganographic message
even if she knows it is present.

In this paper, we present a group of protocols that
achieve the above goals. These protocols have the fol-
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lowing structure. An ‘innocent’ quantum message |φc〉
is encoded in a quantum error-correcting code (QECC)
by Alice. This |φc〉 is the covertext. Alice then per-
forms a second operation on the encoded covertext, which
embeds the steganographic message in the codeword.
This steganographic message is another state |φs〉, and is
called the stego text. (We call one bit or qubit of the stego
text a stego bit or stego qubit, respectively.) The mod-
ified codeword is sent over a quantum channel to Bob,
who can (at least with high probability) decode it and
extract the stego text |φs〉. The encoding is done in such
a way that if an eavesdropper Eve intercepts the code-
word, it will look exactly like the encoded state |φc〉 after
it has passed through a noisy channel. In other words,
Eve cannot distinguish the encoded steganographic mes-
sage from noise in the channel. We depict the general
quantum steganographic protocol in Figure 1.

To prove the efficacy of these protocols, we need to
make a number of assumptions about the knowledge that
Alice, Bob, and Eve have, and the resources on which
they can draw. These assumptions are:

1. Alice and Bob know (with reasonable accuracy) the
physical channel, which may or may not have in-
trinsic noise (we consider both cases). This is not
unreasonable. If we imagine quantum channels are
constructed from, e.g., optical fiber cables, then Al-
ice and Bob can have acquired the parameters of
the cable from the manufacturer’s website.

2. Eve has beliefs about the physical channel, which
may or may not be accurate. But we assume that
Alice and Bob have some knowledge of Eve’s ex-
pectations. This is most plausible when both Eve
and Alice and Bob all draw their knowledge from
the same source, but it could hold in other cases
as well (e.g., the channel is actually noiseless, but
Alice and Bob have systematically fooled Eve into
thinking it is noisy).

3. Alice and Bob share a secret key or shared entan-
glement. A secret key is a long binary string drawn
from a random distribution. Shared entanglement
can be used to generate such a key, but can also be
used as a quantum resource for, e.g., teleportation.

4. Eve can make measurements of any message that
passes on the channel, although she will not nec-
essarily always do so. If Eve intercepts a message,
she can demand from Alice and Bob information
about the covertext |φc〉, the QECC used, etc., and
make measurements to verify their information.

It is important to appreciate the difference in
paradigms between steganography and standard cryp-
tography. In standard cryptography, the eavesdropper is
assumed to operate secretly and (perhaps) illegitimately.
In steganography, the eavesdropper can operate openly,
and is often in a position of authority. Eve could pre-
vent secret communication by the simple expedient of

banning all communication. But generally, she wishes
to allow certain kinds of approved communication, while
banning others. Cryptography is a defense against spies;
steganography, against censors and secret police.

The protocols that we present in this paper succeed if
Alice and Bob can communicate a nonzero amount of in-
formation, while satisfying the secrecy requirement. This
demands that if Eve intercepts the message, she is un-
able to ascertain if it contains secret information with
high probability. The message should appear just like
a codeword for |φc〉 that has undergone some plausible
set of errors in the channel. If we choose, we can fur-
ther demand that even after knowing that the message
contains secret information, Eve will be unable to read
it. This can be achieved by adding additional encryp-
tion. Alice and Bob want to maximize the rate at which
they send steganographic information to each other while
minimizing key usage, subject to the secrecy condition.
We present protocols to achieve these goals in this paper,
though we do not claim that these protocols are neces-
sarily optimal.

We begin by giving a simple steganographic protocol
that shows how quantum information can be hidden in
the noise of a depolarizing channel, using a shared classi-
cal secret key between Alice and Bob. We first consider
the case when the physical channel is noiseless (i.e., all
noise is controlled by Alice), but Eve expects some level of
noise; we then extend this to the case where the channel
has intrinsic noise (not controlled by Alice and Bob). We
calculate the amount of secret key consumed. We then
present a quantum steganographic protocol for a general
quantum channel, that hides quantum information in the
space of typical error syndromes.

We present a mathematical criterion for secrecy based
on the diamond norm, and show that if Alice and Bob
have a sufficiently accurate knowledge of Eve’s expecta-
tions, they can make their communications arbitrarily
difficult to detect. In the case where Eve has perfect
knowledge of the channel, Alice and Bob can send a fi-
nite (but arbitrarily large) amount of hidden information
through the channel; if Eve’s knowledge of the channel is
imprecise, Alice and Bob can communicate at a nonzero
asymptotic rate (given an arbitrarily large secret key).
We conclude by discussing open questions about achiev-
able rates for arbitrary channels.

II. THE QUANTUM DEPOLARIZING

CHANNEL

The quantum analog of the classical binary symmetric

channel (BSC) is the depolarizing channel (DC) which is
one of the most widely used quantum channel models:

ρ→ Nρ = (1 − p)ρ+
p

3
XρX +

p

3
Y ρY +

p

3
ZρZ . (1)

That is, each qubit has an equal probability of undergoing
an X , Y , or Z error. Applying this channel repeatedly
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FIG. 1. (Color online) There are three different inputs to the steganographic encoder E : a cover-message |C〉; the secret
message that we would like to hide, which can be quantum |S〉 or classical S; a shared secret key which may be quantum (ebit)
|K〉 or classical K. Eve can monitor some part of the noisy quantum channel N shown in the red box. Bob can decode the
steganographic message using the decoder D and the shared secret key |K〉 or K and recover |C〉, and |S〉 or S with very high
probability.

to a qubit will map it eventually to the maximally mixed
state I/2. We can rewrite this channel in a different but
equivalent form:

N = (1 − 4p/3)I + (4p/3)T . (2)

where Iρ = ρ and T ρ = (1/4)(ρ+XρX + Y ρY +ZρZ).
The operation T is twirling: it takes a qubit in any state
ρ to the maximally mixed state I/2. If we rewrite the
channel in this way, instead of applyingX , Y , or Z errors
with probability p/3, we can think of removing the qubit
with probability 4p/3, and replacing it with a maximally
mixed state. This picture makes the steganographic pro-
tocol more transparent. We will first assume that the ac-
tual physical channel between Alice and Bob is noiseless.
All the noise that Eve sees is due to deliberate errors that
Alice applies to her codewords. We depict this protocol
in Figure 2.

1. Alice encodes a covertext of kc qubits into N qubits
with an [[N, kc]] quantum error-correcting code
(QECC).

2. From (2), the DC would maximally mix Q qubits
with probability pQ where

pQ =

(

N

Q

)

(4p/3)Q(1 − 4p/3)N−Q . (3)

For large N , Alice can send M =
(4/3)pN(1 − δ) stego qubits, where 1 ≫ δ ≫
√

(1 − 4p/3)/(4p/3)N. (The chance of fewer than
M errors is negligibly small.)

3. Using the shared random key (or shared ebits), Al-
ice chooses a random subset of M qubits out of the
N , and swaps her M stego qubits for those qubits
of the codeword. She also replaces a random num-
ber m of qubits outside this subset with maximally
mixed qubits, so that the total Q = M+m matches
the binomial distribution (3) to high accuracy.

4. Alice “twirls” her M stego qubits using 2M bits of
secret key or 2M shared ebits. To each qubit she
applies one of I, X , Y , or Z chosen at random, so
ρ→ T ρ. To Eve, who does not have the key, these
qubits appear maximally mixed. (Twirling can be
thought of as the quantum equivalent of a one-time
pad.)

5. Alice transmits the codeword to Bob. From the
secret key, he knows the correct subset of M qubits,
and the one-time pad to decode them.

This protocol transmits (4/3)pN(1−δ) secret qubits from
Alice to Bob (Fig. 2). The secrecy follows from this ar-
gument: without the key, Eve cannot distinguish a stego
qubit from a maximally mixed qubit; and these maxi-
mally qubits are distributed exactly as would be expected
from the depolarizing channel with error rate p. If the
rate p matches Eve’s expectations, she will detect noth-
ing suspicious even if she intercepts the codeword and
measures its error syndromes.

If the channel contains intrinsic noise, Alice will first
have to encode her ks stego qubits in an [[M,ks]] QECC,
swap those M qubits for a random subset of M qubits
in the codeword, and apply the twirling procedure.
This twirling does not interfere with the error-correcting
power of the QECC if Bob knows the key. The rate of
transmission ks/N will depend on the rate of the QECC
used to protect the stego qubits. For a BSC this would
be at best (1−δ)(1−h(p))δp/(1−2p). However, for most
quantum channels (including the DC) the achievable rate
is not known. Assuming the physical channel is also a DC
with error rate p, and that Alice emulates a DC with error
rate q, the effective channel will appear to Eve like a DC
with error rate p+q(1−4p/3) ≡ p+δp. So long as p+δp
is sufficiently close to Eve’s expectation of the error rate,
the communication will remain secret. (We will make
this notion of secrecy precise later in the paper.) The
rate of communication is ks/N ≈ (4/3)cδp/(1 − 4p/3),
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FIG. 2. (Color online) Alice hides her information qubit (solid brown circle) by swapping it in with a qubit of her quantum
codeword. She uses her shared secret key with Bob to determine which qubit to swap. She uses the shared key again to twirl the
information qubit. She further applies random depolarizing errors to the rest of the qubits of the codeword (shown in green).
She sends the codeword through a depolarizing channel to Bob who uses the shared secret to correctly apply the untwirling
operation, followed by locating and swapping out Alice’s original information qubit.

where c = ks/M is the achievable rate of the code for the
DC with error rate p.

The secret key is used at two points in these protocols.
First, in step 3 Alice chooses a random subset ofM qubits
out of the N -qubit codeword. There are C(N,M) sub-
sets, so roughly log2 C(N,M) bits are needed to choose
one. Next, in step 4, 2M bits of key are used for twirling.
This gives us

nk ≈ log2

(

N
M

)

+ 2M (4)

bits of secret key used. Define the key consumption rate
K = nk/N to be the number of bits of key consumed
per qubit that Alice sends through the channel. We use
M ≈ 4qN/3 and q ≈ δp/(1−4p/3) to express K in terms
of p, δp, and N (Fig. 3):

K ≈ log2

[

(4/β)β(1 − βN)β−1
]

, β ≡ 4δp/(3 − 4p) .
(5)

Alice can consume fewer bits of key if she has a source
that averages to a maximally mixed state—for instance,
if Alice first compresses the state |φs〉 before sending it.
This would allow them to bypass the twirling procedure.
However, while the secrecy criterion may still be met
without twirling, the security criterion would not be: if

Eve becomes aware of the message, she may be able to
read it without the key.

III. MORE GENERAL CHANNELS

The protocols given above perform well in emulating a
depolarizing channel. However, there are far more gen-
eral channels, and the protocols may not work well, or
at all, in other cases. If one has a channel that can be
written

ρ→ Nρ = (1 − pT + pE)Iρ+ pTT ρ+ pEEρ (6)

where E is an arbitrary error operation, one can still use
the above protocols to hide approximately pTN stego bits
or qubits, while generating pEN random errors of type
E . But for some channels, pT may be very small or zero.
How should we proceed? Moreover, hiding stego qubits
locally as apparently maximally-mixed qubits sacrifices
some potential information. The location of the error—
that is, the choice of the subset holding the errors—could
also be used to convey information, potentially increasing
the rate and reducing the amount of secret key or shared
entanglement required.

A different approach is instead to encode information
in the error syndromes. For simplicity, we consider the
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FIG. 3. (Color online) We plot the key consumption rate (KCR) as a function of the error-rate p of the binary-symmetric
channel (BSC), with δp being extra uncontrollable noise in the BSC.

case when N is large. In this case, it suffices to consider
only typical errors. We begin with the case where the
physical channel is noise-free.

For large N , almost all (probability 1 − ǫ) combina-
tions of errors on the individual qubits will correspond
to one of the set of typical errors. There are roughly
2sN of these, and their probabilities pe are all bounded
within a range 2−N(s+δ) ≤ pe ≤ 2−N(s−δ). The number
s is the entropy of the channel on one qubit; for the BSC
s = h(p) = −p log2 p − (1 − p) log2(1 − p), and for the
DC s = −(1 − p) log2(1 − p) − p log2 p/3. We label the
typical error operators E0, E1, . . . , E2sN−1, and their cor-
responding probabilities are pj . A good choice of QECC
for the cover text will be able to correct all these errors.
We make the simplifying assumption that the QECC is
nondegenerate, so each typical error Ej has a distinct
error syndrome labelled sj .

Ahead of time, Alice and Bob partition the typical
errors into C roughly equiprobable sets Sk, so that

∑

Ej∈Sk

pj ≈ 1

C
, ∀k . (7)

As far as possible, the errors in a given set should be cho-
sen to have roughly equal probabilities. The maximum
of C is roughly C ≈ 2N(s−δ), and k = 0, . . . , C − 1. We
can now present a new quantum steganographic protocol,

using error syndromes to store information.

1. Alice prepares kc qubits of cover text in a state |ψc〉.
2. Alice’s secret message is a string of log2 C ≈ N(s−
δ) qubits, in a state

|ψs〉 =

C−1
∑

k=0

αk|k〉 . (8)

She “twirls” each qubit of this string, using 2N(s−
δ) bits of the secret key or shared ebits, to get a
maximally mixed state. To this, she appends N −
kc − (s − δ)N extra ancilla qubits in the state |0〉
to make up a total register of N − kc qubits.

3. Using the shared secret key, Alice chooses from
each set Sk a typical error Ejk

with syndrome sjk
.

She applies a unitary US to the register of N − kc

qubits, that maps US

(

|k〉 ⊗ |0〉⊗N−kc−(s−δ)N
)

=

|sjk
〉. She appends this register to the cover

qubits in state |ψc〉, then applies the encod-
ing unitary UE . Averaging over the secret key,
the resulting state will appear to Eve like ρ ≈
∑2nS−1

j=0 pjEj |Ψc〉〈Ψc|E†
j , which is effectively indis-

tinguishable from the channel being emulated act-
ing on the encoded cover text.
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4. Alice sends this codeword to Bob. If Eve examines
its syndrome, she will find a typical error for the
channel being emulated.

5. Bob applies the decoding unitary UD = U †
E , and

then applies U †
S (which he knows using the shared

secret key). He discards the cover text and the last
N − kc − (s − δ)N ancilla qubits, and undoes the
twirling operation on the remaining qubits, again
using the secret key. If Eve has not measured the
qubits, he will have recovered the state encoded by
Alice.

This protocol may easily be used to send classical infor-
mation by using a single basis state rather than a super-
position like (8). The steganographic transmission rate
R is roughly R ≈ s − δ → s. The rate of transmission
s is higher than the rate 4p/3 of our first protocol. This
protocol used 2N(s − δ) bits of secret key (or ebits) for
twirling in step 2, and roughly Nδ bits of secret key in
choosing representative errors Ejk

from each set Sk in
step 3. So the key rate is roughly K ≈ 2s− δ → 2s, bet-
ter than the first protocol in key usage per stego qubit
transmitted. Since almost all the key usage goes to the
twirling operation, for sources that are maximally mixed
on average the rate of key usage can actually go to zero
as N → ∞. However, this encoding is much trickier in
the case where the channel contains intrinsic noise.

In principle this quantum steganographic protocol can
be used when the channel contains noise. The stegano-
graphic qubits are first encoded in a QECC to protect
them against the noise in the channel. In practice, for
many channels this can be difficult: the effects of er-
rors on the space of syndromes look quite different from
a usual additive error channel. Also, unlike the depo-

larizing channel, general channels when composed to-
gether may change their type. However, by drawing on
codes with suitable properties, the problem of design-
ing steganographic protocols for general channels may
be simplified. We analyze the special case of the binary
symmetric channel in Appendix B, but the solution for a
general channel is a problem for future work.

IV. SECRECY AND SECURITY

What is the standard of security for a stego protocol?
There are two obvious considerations. First, if Eve be-
comes suspicious, can she read the message? At the cost
of using one-time pads or twirling, Alice and Bob can
prevent this from happening. This is the question of se-
curity.

The more important question is: can Alice and Bob
avoid arousing Eve’s suspicions in the first place? This is
the question of secrecy. To do this, the messages that Al-
ice sends must emulate as closely as possible the channel
that Eve expects. We can make this condition quantita-
tive. Let EC be the channel on N qubits that Eve ex-
pects, and let ES be the effective channel that Alice and
Bob produce with their steganographic protocol. Then
the protocol is secure if ES is ǫ-close to EC in the dia-
mond norm ‖ES − EC‖⋄ ≤ ǫ for some small ǫ > 0. The
diamond norm is directly related to the probability for
Eve to distinguish EC from ES under ideal circumstances
(i.e., when she controls both inputs and outputs), and so
puts an upper bound on her ability to distinguish them
in practice.

For a simple example, the difference between two DCs
applied to N qubits has norm

∥

∥N⊗N
r −N⊗N

p

∥

∥

⋄
=

N
∑

j=0

(

N

j

)

∣

∣rj(1 − r)N−j − pj(1 − p)N−j
∣

∣ , (9)

where p is the error-rate of the channel Eve expects and
r = p + δp is the error-rate of the steganographic chan-
nel that emulates Eve’s expected channel. If we make
δp < ǫ

√

p(1 − p)/N then we can make this norm as small

as we like, while communicating O(δpN) = O(ǫ
√
N) se-

cret qubits. This indicates that even if Eve has exact
knowledge of the channel, Alice and Bob can in principle
send an arbitrarily large (but finite) amount of informa-
tion without arousing Eve’s suspicion, by choosing a suf-
ficiently small δp and large N . If Eve’s knowledge of the
channel is imperfect, Alice and Bob can do even better,
communicating steganographic information at a nonzero
rate.

If Eve is constantly monitoring the channel over a long
period of time, and if she has exact knowledge of the

channel then she will eventually learn that Alice and
Bob are communicating with each other steganograph-
ically. Moreover, with constant measurement Eve can
disrupt the superpositions of the steganographic qubits
and prevent any quantum information from ever reach-
ing Bob, effectively flooding the quantum channel with
noise (though classical communication will still be possi-
ble). We calculate the diamond norm for the BSC and
DC cases in Appendix A.

If Alice and Bob share a secret, random key, they can
use the steganographic encodings described in the paper.
Shared entanglement (ebits) can act as a resource in the
same way—by measuring the two halves of a maximally
entangled pair of qubits (|00〉 + |11〉)/

√
2 Alice and Bob

can generate a shared secret bit.
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However, the use of ebits does open up an additional
possibility beyond what can be done with a classical
key. Instead of sending quantum information through the
channel, Alice can instead teleport qubits to Bob. Tele-
portation consumes one ebit and requires the transmis-
sion of two classical bits for each qubit teleported. These
classical bits can be sent through the channel stegano-
graphically. Because these bits are perfectly random, no
one-time pad or twirling is needed. And because they
are purely classical information, they are not disrupted
if Eve chooses to measure the error syndromes, as a gen-
eral quantum state would be. In this sense, quantum
steganography with shared ebits is more powerful than
quantum steganography with a shared classical key.

V. CONCLUSIONS

The problem of quantum steganography is to send hid-
den quantum information through a quantum channel in
such a way that an eavesdropper with the power to mon-
itor the channel will be unaware that the secret commu-
nication has taken place. Our approach to this prob-
lem is to disguise the information as channel errors on a
codeword containing “innocent” information. We have
presented two different protocols to achieve this goal,
given a quantitative measure of their secrecy, and cal-
culated rates for communication and secret key usage.
The second protocol, in which information is encoded
in the space of error syndromes, is suitable for general
channels, and achieves higher communication rates with
lower use of the secret key. However, for this approach
it is unclear what the best encoding is when the channel
contains intrinsic noise. This is the subject of ongoing
research. Quantum steganography represents a new type
of cryptographic protocol for quantum information, and
opens many fascinating new questions.
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Appendix A: Diamond Norm

In defining the diamond norm we follow the conven-
tions from Nielsen and Chuang [11] and John Watrous’s
lecture notes [12]. The diamond norm give a measure of
how “close” or similar two channels can be when they
transform an arbitrary density matrix from one Hilbert
space to another. We use this as a quality measure for
the “innocence” of the quantum message from Alice to
Bob: if Eve cannot distinguish a channel containing the
steganographic message from the channel that she ex-
pects, the stego channel satisfies the secrecy criterion.

Let N be some arbitrary super-operator, and let N :
L (V) → L (W), where L (.) is a space of linear operators
on the Hilbert spaces V and W . Then one can define the
diamond-norm of N as:

‖N‖⋄ ≡
∥

∥IL(V) ⊗N
∥

∥

tr
, (A1)

where ‖N‖tr is defined as:

‖N‖tr ≡ max {‖N (O)‖tr : O ∈ L (V) , ‖O‖tr = 1} .
(A2)

The maximization in (A2) is over all density matrices.
When the Hilbert space is infinite dimensional we take
the supremum of the set defined in (S2).

1. Binary Symmetric Channel

Let 0 < p < 1/2 be the rate at which Alice flips the
qubits of her codeword. Let r ≡ p + δp be the rate at
which the BSC flips qubits, where δp is some additional
noise which is not under the control of either Alice or
Bob. We assume that 0 < p < r < 1/2 because at
p = 1/2 the channel has zero capacity to send information
and p > 1/2 means that more qubits are being flipped
which is unnatural for this channel. For a single qubit
(N = 1) let Np be the BSC that Alice applies to an
arbitrary single-qubit density operator ρ:

Npρ = (1 − p)ρ+ pXρX , (A3)

and let Nr be the actual BSC

Nrρ = (1 − r)ρ+ rXρX . (A4)

We can now express the difference of the two channels
as:

(Nr −Np)ρ = (p− r)ρ + (r − p)XρX (A5)

We can express the diamond norm of the difference of
the channels Np and Nr as:

‖Nr −Np‖⋄ = max
ρ

‖(I ⊗ (Nr −Np))ρ‖tr
(A6)

= (r − p)max
ρ

‖(I ⊗ I)ρ(I ⊗ I) − (I ⊗X)ρ(I ⊗X)‖tr . (A7)
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When we substitute ρ = ψ ⊗ |0〉〈0| (ψ is some arbitrary
density operator) in the above equation we achieve the
maximum.

‖Nr −Np‖⋄ = (r − p) ‖ψ ⊗ |0〉〈0| − ψ ⊗ |1〉〈1|‖tr (A8)

≤ (r − p) ‖ψ‖tr ‖|0〉〈0|‖tr + ‖ψ‖tr ‖|1〉〈1|‖tr

(A9)

= (r − p)(1 + 1) (A10)

= 2(r − p) (A11)

= 2(p+ δp− p) (A12)

= 2δp. (A13)

In (A9) we use the triangle inequality and we use the
fact that for any two linear operators A and B, the trace
norm of their tensor product is equal to the product of
their trace norms, i.e., ‖A⊗B‖tr = ‖A‖tr ‖B‖tr. We
would like an expression for the optimal probability to
correctly distinguish two channels.

Popt =
1

2
+

1

4
‖Nr −Np‖⋄ . (A14)

So for a single-qubit use

Popt =
1

2
(1 + δp) . (A15)

For the case where we have two qubits, we can write
Alice’s BSC as:

(Np ⊗Np)ρ = (1 − p)2ρ+ p(1 − p)X1ρX1

+ p(1 − p)X2ρX2 + p2X1X2ρX1X2 ,

where X1 ≡ X⊗I and X2 ≡ I⊗X , and X1X2 ≡ X⊗X .
We can similarly calculate N1 ⊗ N1. We can now write
the difference between the two channels as:

(Nr ⊗Nr−Np ⊗Np)ρ = (r2 − 2r + 2p− p2)

+ (r − r2 − p+ p2)(X1ρX1 +X2ρX2)

+ (r2 − p2)X1X2ρX1X2 . (A16)

The diamond norm of the difference between two BSC
on two qubits can be expressed as:

∥

∥Nr ⊗Nr−Np ⊗Np

∥

∥

⋄
=

max
ρ

‖(I ⊗ (Nr ⊗Nr −Np ⊗Np))ρ‖tr
.

(A17)

We use a similar construction from the single-qubit case
to maximize the right side of (A17). Letting ρ = ψ ⊗
|00〉〈00| in (A17), we get:

‖Nr ⊗Nr −Np ⊗Np‖⋄ =
∣

∣(1 − r)2 − (1 − p)2
∣

∣

+ 2 |r(1 − r) − p(1 − p)|
+

∣

∣r2 − p2
∣

∣ . (A18)

Given our constraints that 0 < p < r < 1/2, the first
term on the right side of (A18) is negative while the sec-
ond and third terms are positive. This give us:

‖Nr ⊗Nr −Np ⊗Np‖⋄ = 2(r − p)(2 − r − p)

= 2δp(2 − 2p− 2δp) .

So in the double-qubit case Popt is:

Popt =
1

2
(1 + δp(2 − 2p− 2r)) . (A19)

If we observe (A18) carefully we find that the terms are
distributed binomially. For the case where we have N
qubits, we can use ρ = ψ⊗|00 · · · 0〉〈00 · · · 0| to maximize
the diamond norm for N uses of BSC to get:

∥

∥N⊗N
r −N⊗N

p

∥

∥

⋄
=

N
∑

j=0

(

N
j

)

∣

∣rj(1 − r)N−j (A20)

− pj(1 − p)N−j
∣

∣ .

2. Depolarizing Channel

The calculation of the diamond norm of the difference
betweenN uses of two depolarizing channels (DC) is sim-
ilar to the calculation of BSC that we performed in the
previous section. The expression for the channel is

Npρ = (1 − p)ρ+ (p/3(XρX + Y ρY + ZρZ) . (A21)

Eve sees a channel with a somewhat higher rate r =
p + δp. As in the BSC case we assume that 0 < p <
r < 1/2. For N = 2 case the difference between the two
depolarizing channels is:

(Nr ⊗Nr −Np ⊗Np)ρ = ((1 − r)2 − (1 − p)2)ρ

+ ((1 − r)(r/3) − (1 − p)(p/3))

(X1ρX1 + · · · + Z2ρZ2)

+ ((r/3)2 − (p/3)2)(X1X2ρX1X2

+ · · · + Z1Z2ρZ1Z2) .

The density matrix that maximizes the trace norm is
ρ = ψ ⊗ |Φ+〉〈Φ+|, where |Φ+〉 = 1/

√
2(|00〉 + |11〉), and

ψ is some arbitrary single-qubit density operator.
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‖Nr ⊗Nr −Np ⊗Np‖⋄ =
∣

∣(1 − r)2 − (1 − p)2
∣

∣ + 6 |(1 − r)(r/3) − (1 − p)(p/3)| 9
∣

∣(r/3)2 − (p/3)2
∣

∣

+
∣

∣(1 − r)2 − (1 − p)2
∣

∣ + 2 |(1 − r)r − (1 − p)p| +
∣

∣r2 − p2
∣

∣ . (A22)

After evaluating the absolute value terms, we get:

‖Nr ⊗Nr −Np ⊗Np‖⋄ = 2(r − p)(2 − r − p)

= 2δp

(

2 − 2p− δp

)

.

So,

Popt =
1

2
+

1

2
δp

(

2 − 2p− δp

)

. (A23)

For the general case for N uses of the depolarizing chan-
nel we may write the diamond norm as:

∥

∥N⊗N
r −N⊗N

p

∥

∥

⋄
=

N
∑

j=0

(

N
j

)

∣

∣rj(1 − r)N−j − pj(1 − p)N−j
∣

∣ , (A24)

which is exactly the same expression as for the BSC.

Appendix B: Properties of Protocol 2

1. Achievable Rate

We will work out the simplest example—the BSC in
the case where the physical channel is noise-free. The
errors in the codewords that Alice sends to Bob are bi-
nomially distributed. Let pN be the mean of this distri-
bution and let the variance be pNδ, where 0 < δ ≪ 1.
Here N is the length of each of codeword. Let

pk =

(

N

k

)

pk(1 − p)N−k (B1)

be the errors that Alice applies to her codewords. For
each k from Np(1− δ) to Np(1 + δ) choose Ck strings of
weight k. Let

C =

Np(1+δ)
∑

k=Np(1−δ)

Ck . (B2)

Let these sets of strings be called Sk, and

S = ∪kSk (B3)

So the total number of strings in the set S is C. Define
the probability q ≡ 1/C. Then we want to satisfy qCk =

Ck/C = pk. Clearly we must have
(

Ck

k

)

≤ N , for all k.
This implies that:

Ckp
k(1 − p)N−k ≤

(

N

k

)

pk(1 − p)N−k

⇒ Ckp
k(1 − p)N−k ≤ Ckq

⇒ pk(1 − p)N−k ≤ q

We want C to be as large as possible, which means we
want q to be as small as possible. This constraint then
gives us

q = pNp(1−δ)(1 − p)N(1−p+pδ)

⇒ C = 1/q

⇒ C = p−Np(1−δ)(1 − p)−N(1−p+pδ)

The number of bits that Alice can send is, therefore

M = log2 C

=N(−p log2 p− (1 − p) log2(1 − p)

+ δ(p log2 p− p log2(1 − p)))

=N(h(p) − pδ log2((1 − p)/p))

So with this encoding Alice can send almost Nh(p) bits.

2. Diamond norm

Again we consider the simplest case of the BSC. Let
N be sufficiently large so that the total probability of
the typical errors is > 1 − ǫ, and these typical errors
have weight k in the range Np(1 − δ) ≤ k ≤ Np(1 + δ).
We divide up all errors of weight k into Ck partitions
containing

nk ≈
(

N
k

)

Ck

≈
(

1 − p

p

)k−Np(1−δ)

errors each. Within each set the errors are all equally
likely to be chosen. However, because the number of er-
rors is unlikely to divide exactly evenly into Ck sets, the
probabilities qk of an error of weight k will be slightly dif-
ferent from the probability pk = pk(1−p)N−k of the bino-
mial distribution. We can put a (not-very-tight) bound
on this difference:

|qk−pk| <
pk

(

1−p
p

)k−Np(1−δ)

− 1

<
1 − p

1 − 2p
p2k(1−p)N−2k.

(B4)
Plugging this into the expression for the diamond norm,
we get

||N⊗N
p −Nenc||⋄ <ǫ+

Np(1+δ)
∑

k=Np(1−δ)+1

(

N

k

)

|pk − qk|

<ǫ+

(

1 − p

1 − 2p

) (

p

1 − p

)Np(1−δ)

×
(

1 − 2p+ 2p2

1 − p

)N

,

which is exponentially small in N .
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3. Error-correction with a noisy channel

Since errors can act in a complicated manner on the
space of syndromes, it is not entirely clear what the op-
timal encoding is even for a simple channel. Here we
present one encoding for the BSC that gives an achiev-
able rate in the limit of large N , but it is quite likely that
higher rates are possible.

In the noiseless case, it is possible to use the C(N,M)
strings of weight M as a code—each string represents one
possible weight-M error. If we then apply a BSC with
probability p, on average Np bits would be flipped. If
Np≪M then one can keep only a subset of the weight-
M strings, separated by a distance > 2Np.

This encoding quickly becomes inefficient as p gets
larger. Using the shared secret key, Alice can instead
chose only a subset of the N bits to hold the codewords.
If this subset includes N ′ bits, then the errors on the re-
maining N −N ′ bits are irrelevant and do not need to be
corrected. The limit of this would be similar to encoding
1 in the paper, where N ′ ≈ 2M .

Let N ′ = qN for some 0 < q ≤ 1. The number of
strings of weight M is C(qN,M), and there will be an
average number of bit flips pqN on the relevant portion
of the codeword. Keep a subset of these codewords sepa-
rated by distance 2pqN . Decoding is done by finding the
closest codeword to the output string.

As N,M → ∞ then the number of codewords will go

like

C(N,M, p, q) ∼
(

qN
M

)

(

qN
pqN

) .

The number of bits will be log2 C(N, p, q).
Since q is a parameter we can choose freely, we

choose it to maximize the rate R(N,M, p, q) ≡
(1/N) log2 C(N,M, p, q). Using the Stirling approxima-
tion, differentiating with respect to q, and setting the
result equal to 0, we can solve for q:

q =
M

N

(

2h(p)

2h(p) − 1

)

.

We can then plug this back into the formula for R. If the
physical channel has error rate p and Alice is attempting
to emulate a channel with error rate p + δp, then M =
Nδp/(1 − 2p). This gives us the following expression for
the rate:

R(p, δp) = − δp

1 − 2p
log2

(

2h(p) − 1
)

.

We can compare this to the rate from encoding 1, which
for the BSC is 2δp(1 − h(p))/(1 − 2p). It is not hard to
see that R(p, δp) above approaches this rate as p → 1/2
(and both rates go to zero), but as p → 0 this encoding
does considerably better than encoding 1. It is quite
likely, however, that there may be even more efficient
encodings.
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