
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Automated searching for quantum subsystem codes
Gregory M. Crosswhite and Dave Bacon

Phys. Rev. A 83, 022307 — Published 10 February 2011
DOI: 10.1103/PhysRevA.83.022307

http://dx.doi.org/10.1103/PhysRevA.83.022307

Automated Searching for Quantum Subsystem Codes

Gregory M. Crosswhite
Department of Physics, University of Washington, Seattle, 98195

Dave Bacon
Department of Computer Science & Engineering, University of Washington, Seattle, 98195 and

Department of Physics, University of Washington, Seattle, 98195

Quantum error correction allows for faulty quantum systems to behave in an effectively error free
manner. One important class of techniques for quantum error correction is the class of quantum
subsystem codes, which are relevant both to active quantum error correcting schemes as well as
to the design of self-correcting quantum memories. Previous approaches for investigating these
codes have focused on applying theoretical analysis to look for interesting codes and to investigate
their properties. In this paper we present an alternative approach that uses computational analysis
to accomplish the same goals. Specifically, we present an algorithm that computes the optimal
quantum subsystem code that can be implemented given an arbitrary set of measurement operators
that are tensor products of Pauli operators. We then demonstrate the utility of this algorithm by
performing a systematic investigation of the quantum subsystem codes that exist in the setting
where the interactions are limited to 2-body interactions between neighbors on lattices derived from
the convex uniform tilings of the plane.

Quantum computers are a technological possibility be-
cause there exist methods for building these comput-
ers out of physical components that fail to operate in
an error-free manner. The theory behind achieving this
makes up the field of quantum error correction [1–6] and
fault-tolerant quantum computing [7–12]. Of particular
note is the threshold theorem for fault-tolerant quantum
computing [8–10, 12]. This theorem says that if a quan-
tum system decoheres slowly enough, and sufficiently
precise control is maintained over the system, then ef-
fectively arbitrary error-free quantum computations can
be performed. The way that this is achieved is through
the use of quantum information which is encoded across
multiple quantum subsystems into a quantum error cor-
recting code.

Different quantum codes have different advantages and
disadvantages for implementation in a fault-tolerant de-
vice [13]. In this paper we undertake a study of an impor-
tant class of quantum codes, quantum stabilizer subsys-
tem codes [14–17] generated by measurements that are
tensor products of Pauli operators. Part of the signifi-
cance of this class of codes is that they can be used to im-
plement passive fault tolerance by turning the measure-
ment operators into interaction terms forming a Hamilto-
nian that provide energetic protection against errors; the
first example of such an approach was the toric code and
related models due to Kitaev [18, 19], and a plethora of
related approaches have now been investigated [20–28].

Previous approaches for studying quantum subsystem
codes have focused on using theoretical analysis to find
and investigate new quantum subsystem codes. While
powerful, theoretical analysis has some disadvantages: it
is limited to the ‘cleverness’ of the analyst, and it can be
prohibitively expensive to perform systematic searches
of large parameter spaces to pick out the gems in the
dust. In this paper, we present an alternative approach
that uses computational analysis to accomplish the same

goals. The advantage of this approach is that one be-
comes limited by the power of the computer rather than
the brain of analyst1.

In this paper we present an algorithm that computes
the optimal subsystem code for a given set of measure-
ments consisting of tensors products of Pauli operators.
In the process of doing this we also develop a formalism
that allows us to prove that the algorithm is correct and
that the code it compute is indeed the optimal code for
the given measurements. We also prove bounds on the
running time of the algorithm that show that the algo-
rithm terminates (relatively) quickly when the optimal
code is not very robust to errors. Because of this prop-
erty, the algorithm can be applied to sift through a class
of possible measurements to determine which (if any) re-
sult in a robust code.

To demonstrate the use of this algorithm, we focus
on classes of measurement operators where each mea-
surement is limited in action to two qubits — that is,
to operators taking the form Pi · Qj , where Pi and Qj

are Pauli operators acting on respectively the ith and
jth qubit of the system; examples of previous subsystem
codes that have been constructed with this structure are
the quantum compass model subsystem code [24] (in-
cluding generalizations [29, 30]) and topological subsys-
tem codes [31]. In particular we focus on systems where
the measurement operators only couple qubits that are
neighboring on a periodic lattice arising from the convex
uniform tilings of the plane. We perform a systematic
study of the codes on lattices arising from nine of the
eleven such tilings, and present the results of this search.

1 Of course, this is also the main disadvantage of this approach.

2

LIST OF TABLES

I Algorithm Compute-Subsystem-Code . . 8
II Algorithm Gaussian-Elimination 8
III Algorithm Optimize-Logical-Qubits . . . 11
IV Algorithm Fix-Logical-Qubits 12
V Algorithm Find-Weight-Minimizer 20
VI Algorithm Compute-Pseudogenerators 23
VII Combinatorics of the tilings 24
VIII Number of non-redundant labelings in

each tiling . 25
IX Symmetry groups of the tilings 25
X Lattice sizes scanned for each tiling 25

CONTENTS

List of Tables 2

I. Introduction 2
A. Notation 4

II. Theory 4
A. Construction of the subsystem code 4
B. Optimization of the logical qubits 7

1. Optimality condition 12
2. Correctness of the algorithm 15
3. Running time of the algorithm 18

III. Practice 23
A. Methodology 23
B. Results 27

1. quadrille 27
2. truncated quadrille 27
3. snub quadrille 27
4. isosnub quadrille 27
5. deltille 27
6. hextille 28
7. truncated hextille 30
8. hexadeltille 30
9. rhombihexadeltille 30

C. Discussion 30

IV. Conclusion 32

References 39

I. INTRODUCTION

We begin by a brief review of the notion of quantum
error correcting codes and in particular the subsystem
stabilizer codes [14].

In quantum computation we seek to reliably store and
manipulate quantum information. Unfortunately, real
quantum systems are open systems that couple to their
environment and quickly lose their coherence through the
process of decoherence. Even more troubling, when one

wishes to manipulate quantum information one can only
do this with a fixed precision, which means that addi-
tional error is introduced at every step of the computa-
tion. While considerable progress has been made in find-
ing systems with long coherence times, inevitably current
quantum computers will fail before they achieve anything
close to the amount of computation needed, for example,
to break a public key cryptosystem [32]. However it turns
out that one can generally repair damage to quantum in-
formation as long as one knows the form that the damage
took. Furthermore one can build a ‘trap’ — that is to
say, a quantum code — that tricks nature into giving up
the information about what damage has occurred to the
quantum system.

The nature of codes is that they separate the space in
which our computation lives from the space in which the
physical information is stored; that is to say, although we
design our quantum circuits to operate on some Hilbert
space of qubits C , each of these qubits does not directly
correspond to a physical qubit, but rather there is some
isomorphism that relates the entire Hilbert space C to
the Hilbert space of physical qubits, P. To distinguish
between these two Hilbert spaces, we call the Hilbert
space of qubits in whose terms the computation is ex-
pressed the computational space (or logical space), and
the space of qubits which have physically been built the
physical space.

Merely building an isomorphism between these two
spaces is not enough to allow us to correct errors. For
one thing, we need to add extra qubits to the compu-
tational space that contain a record of the damage that
we can read out; thus, we shall say that the full com-
putational space is C := R ×Q, where the qubits that
live in R have the role of keeping a record of the errors
that have been introduced by the environment, and the
qubits that live in Q are the qubits in whose terms our
quantum algorithm is expressed.

We have to pick a strategy for reading out the informa-
tion in R about the errors that have occurred on our sys-
tem. One natural choice is to perform a single-qubit Pauli
Z operator measurement on each qubit on R. In order to
build the ‘trap’ element into our system, we need to en-
sure that whenever nature strikes at the physical space P
and produces errors in a form that we intend to correct,
this action must be isomorphic to a strike on the compu-
tational space that leaves a measurable record in R. For
our choice of measuring Pauli Z errors, these are errors
that are isomorphic to any operator that anti-commutes
with the Z operator of at least one of the qubits in R.
Note that although we speak of measuring the qubits in
R, the measurement operator of interest in R is mapped
to an operator in the physical space P; this isomorphic
operator is referred to as a stabilizer, and the full set of
operators on P which are isomorphic to our chosen mea-
surement operators on R are referred to as the stabilizers
of the code.

Up to this point, the formalism we have described
is known as stabilizer codes [6, 33–35] and its essential

3

characteristic is that in determining the syndrome of the
physical error, one makes a measurement of all of the
qubits in R. What if, however, we relaxed this constraint
and only measured some of the qubits in R? That is to
say, what if we split the qubits in R into two categories:
stabilizer qubits whose states we care about and which we
measure to obtain an error syndrome, and gauge qubits
whose states we do not care about. (The latter get their
name from the fact that they provide a ‘gauge’ degree
of freedom, i.e. a degree of freedom that is irrelevant to
us.) Then we would have that R = S × G , where S
is the space in which the stabilizer qubits live, and G is
the space in which the so-called gauge qubits live; such
a scheme is known as a stabilizer subsystem code [14]. In
this case, we shall use the term stabilizers to denote the
set of operators in P which are isomorphic to our chosen
measurement operators of interest in S .

At first there might not seem to be an advantage to
this approach, since it essentially means adding qubits
to our code that are ‘wasted’; however, in practice sub-
system codes have many advantages. The first advantage
is that since we do not care about what happens to the
gauge qubits, some quantum errors on the system will
neither result in detectable errors nor destroy the infor-
mation in the logical qubits [14–17, 24, 36]. A second
advantage is that we no longer need our error-correcting
measurements on the physical system to commute with
each other, as long as they all commute with the sta-
bilizers and logical qubit operators, since then the fact
that they do not commute only affects the gauge qubits,
which we do not care about [37]. This sometimes allows
one to effectively measure a stabilizer which is a non-
trivial k-qubit measurement by using a series of two qubit
measurements [37]. The individual measurements in this
series do not commute (so they cannot be simultaneously
measured), however the stabilizer syndrome can nonethe-
less be reconstructed from these measurements. A third
advantage arises from the fact that subsystem codes of-
ten require fewer measurements to diagnose errors than
similar non-subsystem codes, which results in improved
performance [13, 37]; counterintuitively, turning stabi-
lizer codes into subsystem stabilizer codes often results
in higher thresholds for fault-tolerant quantum comput-
ing. Finally, subsystem codes can often be implemented
in a more local manner than non-subsystem codes as ex-
emplified by the quantum compass model code [24, 37].

There are now many examples of stabilizer subsystem
codes in the literature. One of the first non-trivial sub-
system codes to be described is a code related to the
quantum compass model in two-dimensions [24, 38, 39].
In the quantum model one considers a Hamiltonian on a
two-dimensional square lattice where nearest horizontal
neighbors couple the x component of their spins and near-
est vertical neighbors couple the z component of their
spin, so that the Hamiltonian is given by

H = −∆
∑
i,j

(Xi,jXi+1,j + Zi,jZi,j+1), (1)

where Pi,j represents the Pauli operator P acting on
qubit at location (i, j). This model is interesting for a
few reasons. The first is that the energy levels of this
system can be best thought of as elements of a quan-
tum error correcting subsystem code. The second reason
is that the model provides some amount of protection
from quantum errors because errors are energetically un-
favored2. Many other examples of systems which have
energy protecting properties are also known: the most
famous being Kitaev’s toric code in two and four-spatial
dimensions [18, 19, 40]. The study of such systems is still
in its infancy and one central question is whether there
exist Hamiltonians with reasonable physical parameters
(such as existing in three or fewer spatial dimensions and
involving 2-body interactions [41, 42]) whose physics en-
act quantum error correction on the system when the sys-
tem is in contact with a thermal reservoir at sufficiently
low temperature; such systems are called self-correcting
quantum computers [24, 27]. In this paper we will talk
about quantum subsystem codes from the perspective of
active error correction where error syndromes are iden-
tified through carefully engineered measurements, but it
shall be understood that this formalism can equivalently
be seen from the perspective of passive error correction
where errors are guarded against by carefully engineered
interactions. That is, measurement operators in the ac-
tive error correction picture are equivalent to interactions
in the passive error correction picture.

Because we ultimately want to build a system im-
plementing our measurements, physical considerations
typically constrain our measurements to be local, which
means that they can be expressed in the physical space
as a tensor product of single-qubit Pauli operators — i.e,
for each measurement operator o we have that o :=

⊗
i Pi

where Pi is the Pauli operator P acting on the ith qubit.
An important question then is which sets of local mea-
surements give rise to useful quantum error correcting
subsystem codes.

Approaches to answering this question typically in-
volve applying theoretical analysis with varying degrees
of cleverness. In this paper we present an alternative
approach. In section II, we present an algorithm which
for every set of local measurement operators computes a
quantum subsystem code that arises from the algebra of
these operators3. Along the way we develop a formalism
that allows us to prove not only that this algorithm is
correct, but also that the code that it computes is opti-
mal in the sense that there exists no other code arising

2 Unfortunately, in this particular system the protection vanishes
as the size of the lattice goes to infinity [39], but for small lattice
sizes there is some protection from errors due to the energy level
structure of the system [38].

3 We say that we compute ‘a’ code rather than ‘the’ code be-
cause there is almost never a unique solution, since among other
transformations one can multiple every gauge and logical qubit
operator by an element from the stabilizers and end up with an
equivalent code.

4

from the same set of measurements for which the dis-
tance of any of the logical qubits has been increased.
This property makes this algorithm useful for analyzing
the properties of codes arising from measurements that
are too overwhelming to analyze by hand.

We shall also show that an important property of this
algorithm is that it terminates (relatively) quickly when
the distance of the code is small, which allows it to be
used not only to solve for individual codes, but also to
search through entire classes of sets of measurements to
see if any have high-distance qubits. Motivated by pre-
vious results demonstrating the utility of codes imple-
mented using systems on a lattice, we undertake a sys-
tematic investigation of codes where the measurement
operators are restricted to the 2-body interactions aris-
ing from the edges of periodic lattices derived from the 11
regular tilings. In section III we discuss our approach for
applying the algorithm to perform a systematic search
for codes that can be implemented on these tilings, and
we the present numerical results that we obtained. In
section IV we present our conclusions.

A. Notation

In this paper we adopt the following conventions for
notation:

• sets are denoted by a symbol with a tilde, e.g. Ã;

• sequences are denoted by a symbol with an arrow,
e.g. ~A;

• operators and integers are denoted by using lower-
case letters, e.g. o and i;

• collections of operators and pairs of operators are
denoted by using upper-case letters with either a
tilde or an arrow above them, e.g. Õ and ~O;

• collections of integers are denoted by using lower-
case letters with either a tilde or an arrow above
them, e.g. k̃ and ~k; and

• collections of other kinds of objects are typically
denoted by capital letters in a fancy script.

II. THEORY

A. Construction of the subsystem code

Remark This subsection describes by way of a construc-
tive proof an algorithm that given a set of measurement
operators computes a quantum code that can be imple-
mented by these operators. For a listing of pseudo-code
that implements this algorithm, see Table I near the end
of this subsection.

Although conceptually a subsystem code is an isomor-
phism T such that P ≈T S × G × Q — that is, an
isomorphism between the physical space of qubits and
the computational space of qubits in whose terms our
computation is actually expressed — we do not need to
actually construct this isomorphism in order to be able
to use the code. Since all of our work will be done on the
physical system anyway, it suffices to know the operators
in the physical space P that are isomorphic to the qubit
measurement operators of interest in the computational
space S × G ×Q, and it is exactly the operators on P
that the algorithm we present shall compute4.

When one wants to define a qubit in terms of its mea-
surement operators, it suffices to define two operators
that anti-commute with each other but which commute
with all of the others measurement operators that have
been defined, since this gives us the X and Z measure-
ments on the qubit which are sufficient to generate the
full Pauli group (minus phases). Since working with such
pairs of operators shall be a common theme in this algo-
rithm, we shall introduce the following definition in order
to simplify the language used to describe them.

Definition A pair of operators is a conjugal pair in rela-
tion to the set X̃ when each of the operators in the pair
commutes with every operator in X̃ except for its conju-
gal partner — that is, the other operator in the conjugal
pair — should its conjugal partner be a member of X̃.

Note that we have explicitly not required that the op-
erators in the conjugal pair be members of X̃ in order
to be a conjugal pair in relation to it. However, should
both operators be members of X̃, then neither operator
can belong to a different conjugal pair with respect to
X̃, since in that case there would be an operator in X̃
(namely, its original conjugal partner) with which it anti-
commutes that was not its conjugal partner in the new
pair, leading to a contradiction.

For convenience, we introduce the following additional
definitions:

Definition 1. P̃ is the group of Pauli operators —
that is, the group of tensor products of the (unnor-
malized) Pauli matrices — acting on the physical
space P, modulo phases;

2. P̃(S̃) is the power set of S̃, i.e. the set of all subsets
of S̃; and

3. C̃G(S̃) is the centralizer of S̃, that is the subgroup
of elements in G which commute with S̃;

4 If one really wanted to, one could explicitly construct the isomor-
phism T from these operators by computing the unitary operator
which simultaneously diagonalizes a the maximal subset of com-
muting measurements from this set of operators on P, but in
practice this is not particularly useful.

5

4. the function G̃ : P̃(P̃)→ P̃(P̃) is defined such that
G̃(S̃) is the set of all possible products of operators
in S̃ — that is, it is the set generated by S̃.

We now introduce the main theorem of this subsection.

Theorem 1. Suppose we are given a sequence of Pauli
operators, ~O. Then there exist sets of Pauli operators
S̃ ⊆ P̃, G̃ ⊆ P̃, and L̃ ⊆ P̃ such that

1. each of the operators in S̃ ∪ G̃ ∪ L̃ is independent
from the rest — i.e., no operator in this (unioned)
set can be written as a product of other operators
in the set;

2. each operator in L̃ ∪ G̃ is a member of a conjugal
pair in relation to S̃ ∪ G̃ ∪ L̃;

3. G̃(S̃ ∪ G̃) = G̃
(
{ ~Oi}

)
;5

4. and G̃(S̃ ∪ G̃ ∪ L̃) = C̃P̃(S̃)

Remark This theorem follows, at least implicitly, from
prior work on stabilizer codes [6], the definitions of stabi-
lizer subsystem codes given by Poulin [14], and the con-
structive approach to finding such codes as exemplified
in [24]. Because we wish to be constructive, however, we
will present a full proof of this theorem and show how it
gives rise to an algorithm for finding sets of Pauli opera-
tors which satisfy Theorem 1. To be explicit, we note that
S̃ will be a set of stabilizers (or equivalently, generators
for the stabilizer group), G̃ will be a set of gauge qubit
operators, and L̃ will be a set of logical qubit operators
(i.e., those on which the computation is performed).

The main work in the proof of this theorem will be
performed by proving several related propositions. First
we shall show how the set G̃ and a sequence ~S are con-
structed from the sequence of operators ~O. Since we want
our stabilizers to form an independent set of operators,
we shall then show that through a Gaussian elimination
procedure it is possible to extract a list of independent
operators from a sequence ~S resulting in a set S̃. Finally,
we shall show how using this same Gaussian elimination
procedure we can transform a subset of the operators of
S̃ ∪ G̃ into a form that makes it trivial to compute the
logical qubit operators L̃.

Proposition 1. Suppose that we are given a sequence
of Pauli operators ~O ⊆ P̃. Then there exists a sequence
of Pauli operators ~S ⊆ P̃ and a set of Pauli operators
G̃ ⊆ P̃ such that

1. all of the operators in ~S commute with each other
and also all of the operators in ~G;

5 Here we use the notation { ~Oi} to refer to the set of elements in

the sequence ~O.

2. each operator in G̃ is a member of a conjugal pair
(Definition II A) in relation to {~Si} ∪ G̃ ; and

3. G̃
(
{~Si} ∪ G̃

)
= G̃

(
{ ~Oi}

)
.

Proof. Proof by induction. For the base case, note that
if ~O is empty then ~S := ∅ and G̃ := ∅ trivially satisfy all
properties.

Now assume that the proposition holds for a sequence
of length n − 1, and consider a sequence of operators ~O
of length n. By the inductive hypothesis, we know that
there is a sequence ~S′ and a set G̃′ satisfying the proper-
ties above for the subsequence of ~O consisting of the first
n−1 operators. Let o := ~On ·

∏
g∈G̃,{~On,g}=0 conjG̃(g) —

that is, the product of ~On with the conjugal partner of
every operator in G̃ with which ~On anti-commutes. This
definition guarantees that o commutes with every oper-
ator in G̃; furthermore, we can obtain ~On back from o
since every operator in G̃ squares to the identity and thus
~On = o ·

∏
g∈G̃,{~On,g}=0 conjG̃(o); therefore we conclude

that G̃
(
{~S′i} ∪ G̃′ ∪ {o}

)
= G̃

(
{ ~Oi}

)
.

If o commutes with every operator in ~S′, then set

~Si :=

{
~S′i i ≤ n− 1
o i = n

and G̃ := G̃′, and we are done. Otherwise, let s be some
operator in ~S′ that anti-commutes with o, G̃ := G̃′∪{s, o}
6, ~S′′i := f(~S′i), and ~S be the subsequence of ~S′′ with the
identity operators removed, where

f(s′) :=

{
s′ · s {s′, o} = 0
s′ otherwise

.

Observe that by this definition, all of the operators in
~S commute with every operator in G̃, so property 1 is
satisfied. Since the only difference between G̃′ and G̃
is the addition of s and o, which form a conjugal pair
with respect to {~Si} ∪ G̃, we conclude that property 2 is
satisfied. Lastly, since s ∈ G̃, we can form any operator
in ~S′ with products of operators in ~S and G̃, so therefore
G̃
(
{~Si} ∪ G̃

)
= G̃

(
{~S′i} ∪G′ ∪ {s, o}

)
= G̃

(
{ ~Oi}

)
, and

so the final property is satisfied.
We conclude by noting that since all of the operators

in ~S and G̃ were formed from products of operators in

6 Observe that neither o nor s can be present in G̃′ since they
commute with every operator in G̃′, so the new set G̃ := G̃′ ∪
{s, o} gives us a strictly larger set. This fact is irrelevant far
as the proof is concerned, but it has the important consequence
that a computer code implementing the algorithm described by
this proof can append s and o to a list of gauge operators and
assume that this list continues to form a set (i.e., a sequence
without duplicates) without having to explicitly check for this.

6

~O, which are Pauli operators (i.e., members of the group
P̃), they are Pauli operators themselves.

Remark A consequence of not requiring independence
of the operators in ~O is that the operators ~S given by
Proposition 1 are not necessarily independent. Happily,
since all of these operators can be expressed as tensor
products of Pauli operators, we can construct a set of
independent operators by performing an analog of Gaus-
sian elimination.

Proposition 2. Suppose that we have been given a
sequence of Pauli operators which commute with each
other, ~R. Then there exists

1. a sequence ~S of n independent operators such that
G̃
(
{~Si}

)
= G̃

(
{~Ri}

)
,

2. a sequence of n integers without duplicates in the
inclusive range 1 . . . n,

3. and a map p : {1 . . . n} → {0, 1} such that ~Si is the
only operator in ~S that anti-commutes with P [p(i)]

ki
,

where P [0]
k := Xk and P [1]

k := Zk.

Proof. Proof by induction. For the base case, we observe
that if ~R is empty, then the trivial sequences ~S := ∅ and
~k := ∅ and the trivial function p : ∅ → ∅ satisfy the
requirements.

Now suppose that we know the proposition holds for
sequences of length N−1, and we are given a sequence ~S
of length N . By our inductive hypothesis, we can apply
the proposition to the first N − 1 operators in ~R obtain
sequences ~S′ and ~k′ of length n − 17, and a map p′ :
{1 . . . n − 1} → {0, 1} which all satisfy the respective
properties of the theorem. Let

s := ~RN ·
∏

i=1...n−1,

~RN ,P

[p(i)]
k′

i

ff
=0

~S′i.

We know that s commutes with every operator in ~S′

because both s and every operator in ~S′ are equal to
products of operators in ~R, which all commute with each
other. Furthermore, since s is a product of ~RN and a
factor of ~S′i for every i such that ~RN and P

[p′(i)]
k′i

anti-

commute, and we know that ~S′i is the only operator in ~S′

that anti-commutes with P
[p′(i)]
k′i

for i = 1 . . . n − 1, it is
therefore the case that s commutes with every member
of the set {P [p′(i)]

k′i
}i=1...n−1. Finally, since s is a prod-

uct of ~RN and operators in ~S′, we can obtain ~RN en-
tirely from products of operators in {~S′i} ∪ {s}, and so
G̃
(
{~S′i} ∪ {s}

)
= G̃

(
{~Ri}

)
.

7 Note that n 6= N in general, since some of the first N−1 operators
might not have been independent.

If s is the identity operator, then let ~S := ~S′ and
p := p and we are done. Otherwise, we shall now show
that there must exist integers j ∈ {1, . . . , N}\{~k′i} and
l ∈ {0, 1} such that s anti-commutes with P [l]

j , by demon-
strating that if this were not the case then s would have
to anti-commute with some element in ~S′, leading to a
contradiction.

Assume that s commutes with every operator in the
set

{
P

[l]
j : j ∈ {1, . . . , N}\{~k′i}, l ∈ {0, 1}

}
. Recall-

ing that s is a member of the Pauli group and thus
a tensor product of single-particle Pauli spin matrices,
and also that s commutes with every member of the set
{P [p′(i)]

~k′i
}i=1...n−1, we see therefore that s must be a prod-

uct of elements from this set — that is, there is some
subset ∅ 6= F̃ ⊆ {P [p′(i)]

~k′i
}i=1...n−1 such that s =

∏
o∈F̃ o.

However, from our inductive hypothesis we know that for
every operator f ∈ F̃ there is an operator s′ ∈ ~S′ that
anti-commutes with f but commutes with the operators
in F̃\{f}. Since s is therefore a product of a single op-
erator that anti-commutes with s′ and more operators
that commute with s′, we conclude that s and s′ anti-
commute, which contradicts our earlier conclusion that s
commutes with every operator in ~S′.

Now that we have shown that there exist integers j ∈
{1, . . . , N}\{~k′i} and l ∈ {0, 1} such that s anti-commutes
with P

[l]
j , in terms of these integers we define

~Si :=

{
~S′i · s {~S′i, P

[l]
j } = 0

~S′i otherwise
1 ≤ i ≤ n− 1

S′ i = n

,

~ki :=

{
~k′i 1 ≤ i ≤ n− 1
j i = n

, and

p(i) :=

{
p′(i) 1 ≤ i ≤ n− 1
l i = n

,

and we are done.

Remark Proposition 2 is good for more than computing
an independent set of generators from a commuting list
of operators; it is also the key ingredient in computing
the logical qubit operators.

Proposition 3. Suppose that we have been given the ob-
jects described in 1-3 of Proposition 2. Let S̃ := {~Si}i.
Then there exists a set of operators L̃ such that

1. the operators in S̃ ∪ L̃ are independent;

2. every operator in L̃ is a member of a conjugal pair
with respect to S̃ ∪ L̃;

3. G̃
(
S̃ ∪ L̃

)
= C̃P̃(S̃) — that is, the set generated

by S̃ ∪ L̃ is equal to the set of Pauli operators that
commute with S̃.

7

Proof. Recalling that n is the number of elements
in ~S (and S̃), let ~l be some sequential ordering of
{1 . . . N}\{~ki}i, and then let L̃ := { ~Ai}i ∪ { ~Bi}i where

~Ai := P
[1]
~li
·

∏
j=1...n

{P [1]
li

,~Sj}=0

P
[s(j)]
~kj

,

~Bi := P
[0]
~li
·

∏
j=1...n

{P [0]
li

,~Sj}=0

P
[s(j)]
~kj

.

To see that property 1 is satisfied, observe the fol-
lowing. First, the operators in L̃ are independent from
the operators in S̃ since none of them is the identity
operator and they all commute with every operator in
{P [s(i)]

~ki
}i=1...n. Second, they are independent from each

other since for every i = 1 . . . |~l| we have that ~Ai is the
only operator that anti-commutes with P

[0]
~li

and ~Bi is

the only operator that anti-commutes with P
[1]
~li

. Thus

we conclude that all of the operators in S̃ ∪ L̃ are inde-
pendent.

Next, to see that property 2 holds, observe that for ev-
ery choice of operators ~Ai and ~Sj we have (by intentional
construction) that ~Sj either anti-commutes with two of
the operators in the product forming ~Ai or none at all,
and so [~Si, ~Aj] = 0 for all i = 1 . . . n and j = 1 . . . |~l|; by
the same reasoning we see also that [~Si, ~Bj] = 0 for all
i = 1 . . . n and j = 1 . . . |~l|. Furthermore, each operator
~Ai commutes with every operator in L̃ except for its con-
jugal partner ~Bi, since the only factor in ~Ai that could
anti-commute with a factor contained within another op-
erator in L̃ is P [1]

li
, and ~Bi is the only operator in L̃ that

contains a factor P [0]
li

that anti-commutes with ~Xli ; re-
versing this argument, we also see that ~Bi commutes with
every operator in L̃ except for ~Ai. Thus, every operator
in L̃ is a member of a conjugal pair with respect to L̃∪ S̃.

Finally, to see that property 3 holds, observe that since
the operators in S̃ commute they can therefore be si-
multaneously diagonalized, which means that there is
an automorphism on P̃ that takes ~Si 7→ P

[1]
i for every

i = 1 . . . n. The only operators that commute with ev-
ery such P

[1]
i are those which do not contain any fac-

tor of P [0]
i for i = 1 . . . n, and so C̃P̃

(
{P [0]

i }i=1...n

)
=

G̃
(
{P [1]

i }i=1...n ∪ {P [l]
i }i=n+1...N, l=0,1

)
, which has 2N −

n generators. Since the automorphism preserves the
number of generators in the centralizer, we thus conclude
that C̃P̃(S̃) has exactly 2N − n generators. Since S̃ ∪ L̃
contains independent operators which commute with ev-
ery member of S̃, and furthermore |S̃ ∪ L̃| = 2N − n, we
thus conclude that G̃

(
S̃ ∪ L̃

)
= C̃P̃(S̃).

With these building blocks in place, we now prove the
main theorem:

Proof of Theorem 1. By Proposition 1, we know that
there exists a list of operators ~S and a set of independent
operators G̃ satisfying the properties that are listed there.
By Proposition 2, we know that there is an independent
set of operators S̃ that generate the same subgroup as ~S.

Now let F̃ be a maximal subset of commuting oper-
ators in G̃ — i.e., for each conjugal pair in G̃ take one
of the two operators — and then let Õ := F̃ ∪ S̃. Since
all of the operators in Õ commute, we apply Proposition
2 again to conclude the existence of the objects listed
there, and then we immediately apply Proposition 3 to
show that a set M̃ exists with the properties listed there.
We are not done yet, however, since there might be op-
erators in G̃ with which operators in M̃ anti-commute,
so we let

L̃ := {m ·
∏
f∈F̃

{M,conj
G̃

(f)}=0

f : m ∈ M̃}

where conjG̃(F) is the conjugal partner of F in the set G̃.
This guarantees that the operators in L̃ commute with
every operator in S̃ ∪ G̃, and so we are done.

Remark A pseudo-code representation of the algorithm
described by Theorem 1 is given in Table I.

B. Optimization of the logical qubits

Remark A pseudo-code representation of the algorithm
that will be described in this section is presented in Table
III.

In general there are multiple sets of operators that sat-
isfy the properties of 1, as is illustrated by the following
Lemma:

Lemma 1. Given conjugal pairs Q := (a, b) and R :=
(c, d) in relation to some set X̃ such that either a 6= c or
b 6= d, we have that

1. the pairs Q′ := (a · c, b) and R′ := (c, d · b) are
conjugal pairs with respect to X̃\{Q,R}∪{Q′, R′};
and

2. G̃ ({a, b, c, d}) = G̃ ({a · c, b, c, d · b}).

Proof. 1. Since [a, c] = [a, d] = [b, c] = [b, d] =
{a, b} = {c, d} = 0, we see therefore that [a · c, c] =
[a·c, d·b] = [b, c] = [b, d·b] = {a·c, b} = {c, d·b} = 0.
Furthermore, since a, b, c and d commute with ev-
ery operator in X̃\{Q,R}, so do a · c and d · b.

2. Since b and c are Pauli operators and thus square to
the identity, we have that a ·c ·c = a and d ·b ·b = d,
and so G̃ ({a, b, c, d}) = G̃ ({a · c, b, c, d · b}).

8

Compute-Subsystem-Code(~O)

1 ~S ← []

2 ~G← []

3 for o← ~O
4 do

5 for (gX , gZ)← ~G
6 do
7 if anti(o, gX) then o← o · gZ

8 if anti(o, gZ) then o← o · gX

9 if o is identity then goto 3

10 for s← ~S
11 do
12 if anti(o, s) then goto 14
13 goto 3

14 ~G← ~G ∪ [(o, s)]
15 i← 1

16 for s′ ← ~S
17 do
18 if s′ = s then goto 16
19 if anti(s′, o)
20 then

21 ~S[i]← s′ · s
22 else

23 ~S[i]← s
24 i← i+ 1

25 delete ~S[i . . . |~S|]
26 ~I ← []

27 ~P ← []

28 call Gaussian-Elimination(~S, 1, ~I, ~P) (Table II)

29 ~T ← ~S ∪ [gX |(gX , gZ) ∈ ~G]

30 call Gaussian-Elimination(~T , |~S|+ 1, ~I, ~P) (Table II)

31 ~L← []
32 for i← 1 to number of physical qubits
33 do

34 if i ∈ ~I then goto 32
35 lX ← Xi

36 lZ ← Zi

37 for (j, p, t)← (~I, ~P , ~T)
38 do
39 if p = 0
40 then
41 if anti(t,Xj) then lX ← lX · Zj

42 if anti(t, Zj) then lZ ← lZ · Zj

43 else
44 if anti(t,Xj) then lX ← lX ·Xj

45 if anti(t, Zj) then lZ ← lZ ·Xj

46 for (gX , gZ) ∈ ~G
47 do
48 if anti(lX , gZ) then lX ← lX · gX

49 if anti(lZ , gZ) then lZ ← lZ · gX

50 return (~S, ~G, ~L)

TABLE I: Algorithm which computes the subsystem
code generated by a given list of measurement operators
~O. The subroutine Gaussian-Elimination is listed in

Table II.

Gaussian-Elimination(~S, i, ~I, ~P)

1 while i < |~S|
2 do

3 s← ~S[i]
4 for j ← 0 to i− 1
5 do

6 (n, z)← (~I[j], ~P [j])
7 if z = 0
8 then
9 if anti(s,Xn)

10 then s← s · ~S[j]
11 else
12 if anti(s, Zn)

13 then s← s · ~S[j]
14 if s is identity
15 then

16 delete ~S[i]
17 goto 1
18 for n← 0 to number of physical qubits
19 do

20 if n ∈ ~I then goto 18
21 if anti(s,Xn)
22 then
23 z ← 0
24 goto 29
25 if anti(s, Zn)
26 then
27 z ← 1
28 goto 29
29 if z = 0
30 then
31 for j ← 0 to i− 1
32 do

33 if anti(~S[j], Xn)

34 then ~S[j]← ~S[j] · s
35 else
36 for j ← 0 to i− 1
37 do

38 if anti(~S[j], Zn)

39 then ~S[j]← ~S[j] · s
40 append n to ~I

41 append z to ~P

42 ~S[i]← s
43 i← i+ 1

TABLE II: Subroutine which performs a procedure
analogous to Gaussian-elimination on ~S to distill a set
of independent operators from a possible dependent set

of operators. This subroutine is called by the main
subsystem code algorithm in Table I.

As a result of this lemma, we see that we can take
pairs of arbitrary conjugal pairs from sets G̃ and L̃ of
Theorem 1 and replace them with different pairs per the
recipe in Lemma 1 such that the properties of the theo-
rem still hold. So given that these sets are not unique,
the natural question is: What is the best choice of G̃ and

9

L̃? To answer this, we observe that another criteria we
would like for our code to satisfy is that it be as robust
to errors as possible; in particular, we seek to maximize
the difficulty of undetectable errors, which is defined as
follows:

Definition Given a set S̃ ⊆ P̃ and operators l ∈ P̃ and
e ∈ C̃P̃(S̃) which anti-commute (i.e., {l, e} = 0), we say
that e is an undetectable error with respect to S̃ acting
on l.

We assume that the ‘difficulty’ of an interaction between
our physical system and its environment is related to the
number of physical qubits in our system that are partic-
ipating in the interaction. Thus, the natural metric for
measuring the relative difficulty of an error is given by
its weight, which recall is defined as follows:

Definition Given an operator p ∈ P̃—which recalls
means that p is the tensor product of single-qubit Pauli
unnormalized spin matrices—the weight of p is the num-
ber of single-qubit operators in the product which are
non-trivial (i.e., not the identity). So for example, the
weight of I ⊗ I ⊗ I is 0, the weight of I ⊗ Z ⊗ I ⊗X is
2, and the weight of Z ⊗X ⊗ Y is 3.

For convenience, we introduce the following additional
notation:

Definition

• the function Π : P̃(P̃) → P̃ is defined such that
Π(X̃) :=

∏
x∈X̃ x — that is, it is the product of

the operators in X̃.

• assuming we have a set of independent operators,
Q̃, the function G̃Q̃ : G̃(Q̃) → P̃(Q̃) is defined
(uniquely) such that for every q ∈ Q̃ we have that
q =

∏
o∈G̃Q̃(q) o;

• the function w : P̃→ N is defined such that w(o)
gives the weight of o;

• the function eS̃ : C̃P̃
(
S̃
)
→
(
P̃ ◦ C̃P̃

)(
S̃
)

is de-
fined such that ẽS̃(l) is the set of minimizers of w

over the set
{
o : o ∈ C̃P̃

(
S̃
)
, {o, l} = 0

}
— that is,

it gives the undetectable errors with respect to S̃
acting on l that are of minimum weight;

• the function ωS̃ : C̃P̃
(
S̃
)
→ N is defined such

that ωS̃ := w(o) for an arbitrarily chosen o ∈ ◦ẽS̃ —
note that function is well-defined since all operators
in the set ẽS̃ have the same weight;

• the functionmS̃ : C̃P̃
(
S̃
)
×C̃P̃

(
S̃
)
→ N is defined

such that mS̃(l, l′) := min{ωS̃(l), ωS̃(l′)}— that is,
it gives the smaller of the weights of the smallest
weight errors acting on respectively L̃ and L̃′;

• the function ~MS̃ is defined such that ~MS̃

(
~P
)

is

the sequence of |~P | integers such that ~MS̃

(
~P
)

i
:=

mS̃

(
~Pi

)
;

• the functions p1 and p2 are defined such that, given
(a, b) := x, we have that p1(x) := a and p2(x) := b.

• the function Ũ : P̃(P̃ × P̃) → P̃(P̃) is de-
fined (for convenience) such that Ũ

(
X̃
)

:=⋃
x∈X̃{p1(x), p2(x)} — that is, it ‘unpacks’ a set

of pairs of operators into a set of operators; in an
abuse of notation, we shall also allow Ũ to apply
to sequences, so that Ũ(~P) := Ũ

(
{~Pi}i

)
, and to

individual pairs, so that if X is a single pair then
Ũ(X) := Ũ({X});

• finally, a choice of qubits stabilized by S̃, ~P , is a
sequence of pairs of operators from the Pauli group
such that

1. no operator in Ũ(~P) appears in more than one
pair in ~P ;

2. Ũ(~P) ⊆ C̃P̃(S̃)

3. every pair in ~P is a conjugal pair with respect
to S̃ ∪ Ũ(~P);

4. (ωS̃ ◦ p1)(~Pi) = mS̃(~Pi); and

5. ~MS̃(~P) is an ordered sequence.

Given the notation above, we now precisely define what
we mean by the “best choice” of logical qubits.

Definition An optimal choice of qubits stabilized by S̃ is
any choice of qubits, ~P stabilized by S̃, such that given
any other choice of qubits, ~P ′, that is also stabilized by
S̃ and which satisfies (G̃ ◦ Ũ)(~P) = (G̃ ◦ Ũ)(~P ′), we have
that ~M(~P)i ≥ ~M(~P ′)i for all 1 ≤ i ≤ |~P | = |~P ′|.8

We now present an algorithm for computing the optimal
choice of logical qubits from a set of input qubits. The
key insight upon which the algorithm is built is that un-
detectable errors acting on the space of logical qubits can
never be eliminated entirely, so there will always be some
operator on which they act. Thus, the goal of the opti-
mization procedure is not to eliminate errors, but rather
to contain them, so that they act on as few operators as
possible.

The optimization algorithm works by starting with an
empty (and therefore automatically optimal) choice of

8 Note that since ~P and ~P ′ are sequences of conjugal pairs without
duplicates they are therefore independent, and so if (G̃ ◦ Ũ)(~P) =

(G̃ ◦ Ũ)(~P ′) then we know automatically that |~P | = |~P ′|.

10

qubits and a set of ‘unoptimized’ qubits, and making
progress by gradually moving qubits from the unopti-
mized set into the choice in such a way that preserves
the optimality of the choice. The trick is that we want to
delay as long as possible moving a qubit into the choice,
until we have had every chance to improve it. Thus, we
additionally keep track of a subset of pairs in the choice
whose second members have yet to be used to contain
an error, and then use them as much as possible to fix
errors. That is, at every step in the algorithm, we scan
for the minimal weight undetectable error acting on the
set of operators consisting of both the second member of
the pairs in this subset and all of the operators in the
unoptimized set of qubits. If the minimal weight error
acts on an operator in the first category, then we remove
the pair from the subset and use this operator to fix this
error wherever it occurs in both the second members of
pairs in the subset and the unoptimized qubits. Other-
wise, we pull out a qubit from the unoptimized set on
which the error acts, use the first member in the pair to
fix the error in the qubits remaining in the unoptimized
subset, add the pair to the subset of qubits whose second
members have yet to be used to contain an error, and
then add it to the end of the choice. At this point our
choice turns out to still be optimal because if there had
been a way to make the qubit we just added any better
by recombining it with other qubits in the choice then
we would have already done so by now.

This procedure is presented formally by means of the
following inductive definition.

Definition Let the function ~O be a map from a tuple of
the form tuple (S̃, L̃) to a sequence of tuples each of the
form (Q̃, ~P ,~s), where

• S̃ is a set of commuting Pauli operators;

• L̃ is a set of Pauli operators that are conjugal in
relation to L̃ ∪ S̃;

• Q̃ is a set of pairs of Pauli operators;

• ~P is a sequence of pairs of Pauli operators; and

• ~s is a sequence of integers from {0, 1} with the same
length as ~P .

The sequence is defined inductively. For convenience,
we let the first index of this sequence be zero, and define
~O(S̃, L̃)0 = (L̃′,~∅,~∅), where L̃′ is the set of pairs such
that Ũ(L̃′) and no operator appears in more than one
pair in L̃′, and ~∅ is the empty sequence. Now assume
that ~O(S̃, L̃)i is defined and that ~O(S̃, L̃)i = (Q̃, ~P ,~s).
If Q̃ is the empty set, then ~O(S̃, L̃)i is the last element
of the sequence so that | ~O(S̃, L̃)| = i + 1. Otherwise,
~O(S̃, L̃)i+1 := (Q̃′, ~P ′, ~s′), where Q̃′, ~P ′ and ~s′ are defined
as follows.

Let R̃ := {p2(~Pi) : i ∈ {1 . . . |~P |}, ~s′ = 1} and X̃ :=
Ũ(Q̃) ∪ R̃. Note that since Q̃ 6= ∅ that therefore X̃ 6= ∅.

Let h9 be the minimal weight error with respect to S̃
acting on any operator in X̃. There are two cases: either
h acts on some operator in R̃, or it doesn’t and so must
act on some operator in Ũ(Q̃). The definition of Q̃′, ~P ′
and ~a′ depends on which of these cases holds.

Case 1: h acts on some operator in R̃

Let k be the smallest index such that h acts on p2(~Pk),
and o := p2(~Pk). Define

f(x) :=

{
x [h, x] = 0
x · o {h, x} = 0,

and

g(a, b) :=

{
I [h, a] = 0
b {h, b} = 0,

Let s′ := p1(~Pk) · α · β where

α := Π
(
{g(p2(~Pi), p1(~Pi)} : i ∈ {k + 1 . . . |~P |},~ai = 0

)
and

β := Π
(
{g(a, b) · g(b, a) : (a, b) ∈ Q̃}

)
.

Then we define

Q̃′ := {(f(a), f(b)) : (a, b) ∈ Q̃},

~P ′i :=

~Pi i < k

(a′, o) i = k
~Pi i > k,~ai = 0
~Pi i > k, [h, p2(~Pi)] = 0
(p1(~Pi), p2(~Pi) · o) otherwise

~s′i :=

{
~si i 6= k

0 i = k

Case 2: h does not act on some operator in R̃

Let q ∈ Q̃ be a pair such that h acts on one of its
members, and without loss of generality assume that h
acts on the first member since otherwise we can swap the
members of the pair. Let o := p1(q). Define

f(x) :=

{
x [h, x] = 0
x · o {h, x} = 0,

9 An observant reader may have noticed that we do not specify ex-
actly how one goes about computing h. This was an intentional
omission since the details are quite technical and fortunately they
are irrelevant for proving that this algorithm works correctly as
long as we can assume that h can be computed. Thus, the dis-
cussion of how to compute h will be deferred until Section II B 3
when we analyze bounds on the running time of the algorithm.

11

and

g(a, b) :=

{
I [h, a] = 0
b {h, b} = 0,

Let

b′′ := p2(q) ·Π
(
{g(a, b) · g(b, a) : (a, b) ∈ Q̃\{q}}

)
,

and

b′ :=

{
b′′ [h, b′′] = 0
b′′ · o {h, b′′} = 0

Then we define

Q̃′ := {(f(a), f(b)) : (a, b) ∈ Q̃\{q}},

~P ′i :=

{
~Pi i ≤ |~P |
(o, b′) i = |~P |+ 1

~s′i :=

{
~si i ≤ |~s|
1 i = |~s|+ 1

Table III contains a listing of pseudo-code that uses the
above algorithm to compute the optimal choice of qubits.
For the sake of completeness, it includes additional steps
that pertain to the details of how the minimal weight
operator is computed, which will be discussed in more
detail in Section II B 3.

In addition to proving that the above algorithm suc-
cessfully constructs an optimal choice of qubits, we shall
also provide a bound on its running time. In order to do
this, we first need to precisely define what we mean by
the running time for the purposes of this section.

Definition We say that a computation can be performed
in time x if the computation requires taking x products
of Pauli operators.

Of course, the number of products of Pauli operators
is not the only metric that could serve as the gauge for
the running time, but it suffices for our purposes. We
now present the main result of this section.

Theorem 2. Suppose we are given

• a set of commuting Pauli operators, S̃, acting on
N physical qubits;

• a set of pairs, L̃ ⊆ C̃P̃(S̃), conjugal with respect to
Ũ(Q̃) ∪ S̃;

• and a set of Pauli operators C̃ such that G̃(C̃) =
C̃P̃(S̃);

then ~O(S̃, L̃) is a sequence of finite length, and if
(Q̃, ~P ,~s) is the last element in the sequence then ~P is
an optimal choice of qubits such that G̃(~P) = G̃(L̃), and

Optimize-Logical-Qubits(~S, ~G, ~L)

1 N ← |~L|
2 k ← 0

3 ~m← [true] ∗ |~L|
4 nested function Query-Function(o)
5 do

6 for i← 0 to k, (lX , lZ)← ~L[i]
7 do
8 if ~m[i] and anti(o, lZ)
9 then

10 return (true, (1, i))

11 for i← k + 1 to N , (lX , lZ)← ~L[i]
12 do
13 if anti(o, lX) or anti(o, lZ)
14 then
15 return (true, (2, i))
16 return (false,undefined)

17 ~O ← copy(~S)

18 for (gX , gZ)← ~G
19 do

20 append gX and gZ to ~O

21 for (lX , lZ)← ~L
22 do

23 append lX and lZ to ~O

24 ~P ← Compute-Pseudogenerators(~O) (Table VI)
25 while k < N
26 do
27 (e, (c, l))← Find-Weight-Minimizer

(Query-Function, ~P) (Table V)

28 (qX , qZ)← ~L[l]
29 if c = 1
30 then
31 ~m[l]← false

32 for i← l + 1 to k, (lX , lZ)← ~L[i]
33 do
34 if m[i] and {e, lZ}
35 then
36 qX ← qX · lX
37 ~L[i]← (lX , lZ · qZ)
38 call Fix-Logical-Qubits

(~L, k, e, qZ , qX) (Table IV)
39 L[l]← (qX , qZ)
40 else
41 if commute(e, qX)
42 then swap qX and qZ

43 (qX , qZ)← ~L[l]

44 ~L[l]← ~L[k]
45 k ← k + 1
46 call Fix-Logical-Qubits

(~L, k, e, qX , qZ) (Table IV)
47 L[k]← (qX , qZ)

TABLE III: Algorithm which optimizes the logical
qubits for a given subsystem code.

12

Fix-Logical-Qubits(~L, k, e, qA, qB)

1 for i← k to |~L|, (lX , lZ)← ~L[i]
2 do
3 if anti(e, lZ) and anti(e, lX)
4 then
5 qA ← qA · lX · lZ
6 ~L[i]← (lX · qB , lZ · qB)
7 elseif anti(e, lZ)
8 then
9 qA ← qA · lX

10 ~L[i]← (lX , lZ · qB)
11 elseif anti(e, lX)
12 then
13 qA ← qA · lZ
14 ~L[i]← (lX · qB , lZ)
15 if anti(e, qA)
16 then qA ← qA · qB

17 return (qA, qB)

TABLE IV: Algorithm which ‘fixes’ a subset of the
logical qubits so that they are robust to a given error.

furthermore it can be computed in a time that is in the

set O
(
|C̃|2 + |~L|2d3d

(
N
d

))
10, where d := ~M(~P)|~P |

11.

The proof of this Theorem is rather technical and shall
be split into several subsections. First we shall prove
the existence of a condition that suffices to prove that a
choice of logical qubits is optimal. Second we shall prove
that the algorithm above constructs a choice satisfying
this condition. Third we shall prove that the running
time of the algorithm has the claimed bound. Finally
we shall tie these results together to prove the Theorem
above.

1. Optimality condition

How do we know that a choice of qubits is optimal?
Intuitively, it should be sufficient to prove that a choice
of qubits is optimal if we can show that there is no way
that we can recombine qubits in the choice to form one or
more qubits that are more robust than their component
factors — that is, there is no way that any qubit can be
“improved” by its involvement in such a product. This
condition is stated formally in the following definition of
unimprovable sets:

10 A function f is said to be in the set O(g) if f is asymptotically
bounded by some fixed constant times g; formally f ∈ O(g) if
and only if there exists constants c and x0 such that f(x) < cg(x)
for all x > x0.

11 Recall that ~M(~P)|~P | is the distance of the best qubit in the

(optimized) code.

Definition An unimprovable set with respect to S̃ is a set
of Pauli operators, Õ, such that for any subset, X̃ ⊆ Õ,
we have that (ωS̃ ◦

∏
)(X̃) = minx∈X̃ωS̃(x). We say that

an unimprovable set Õ extends to ~Q if for all subsets
X̃ ⊆ Õ ∪ Q̃ such that X̃ ∩ Õ 6= ∅ we have that (ωS̃ ◦∏

)(X̃) ≤ minx∈X̃∩ÕωS̃(x).

The following Theorem is the main result of this subsec-
tion that proves that this condition is indeed sufficient to
show that a choice of logical qubits is optimal.

Theorem 3. If ~P is a choice of N logical qubits stabi-
lized by S̃ such that {p1(~Pi)}i is an unimprovable set with
respect to S̃ that extends to Ũ(~P), then ~P is an optimal
choice of qubits.

Remark The intuition behind the proof of this Theorem
is that because the set of first members of pairs is unim-
provable and extends to the set of all members of pairs,
we know that no qubit can be “improved” by recombin-
ing it with one or more other qubits. Thus, the only
way one could construct a better choice would by form-
ing n + k independent qubits from products of n qubits
(where k > 0), which intuitively should be impossible.
Thus, we conclude that it is not possible for there to be
a choice of qubits generated by the same qubits in this
choice that is “better” than this choice.

To assist us in proving this Theorem, we shall first
prove a number of useful Lemmas and Propositions. We
start with a simple Lemma that proves that taking a
product of operators results in an operator that is no
“worse” (with respect to its robustness to errors) than
the worst operator in the product.

Lemma 2. For any set of operators Õ, we have that
(ωS̃ ◦

∏
)(Õ) ≥ mino∈Õ ωS̃ (o).

Proof of Lemma. Any undetectable error with respect to
S̃ acting on (ωS̃ ◦

∏
)(Õ) must also act at least one of the

operators in Õ since otherwise it cannot anti-commute
with the product.

Remark In general, taking products of operators might
result in an operator that is better than the worst oper-
ator in the product because errors will cancel each other
out — i.e., if two operators in the product anti-commute
with an error then their product commutes with the er-
ror. Thus, it is useful to state a condition under which
we can be certain that this will not happen, so that the
product is exactly as bad as the worst operator, which
we do in the following Lemma.

Lemma 3. Suppose we are given two operators a, b ∈ P̃
such that ωS̃(a) < ωS̃(b); then ωS̃(a · b) = ωS̃(a).

Proof of Lemma. Since ωS̃(a) < ωS̃(b), there must be an
undetectable error with respect to S̃ that acts on a but
not on b; thus, it must anti-commute with and hence act
on the product a · b, so that ωS̃(a · b) ≤ ωS̃(a). Since
ωS̃(a · b) ≥ ωS̃(a) by Lemma 3, we conclude that ωS̃(a ·
b) = ωS̃(a).

13

Remark Intuitively we should expect that it is not pos-
sible to take n qubits and recombine them to form n+ k
independent qubits where k > 0. To state this intu-
ition in other terms, suppose we are given a set of con-
jugal pairs C̃ that are generated from some other set of
conjugal pairs D̃. We know that every pair in C̃ must
have a member that includes a factor that is a first mem-
ber of a pair in D̃ (since otherwise the members of the
pair cannot anti-commute), so let Ã be the set of first
members of pairs in D̃. Our intuition then tells us that
|C̃| ≤ |Ã| = |D̃|. The following Proposition states this
fact formally:

Proposition 4. Suppose we are given

1. sets of independent Pauli operators Q̃ and S̃;

2. a non-empty set of conjugal pairs, C̃, with respect
to Ũ(C̃) ∪ S̃, such that U(C̃) ⊆ G̃(Q̃); and

3. a set Ã of independent Pauli operators with the
property that for any conjugal pair X := (a, b) such
that {a, b} ∈ G̃(C̃), we must have that G̃Q̃(X)∩Ã 6=
∅.

Then |C̃| ≤ |Ã|.

Remark The basic idea behind the proof of this Propo-
sition is that an analogue of Gaussian elimination can be
used on the conjugal pairs to eliminate the presence of
members of Ã from them; when we are done with this
process, we can see that unless |C̃| ≤ |Ã| we would have
eliminated all members of Ã from some of the qubits,
which contradicts the assumptions of this Proposition.

The formal proof is somewhat technical and so we first
introduce several Lemmas. First we prove a small helper
Lemma that shows that it is possible to take a conjugal
pair in which a given generator appears and rearrange it
so that the generator only appears in the first member of
the pair.

Lemma 4. Let A := (a, b) with {a, b} ⊆ G̃(Q̃) be a con-
jugal pair with respect to some set S̃, and o be some Pauli
operator such that o ∈ G̃Q̃(A). Then there exists a pair
B := (c, d) such that

1. {c, d} ⊆ G̃(Q̃);

2. o ∈ G̃Q̃(c);

3. o /∈ G̃Q̃(d);

4. (c, d) is a conjugal pair with respect to
(
S̃\{a, b}

)
∪

{c, d}; and

5. (G̃ ◦ Ũ)(B) = (G̃ ◦ Ũ)(A).

Proof. Let

(c, d) :=

(a, b) o ∈ G̃Q̃(a), o /∈ G̃Q̃(b)
(b, a) o /∈ G̃Q̃(a), o ∈ G̃Q̃(b)
(a, b · a) o ∈ G̃Q̃(a), o ∈ G̃Q̃(b)

Note that in any of the above cases, properties 1-3 are
satisfied by construction, property 4 is satisfied because
c and d are products of a and b which commute with
every element in S̃\{a, b} and {c, d} = 0, and finally
property 5 is satisfied because {a, b} ⊆ G̃ ({c, d}) and
{c, d} ⊆ G̃ ({a, b}).

Remark This next Lemma contains the heart of this
Proposition by introducing an analogue to a directed
Gaussian elimination procedure. Specifically, it shows
that if we have a generator a ∈ Ã that appears in one
or more conjugal pairs, then we can take products of the
conjugal pairs to eliminate it from appearing anywhere
except in the first member of a single pair.

Lemma 5. In the context of Proposition 4, suppose we
are given an element a ∈ Ã with the property that there
exists a pair Y ′′ ∈ C̃ such that a ∈ G̃(Y ′′). Then there
exists a conjugal pair Y and set of conjugal pairs D̃, all
with respect to Ũ

(
{Y } ∪ D̃

)
∪ S̃, such that

1. |D̃| = |C̃| − 1

2. (G̃ ◦ Ũ)({Y } ∪ D̃) = (G̃ ◦ Ũ)(C̃);

3. a ∈ (G̃Q̃ ◦ p1)(Y) but a /∈ (G̃Q̃ ◦ p2)(Y);

4. a /∈
⋃

D∈D̃ G̃Q̃(D); and

5. for every conjugal pair O ∈ D̃, we have that
G̃Q̃(O) ∩ Ã\{a} 6= ∅.

Proof. Proof by induction on the size of C̃. If C̃ = {Y ′′},
then apply Lemma 4 letting o := a, A := Y ′′, and Y :=
B, and we see that we have a pair Y which is conjugal
with respect to {Y }∪S̃ and also such that (G̃◦Ũ)({Y }) =
(G̃◦Ũ)({Y ′′}). Let D̃ := ∅, and we see that the remaining
properties hold trivially, so we are done.

Now let us assume that this lemma has been proven
for the case where |C̃| = n− 1, and we are given a set C̃
with n elements. Take any X ′′ ∈ C̃\{Y ′′}, and apply the
lemma to C̃\{X ′′}, Ã, a and Y ′′ to obtain the objects
Y ′ and D̃′ described in this Lemma without the primes.
If a /∈ G̃(X ′′), then by the assumptions of the Lemma
we know that G̃(X ′′) ∩ Ã\{a} 6= ∅, so let Y := Y ′ and
D̃ := D̃′ ∪ {X ′′}, and we are done.

Otherwise, apply Lemma 4, setting A := X ′′, o := a,
and X ′ := B, and let X := (p1(X ′) · p1(Y ′), p2(X ′)) and
Y := (p1(Y ′), p2(Y ′) · p2(X ′)). Note X ′ and Y ′ are con-
jugal pairs with respect to Ũ

(
{X ′, Y ′} ∪ D̃

)
∪ S̃ and

14

{X ′, Y ′} ∩
(
D̃ ∪ S̃

)
= ∅, and so by Lemma 1 we con-

clude that X and Y are conjugal pairs with respect to
Ũ
(
{X,Y } ∪ D̃

)
∪ S̃, and also that (G̃ ◦ Ũ)({X,Y }) =

(G̃ ◦ Ũ)({X ′, Y ′}); since X ′ was obtained from apply-
ing Lemma 4 to X ′′ and a, we furthermore conclude
that (G̃ ◦ Ũ)({X,Y }) = (G̃ ◦ Ũ)({X ′′, Y ′}). Since X ′

was obtained as a result of Lemma 4, we know that
a ∈ (G̃ ◦ p1)(X ′) but a /∈ (G̃Q̃ ◦ p2)(X ′), and we also
know from the earlier recursive application of this Lemma
that a ∈ (G̃ ◦ p1)(Y ′) but a /∈ (G̃Q̃ ◦ p2)(Y ′). Thus,
we observe that by construction, a ∈ (G̃Q̃ ◦ p1)(Y), and

a /∈
(

(G̃Q̃ ◦ p2)(Y) ∪ G̃Q̃(X)
)

.

Let D̃ := {X} ∪ D̃′, and observe that |D̃| = |D̃′| +
1 = |C̃\{X ′′}| − 1 + 1 = |C̃| − 1, and also that (G̃ ◦
Ũ)({Y } ∪ D̃) = (G̃ ◦ Ũ)({X,Y } ∪ D̃′) = (G̃ ◦ Ũ)({X ′′} ∪
({Y ′}∪D̃′)) = (G̃ ◦ Ũ)({X ′′}∪ (C̃ ′\{X ′′})) = (G̃ ◦ Ũ)(C̃).
Furthermore, by the earlier recursive application of this
Lemma we know that a /∈ G̃Q̃(O) for every O ∈ D̃′,
so since we have also established that a /∈ G̃Q̃(X), we
conclude that a /∈ G̃Q̃(O) for every O ∈ D̃; since also
know that every such O must also satisfy G̃Q̃(O)∩Ã 6= ∅,
we conclude that every such O satisfies G̃Q̃(O)∩A\{a} 6=
∅.

Remark This next Lemma provides the small but im-
portant result that we can always find a generator a that
appears somewhere in the conjugal pairs; this has the
consequence that we can now perform undirected Gaus-
sian elimination (in contrast to the directed Gaussian
elimination procedure described in the previous Lemma)
by picking an arbitrary generator to eliminate rather
than specifying a particular generator up-front.

Lemma 6. In the context of Proposition 4, there exists
a Pauli operator a satisfying the assumption of Lemma
5.

Proof. Take any pair Y ′ ∈ C̃. By the assumptions of
Proposition 4, we know that G̃(Y ′)∩Ã 6= ∅, which implies
that there exists an element a ∈ A such that either a ∈
(G̃Q̃ ◦ p1)(Y ′) or a ∈ (G̃Q̃ ◦ p2)(Y ′). The existence of Y
and D̃ then follow immediately from the application of
Lemma 5.

Remark This final Lemma (inside the proof of Proposi-
tion 4) shows using Gaussian elimination that there must
be a number of generators from Ã present in the pairs in
C̃ that is equal to the size of C̃, since otherwise we could
recombine the pairs in C̃ to obtain a pair that includes
no generator from Ã, contradicting the assumptions of
Proposition 4.

Lemma 7. In the context of Proposition 4, there exists
a set of conjugal pairs, X̃, with respect to X̃ ∪ S̃, and a
subset of operators, Õ ⊆ Ã, such that

1. |X̃| = |Õ| = |C̃|;

2. (G̃ ◦ Ũ)(X̃) = (G̃ ◦ Ũ)(C̃); and

3. for every o ∈ Õ, there is a conjugal pair Y ∈ X̃
such that o ∈ G̃Q̃(Y);

Proof. Proof by induction. If C̃ is empty, then the empty
sets trivially satisfy this Lemma.

Now suppose that we have proven this Lemma for
|C̃| = N − 1, and assume we have been given sets C̃
and Ã such that |C̃| = N . Applying Lemma 6 to C̃

and Ã we obtain the conjugal pair Y , the set of conjugal
pairs D̃, and the element a described in the conclusions
of that Lemma. Apply this Lemma recursively to the
respective sets D̃ and Ã\{a}, we obtain the sets X̃ ′ and
Õ′ described (without the primes) in this Lemma; let
X̃ := X̃ ′ ∪ {Y } and Õ := Õ′ ∪ {a}. Note that X̃ is a set
of conjugal pairs with respect to X̃ ∪ S̃ since X̃ ′ is a set
of conjugal pairs with respect to X̃ ′ ∪ S̃, and we know
that the operators in Y commute with every operator in
every pair in X̃ ′ since they commute with every operator
in (G̃ ◦ Ũ)(D̃) = (G̃ ◦ Ũ)(X̃ ′).

First, observe that |Õ| = |Õ′| + 1 since a /∈ Õ′. Fur-
thermore, a /∈

⋃
x∈Ũ(X̃′) G̃(x) since a /∈

⋃
x∈Ũ(D̃) G̃Q̃(x)

by Lemma 6 and (G̃ ◦ Ũ)(D̃) = (G̃ ◦ Ũ)(X̃ ′) by recur-
sive application of this Corollary. Thus, |X̃| = |X̃ ′| + 1
since Y /∈ X ′ as a ∈ G̃(Y), and |X̃| = |Õ| = |D̃| + 1 =
|C̃| − 1 + 1 = |C̃|.

Second, observe that since (G̃ ◦ Ũ)(X̃ ′) = (G̃ ◦ Ũ)(D̃) =
(G̃ ◦ Ũ)(C̃) by recursive application of this Lemma and
(G̃ ◦ Ũ)({Y }∪D̃) = (G̃ ◦ Ũ)(C̃) by Lemma 6, we conclude
that (G̃◦Ũ)(X̃) = (G̃◦Ũ)({Y }∪X̃ ′) = (G̃◦Ũ)({Y }∪D̃) =
(G̃ ◦ Ũ)(C̃).

Finally, observe that for every o ∈ Õ we either have
that o = a, in which case Y ∈ X̃ and o ∈ G̃Q̃(Y), or
o ∈ Ã\{a}, in which case by recursive application of this
Lemma we know that there is an operator Z ∈ X̃ ′ ⊆ X̃
such that o ∈ G̃Q̃(Z).

Remark With the preceding Lemmas having performed
the heavy lifting, the proof of Proposition 4 is quite sim-
ple.

Proof of Proposition 4. Proof by contradiction. By
Lemma 7, there would have to exist a subset Õ ⊆ Ã
such that |C̃| = |Õ| > |Ã|, which is impossible.

Remark With the preceding Lemmas and Propositions,
we now have all of the tools that we need to prove Theo-
rem 3. Again, the idea behind this proof is that because
the first members of pairs in the choice are contained
in an unimprovable set, one cannot take products of the
qubits in the choice in order to improve them; thus, the
only way one could construct a better choice would by
forming n + k independent qubits from products of n
qubits (where k > 0), which is disallowed by the result
of Proposition 4. Hence, there can be no better choice.

15

Proof of Theorem 3. Proof by contradiction. Let ~P ′ be
some choice of qubits stabilized by S̃ such that (G̃ ◦
Ũ)(~P) = (G̃ ◦ Ũ)(~P ′) (which automatically implies that
|~P | = |~P ′|) and there exists some integer k such that
MS̃(~P ′)k > MS̃(~P)k; in particular, let k be the smallest
such integer, and let C̃ := {~P ′i : i ≥ k}. Let l be the
smallest integer such that ~MS̃(~P)l ≥ ~MS̃(~P ′)k or |~P |+ 1
if there is no such integer, and let Ã := {p1(~Pi) : i ≥ l};
note that since ~MS̃(~P ′)k > ~MS̃(~P)k we must have l > k,
and hence |C̃| > |Ã|.

Take any conjugal pair O := (a, b) such that {a, b} ∈
G̃(C̃). Since a and b anti-commute, it must be the case
that {p1(~Pi)}i ∩ G̃Ũ(~P)(O) 6= ∅, because if every opera-

tor in G̃Ũ(~P)(O) were the second member of a pair in ~P

then a and b would commute. Let c be a choice of a or
b such that {p1(~Pi)}i ∩ G̃Ũ(~P)(c) 6= ∅. By Lemma 2 we

know that ~MS̃(~P ′)k ≤ ωS̃(c) since c ∈ G̃(C̃). By the as-
sumption of this Theorem that {p1(~Pi)}i is an unimprov-
able set that extends to Ũ(~P), we know that ~MS̃(~P ′)k ≤
ωS̃(c) ≤ min{ωS̃(x) : x ∈ {p1(~Pi)}i ∩ G̃Ũ(~P)(c)}. From

these bounds we conclude that {p1(~Pi)}i∩G̃Ũ(~P)(c) ⊆ Ã,

and since {p1(~Pi)}i ∩ G̃Ũ(~P)(c) 6= ∅ we see therefore that

G̃Ũ(~P)(c) ∩ Ã 6= ∅ and so G̃Ũ(~P)(O) ∩ Ã 6= ∅.
We have now demonstrated that for every pair O :=

(a, b) such that {a, b} ∈ ˜̃G(C̃), we must have G̃(O)∩ Ã 6=
∅. Observe that this means that sets C̃ and Ã match the
descriptions in Proposition 4 (letting set Q̃ := {P̃i}i),
and thus we see that it is impossible for |C̃| > |Ã|, and
so we have a contradiction. We thus conclude that no
such choice ~P ′ can exist.

2. Correctness of the algorithm

We now prove that this algorithm is correct — that is,
that it terminates and outputs an optimal choice of log-
ical qubits. We do so by proving the following theorem,
which is the main result of this section.

Theorem 4. Given a set of commuting Pauli operators
S̃ and a set of pairs L̃ ⊆ C̃P̃(S̃) conjugal in relation to
Ũ(L̃) ∪ S̃, the sequence ~O(S̃, L̃) is finite and if (Q̃, ~P ,~s)
is the last element then Q̃ = ∅ and ~P is an optimal choice
of logical qubits stabilized by S̃ such that G̃(~P) = G̃(L̃).

Remark Before proving this Theorem, we shall first
prove several related Lemmas and Propositions.

Our ultimate goal is to expand the unimprovable set so
that it includes at least the first member of every conjugal
pair in the set of logical qubit operators, since this means
that we have satisfied the optimality condition. Thus,
we want to be able to add operators to this set while
preserving the property of being an unimprovable set.

The following Lemma shows that if we have an opera-
tor o in a set X̃ to which some unimprovable set extends,
then if the smallest weight undetectable error acting on o
acts on no other operator in X̃ then we may move o to the
unimprovable set to obtain a new unimprovable set that
extends to X̃/{o}. The intuition here is that because said
error acts only on o, it cannot be canceled by multiply-
ing o by other operators, and so it is an “unimprovable”
operator that can be included in our unimprovable set.

Lemma 8. If Õ is an unimprovable set with respect to
S̃ that extends to X̃ := {o} ∪ X̃ ′, and there exists an
undetectable error, h, of weight ωS̃(o) that acts on o but
not on any operator in X̃ ′, then Õ′ := Õ ∪ {o} is an
unimprovable set with respect to S̃ that extends to X̃ ′.

Proof. Take any subset R̃ ⊆ Õ′∪X̃ ′ such that R̃∩Õ′ 6= ∅.
We need to show that ωS̃ (r) ≤ mina∈R̃∩Õ′ωS̃(a) where
r := Π(R̃).

First consider the case where o /∈ R̃; in this case we
have that R̃ ⊆ Õ ∪ X̃ such that R̃ ∩ Õ = R̃ ∩ Õ′ 6= ∅,
and so since Õ extends to X̃ we conclude that ωS̃ (r) ≤
mina∈R̃∩ÕωS̃(a) = mina∈R̃∩Õ′ωS̃(a).

Now consider the case where R̃∩Õ′ = {o}. In this case,
by the assumptions of this Lemma, we know h acts on o
but not on any operator in X̃ ′ which implies that h acts
on r and so ωS̃(r) ≤ w(h) = ωS̃(o) = mina∈R̃∩Õ′ωS̃(a).

Finally we consider the remaining case where {o} ⊂
R̃ ∩ Õ′. Let Z̃ := R̃\{o} 6= ∅. Since Õ extends to
X̃ and R̃ ∩ Õ = Z̃ ∩ Õ 6= ∅, we know that ωS̃(x) ≤
mina∈Z̃∩ÕωS̃(y) =: d. If d ≤ ωS̃(o), then ωS̃(r) ≤
d = mina∈R̃∩Õ′ωS̃(a), and we are done. Otherwise, since
d > ωS̃(o) we know that h acts on r since there can be
no other operator in Z̃ that anti-commutes with h, and
so ωS̃(r) ≤ w(h) ≤ ωS̃(o) = mina∈R̃∩Õ′ωS̃(a)

Remark In Case 1 of the algorithm we take an element
that is a member of an unimprovable set and replace it
with the product of this element times some elements in
the set to which the unimprovable set extends. We want
to show that this preserves the unimprovability of the
set, and this is done in the following Lemma.

Lemma 9. Suppose we are given an unimprovable set Õ
with respect to S̃ that extends to X̃. Let o be any element
in Õ, and Z̃ ⊆ Õ ∪ X̃ such that o ∈ Z̃. Let o′ := Π(Z̃)
and Õ′ :=

(
Õ\{o}

)
∪{o′}. If ωS̃(o′) = ωS̃(o), then Õ′ is

also an unimprovable set with respect to S̃ that extends
to X̃.

Proof. Take any subset of elements R̃ ⊆ Õ′∪X̃ such that
R̃ ∩ Õ′ 6= ∅, and let x := Π(R̃). We need to show that
ωS̃(x) ≤ mina∈R̃∩ÕωS̃(a). If o′ /∈ R̃, then this follows im-
mediately from the fact that R̃ ⊆ Õ ∪ X̃ and R̃ ∩ Õ 6= ∅
and Õ is an unimprovable set that extends to X̃, so as-
sume that that o′ ∈ R̃. Since o′ = Π(Z̃) and Z̃ ⊆ Õ ∪ X̃,
we conclude that the set T̃ ⊆ Õ ∪ X̃ which is the sym-
metric difference of Z̃ and R̃ satisfies the property that

16

x = Π(T̃). Note that o ∈ T̃ since o ∈ Z̃ and o /∈ Õ′ and so
o /∈ R̃. Thus, T̃∩Õ 6= ∅, and so ωS̃(x) ≤ mina∈T̃∩ÕωS̃(a)
since Õ is an unimprovable set that extends to X̃. Thus,
for us to show that ωS̃(x) ≤ mina∈R̃∩Õ′ωS̃(a), it suffices
for us to show that mina∈R̃∩Õ′ωS̃(a) = mina∈T̃∩ÕωS̃(a).

First note that since ωS̃(o′) = ωS̃(o), there is no el-
ement z ∈ Z̃ ∩ Õ such that ωS̃(z) < ωS̃(o). Thus,
any operator t ∈ T̃ ∩ Õ such that ωS̃(t) < ωS̃(o) must
also appear in R̃ ∩ Õ′, and vice versa; put another way,
any operator that is less robust to errors than o must
be present in both T̃ ∩ Õ and R̃ ∩ Õ′ together or nei-
ther. Thus, if at least one such operator exists, then
we conclude that mina∈R̃∩Õ′ωS̃(a) = mina∈T̃∩ÕωS̃(a)
since in this case any minimizer of ωS̃ must be shared
between the two sets. If no such operator exists, then
since o ∈ T̃ ∩ Õ and o′ ∈ R̃ ∩ Õ′ and there is no
other operator present in either set with a smaller min-
imum weight undetectable error, we conclude that o is
the minimizer of ωS̃ over T̃ ∩ Õ and o′ is the minimizer
over R̃ ∩ Õ′ and since ωS̃(o′) = ωS̃(o) we have that
mina∈R̃∩Õ′ωS̃(a) = ωS̃(o) = mina∈T̃∩ÕωS̃(a).

Thus we have shown that mina∈R̃∩Õ′ωS̃(a) =
mina∈T̃∩ÕωS̃(a), and since our choice of R̃ was arbitrary
we conclude that Õ′ is an unimprovable set that extends
to X̃.

Remark In both cases of the algorithm we replace a set
to which an unimprovable set extends with a new set that
a product of elements in the old set. We want to show
that the new set is also an extension of the unimprovable
set, and this is proved by the following Lemma.

Lemma 10. If Õ is an unimprovable set with respect to S̃
that extends to X̃, and X̃ ′ is a set such that X̃ ′ ⊆ G̃(X̃),
then Õ also extends to X̃ ′.

Proof. Take any subset R̃′ ⊆ Õ ∪ X̃ ′ such that Ã :=
R̃′∩Õ 6= ∅. We need to show that ωS̃(x) ≤ miny∈ÃωS̃(y),
where x := Π(R̃′). Note that since X̃ ′ ⊆ G̃(X̃), there
exists a set B̃ ⊆ X̃ such that x = Π

(
Ã ∪ B̃

)
, and so since

Õ extends to X̃ we conclude that ωS̃(x) ≤ miny∈ÃωS̃(y).
Since our choice of R̃′ was arbitrary, we conclude that
that Õ extends to X̃ ′.

Remark Most of the heavy lifting in this section is per-
formed in the following Proposition, which uses induction
to prove a number of properties about the output of the
algorithm at every step.

Proposition 5. Given a set of Pauli operators S̃ and a
set of pairs L̃ ⊆ C̃P̃(S̃) conjugal in relation to Ũ(L̃) ∪ S̃,
for every (Q̃, ~P ,~s) ∈ ~O(S̃, L̃) we have that

1. G̃
(
Ũ(Q̃) ∪ Ũ(~P)

)
= G̃(L̃);

2. Ũ(Q̃) ∪ Ũ(~P) ⊆ C̃P̃(S̃);

3. 2(|Q̃|+ |~P |) = |L̃|;

4. |Ũ(Q̃) ∪ Ũ(~P)| = |~L|;

5. Ũ(Q̃)∩ Ũ(~P) = ∅, and no operator appears in more
than one pair in either Q̃ or ~P ;

6. Õ is an unimprovable set of operators that extends
to X̃;

7. maxo∈ÕωS̃(o) ≤ minx∈X̃(x);

8. (ωS̃ ◦ p1)(q) = mS̃(q) for all q ∈ ~P ;

9. ~M(~P) is ordered;

10. ~P is a choice of qubits stabilized by S̃;

11. ~P is an optimal choice of qubits;

where X̃ := Ũ(Q̃) ∪ {p2(~Pi) : 1 ≤ i ≤ |~P |, ~si = 1} if
~P is non-empty and X̃ := Ũ(Q̃) otherwise, and Õ :=
Ũ(~P)\X̃.

Proof. Proof by induction. It is easy to see that these
properties hold for ~O(S̃, L̃)0 = (L̃′,~∅,~∅), so now as-
sume that they hold for (Q̃, ~P ,~s) := ~O(S̃, L̃)i, and let
(Q̃′, ~P ′, ~s′) := ~O(S̃, L̃)i+1. For convenience, define X̃ :=
Ũ(Q̃)∪{p2(~Pi) : 1 ≤ i ≤ |~P |, ~si = 1} (or X̃ := Ũ(Q̃) if ~P
is empty), X̃ ′ := Ũ(Q̃′) ∪ {p2(~P ′i) : 1 ≤ i ≤ |~P ′|, ~s′i = 1},
Õ := Ũ(~P)\X̃ and Õ′ := Ũ(~P ′)\X̃ ′.

We now prove each of the conclusion above; note that
in each conclusion we may assume that the conclusions
prior to it have already been established, so we do so
implicitly.

Also, when we say that we are assuming we are in
“Case 1” or “Case 2”, we mean that we are assuming
that (Q̃′, ~P ′, ~s′) followed from respectively Case 1 or Case
2 in the definition of ~O.

1. Examination of the definition reveals that Q̃′ and
~P ′ are constructed entirely from products of ele-
ments in Q̃ and ~P so that G̃

(
Ũ(Q̃′) ∪ Ũ(~P ′)

)
⊆

G̃
(
Ũ(Q̃) ∪ Ũ(~P)

)
.

If ~O(S̃, L̃)i+1 was defined using Case 1 then let
(b, a) := ~Pk and (b′, a′) := ~P ′k where k is the integer
described in Case 1; otherwise let (a, b) := q be the
pair selected from Q̃ in the definition and (a′, b′)
be the last element of ~P ′. Note that in either case,
a = a′.

In both cases, observe that for every operator o ∈
Ũ(Q̃) ∪ Ũ(~P)\{b} we have that either o or o · a
is contained in Ũ(Q̃′) ∪ Ũ(~P ′), and since a is also
contained in this set we see immediately that any
operator in Ũ(Q̃)∪ Ũ(~P)\{b} can be obtained from
products of elements in Ũ(Q̃′) ∪ Ũ(~P ′) (i.e., from

17

an operator in Ũ(Q̃′) ∪ Ũ(~P ′) times possibly a).
Thus we conclude that G̃

(
Ũ(Q̃) ∪ Ũ(~P)\{b}

)
⊆

G̃
(
Ũ(Q̃′) ∪ Ũ(~P ′)

)
. Since b′ is the product of

b with elements in G̃
(
Ũ(Q̃) ∪ Ũ(~P)\{b}

)
, and

G̃
(
Ũ(Q̃) ∪ Ũ(~P)\{b}

)
⊆ G̃

(
Ũ(Q̃′) ∪ Ũ(~P ′)

)
, we

conclude that b ∈ G̃
(
Ũ(Q̃′) ∪ (̃~P ′)

)
and so

G̃
(
Ũ(Q̃) ∪ Ũ(~P)

)
⊆ G̃

(
Ũ(Q̃′) ∪ Ũ(~P ′)

)
.

Thus we have proven that G̃
(
Ũ(Q̃′) ∪ Ũ(~P ′)

)
=

G̃
(
Ũ(Q̃) ∪ Ũ(~P)

)
= G̃(L̃), and so we are done.

2. This follows from the fact that L̃ ⊆
C̃P̃(S̃) ⇒ G̃(L̃) ⊆ C̃P̃(S̃) and Ũ(Q̃) ∪ Ũ(~P) ⊆
G̃
(
Ũ(Q̃) ∪ Ũ(~P)

)
= G̃(L̃) (which we just proved).

3. By construction, either |Q̃′| = |Q̃| and |~P ′| = |~P
(in Case 1) or |Q̃′| = |Q̃| − 1 and |~P ′| = |~P |+ 1 (in
Case 2). In either case we have that 2(|Q̃′|+|~P ′|) =
2(|Q̃|+ |~P |) = |L̃|.

4. Since the elements in L̃ are members of conjugal
pairs, they are therefore independent, and so we
see that we need at least |L̃| operators to gener-
ate G̃(L̃). Thus we need |L̃| ≤ |Ũ(Q̃′) ∩ Ũ(~P ′)| ≤
2(|Q̃′| + |~P ′|) = |~L|, where the second inequality
comes from the fact that a pair can unpack to at
most two operators, and the last equality comes
from the previous conclusion. We thus conclude
that |Ũ(Q̃′) ∩ Ũ(~P ′)| = |~L|.

5. By combining the previous two conclusions we see
that |Ũ(Q̃′) ∪ Ũ(~P ′)| = 2(|Q̃′| + |~P ′|); if this con-
clusion were false (i.e., an operator were repeated
somewhere) then we would have that |Ũ(Q̃′) ∪
Ũ(~P ′)| < 2(|Q̃′| + |~P ′|), which is contradicts our
earlier results.

6. First assume that we are in Case 1. Let k be the
integer described in this case, (a, b) := ~Pk, and
(a′, b′) := ~P ′k. Note that a ∈ Õ, and by con-
struction a′ := Π(Ã′) where Ã′ ⊆ Õ ∪ X̃ and
Ã′ ∩ Õ = {a}, and so since by the inductive hy-
pothesis we know that Õ is a unimprovable set
that extends to X̃ we know that ωS̃(a′) ≤ ωS̃(a).
Since by the inductive hypothesis we also know
that maxo∈ÕωS̃(o) ≤ minx∈X̃(x), by Lemma 2 we
conclude that ωS̃(a′) = ωS̃(a). Lemma 9 thus ap-
plies to our situation and allows us to conclude that
Õ′′ :=

(
Õ\{a}

)
∪ {a′} is an unimprovable set that

extends to X̃. Furthermore, since by construction
X̃ ′ ⊆ G̃(X̃) and b ∈ X̃, Lemma 10 allows us to con-
clude that Õ′′ extends to {b}∪X̃ ′. By construction,

there is an error of minimal weight that acts on b
but not on any other operator in X̃ ′, which means
that by Lemma 8 we conclude that Õ′′ ∪ {b} ≡ Õ′

extends to X̃ ′.

Now assume that we are in Case 2. Note that the
only change from Õ to Õ′ is the addition of a single
element o that has an error that acts only on it
but not on any other operator in X̃ ′. Note that
since {o} ∪ X̃ ′ ⊆ G̃(X̃) we conclude from Lemma
10 that Õ extends to {o} ∪ X̃ ′, and from Lemma 8
we conclude that Õ′ extends to X̃ ′.

7. First observe that since X̃ ′ ⊆ G̃(X̃), we con-
clude from Lemma 2 that minx∈X̃ωS̃(x) ≤
minx′∈X̃′ωS̃(x′).

The difference between Õ and Õ′ is the addition
of a minimizer of ωS̃ over X̃, o, and possible
also the replacement of a single element. Since
maxa∈ÕωS̃(a) ≤ mina∈X̃ωS̃(a) ≤ mina∈X̃′ωS̃(a),
we conclude that since ωS̃(o) = mina∈X̃ωS̃(a) that
therefore maxa∈Õ∪{o}ωS̃(a) ≤ mina∈X̃′ωS̃(a). If
Õ′ = Õ ∪ {o} then we are done. Otherwise, we are
in Case 1 which means that we have also replaced
an element in Õ; however, the operator we have re-
placed it with is the product of an operator from
Õ and operators from X̃, and since Õ is an unim-
provable set that extends to X̃ we conclude that the
replacement can be no better than the operator it is
replacing. Thus, maxa∈Õ′ωS̃(a) ≤ mina∈X̃′ωS̃(a).

8. Since maxa∈Õ′ωS̃(a) ≤ mina∈X̃′ωS̃(a), we immedi-
ately conclude that (ωS̃ ◦ p1)(~P ′i) = mS̃(~P ′i) when
~a′i = 1. By the inductive hypothesis, we know that
(ωS̃ ◦ p1)(~P ′i) = mS̃(~P ′i) where ~P ′i = ~Pi; further-
more, in both cases the pairs at the locations where
~ai = 0 are unchanged from ~P to ~P ′, and in each
case this turns out to leave just a single location
that we still need to examine.

In Case 1, this location is the index k described
in that case, where ~ak = 1 and ~a′k = 0. Since
p1(~P ′k) is the product of a single element of Õ
and elements from X̃, we conclude from the fact
that Õ is an unimprovable set that extends to X̃

that (ωS̃ ◦ p1)(~P ′k) ≤ (ωS̃ ◦ p1)(~Pk). By the in-
ductive hypothesis we know that maxa∈ÕωS̃(a) ≤
mina∈X̃ωS̃(a). Because p2(~P ′k) is a product of el-
ements from X̃ we conclude from Lemma 2 that
mina∈X̃ωS̃(a) ≤ (ωS̃ ◦ p2)(~P ′k). Since p1(~P) ∈ Õ,
we conclude that (ωS̃ ◦ p1)(~Pk) ≤ mina∈X̃ωS̃(a).
Combining all of these inequalities we reach the
conclude that (ωS̃ ◦ p1)(~P ′k) ≤ (ωS̃ ◦ p2)(~P ′k) and
hence (ωS̃ ◦ p1)(~P ′k) = mS̃(~P ′k).

In Case 2, this location is the end of the sequence
~P ′, but since the addition to the sequences is a pair
of operators from X̃ such that the first member is

18

a minimizer of ωS̃ over X̃ we conclude that (ωS̃ ◦
p1)(~P ′|~P ′|) = mS̃(~P ′|~P ′|).

9. By the inductive hypothesis we have that
~MS̃(~P)i = (ωS̃ ◦ ωS̃)(~Pi), and we have just shown

that ~MS̃(~P ′)i = (ωS̃ ◦ ωS̃)(~P ′i). By the inductive
hypothesis we know that ~MS̃(~P) is ordered, and so
to prove that ~MS̃(~P ′) is ordered we need only check
the places in the sequence where p1(~Pi) 6= p1(~P ′i).
In both cases there is exactly one location where
the first member of a pair is modified from ~P to
~P ′.

In Case 1, this is the index k defined in that case, at
which the first member was replaced with a prod-
uct of that first member with elements in X̃. Since
this member is in Õ, and since maxa∈ÕωS̃(a) ≤
mina∈X̃ωS̃(a) (by the inductive hypothesis), we
conclude from the fact that Õ is an unimprov-
able set that extends to X̃ that (ωS̃ ◦ p1)(~P ′k) =
(ωS̃ ◦ p1)(~Pk), and so we conclude that ~MS̃(~P ′) is
ordered.

In Case 2, this is the end of the sequence ~P ′

where a pair was appended to ~P . Since the pair
contains elements from X̃, and maxa∈ÕωS̃(a) ≤
mina∈X̃ωS̃(a), we conclude that ~MS̃(~P ′)|~P ′| ≥
~MS̃(~P)i for i < |~P ′|, and so we conclude that
~MS̃(~P ′) is ordered.

10. The fact that ~P is a choice of logical qubits stabi-
lized by S̃ follows from directly from the previous
conclusions.

11. From the definition of an unimprovable set it is easy
to see that since Õ′ is an unimprovable set that
extends to X̃ ′, it also extends to X̃ ′∪ Õ′ = Ũ(Q̃′)∪
Ũ(~P ′). Since {p1(q) : q ∈ ~P ′} ⊆ Õ′ and Ũ(~P ′) ⊆
X̃ ′ ∪ Õ′, it is also easy to see from the definition
that {p1(q) : q ∈ ~P ′} is an unimprovable set that
extends to Ũ(~P ′) — that is, taking subsets does
not affect the property of unimprovability. Thus,
we conclude from Theorem 3 that ~P ′ is therefore
an optimal choice of qubits.

Remark Now that the heavy lifting has been done by
the preceding Proposition, the proof of Theorem 4 is rel-
atively simple.

Proof of Theorem 4. At every step in the algorithm, we
either change an entry in ~s from 1 to 0 or remove an
element from Q̃. Since ~s is of finite length, as long as
Q̃ is non-empty there will be a step at which another
element is removed from it. Thus, there is an index k

such that if ~O(S̃, L̃)k = (Q̃, ~P ,~s) then Q̃ = ∅, and by

definition this is the last element of the sequence. By
Proposition 5 we know that ~P is optimal and also that
G̃(~P) = G̃(~L) (since Q̃ is empty), and so we are done.

3. Running time of the algorithm

In this section we analyze the running time of the op-
timization algorithm; the result is presented in the fol-
lowing Theorem.

Theorem 5. Suppose we are given

• a set of commuting Pauli operators, S̃, acting on
N physical qubits;

• a set of pairs, L̃ ⊆ C̃P̃(S̃), conjugal with respect to
Ũ(Q̃) ∪ S̃;

• and a set of Pauli operators C̃ such that G̃(C̃) =
C̃P̃(S̃);

then the time needed to compute the sequence ~O(S̃, L̃) is

in the set O
(
|C̃|2 + |L̃|(|L̃|+ d)3d

(
N
d

))
, where d :=

~M(~P)|~P | and (Q̃, ~P , ~S) is the last element in the sequence

(i.e., ~P is the desired optimal choice of qubits).

Remark Before proving this Theorem, we shall first
prove a number of related Lemmas and Propositions.

The most complicated part of analyzing the running
time of the optimization algorithm is analyzing the time
needed to find the minimum weight undetectable error.
In fact, the procedure for doing this was not even de-
scribed explicitly in the algorithm, so we shall now ex-
plain how we do it.

The algorithm we employ is based on the Brouwer-
Zimmermann search algorithm, which searches for the
minimum weight binary string satisfying some property
given a set of binary string generators endowed with a
multiplication operation defined to be the exclusive-or
operation. The Brouwer-Zimmermann algorithm works
by using a Gaussian elimination analogue to express the
generators in reduced row echelon form; it then performs
its search by examining all products of r generators for
increasing r. When all of the products of r generators
have been enumerated, one knows that the set of strings
that has yet to be enumerated has weight r+1 or greater,
since the row-echelon form means that every string has
a column for which it is the only string with a 1 in that
column, and so a product of k strings must have a weight
of at least k. Thus, as the search proceeds, there is a
growing lower-bound on the weight of the binary string,
and the search halts when a string has been found that
matches this bound.

This algorithm cannot be immediately applied to the
current problem because we are not working with binary
strings, and in particular Pauli operators have a more

19

complicated multiplication operation that binary strings.
Fortunately, in [43] White and Grassl showed that the
Brouwer-Zimmermann enumeration can be generalized.

The key difference between binary strings and Pauli
operators is that binary strings only have two possible
values in a given column, whereas Pauli operators have
four. Thus, whereas we only need one element to gener-
ate all of the possible values in a given column for a bi-
nary string, we need two elements to generate all of the
possible values in a given column for a Pauli operator.
Thus, rather than working with generators, we instead
work with a generalization that White and Grassl call
pseudo-generators, which we shall define here as follows.

Definition A pseudo-generator is a set of either 1 or
2 Pauli operators. In an abuse of notation, we extend
the functions Ũ and G̃ to be respectively G̃ 7→

⋃
g̃∈G̃ g̃

and G̃ 7→ (G̃ ◦ Ũ)(G̃) when applied to a set of pseudo-
generators.

Remark (The preceding definition does not follow that
of White and Grassl exactly; it has been specialized to
our situation for the sake of simplicity.)

Unlike ‘normal’ generators — i.e., Pauli operators — a
product of generators is not a Pauli operator but rather
a set of Pauli operators, which we define as follows.

Definition Suppose we are given a set of r pseudo-
generators G̃. Let X̃ := {G̃(g̃)\{I} : ~g ∈ G̃}, Ỹ be
the r−ary Cartesian product of the r sets contained in
X̃, and Z̃ be the set consisting of the normal quantum
operator product of the r operators in each r−tuple in
Ỹ . Then Z̃ is defined to be the pseudo-product of the
pseudo-generators in G̃. For convenience, we define a
function Π̃ such that Π̃(G̃) is the pseudo-product of the
pseudo-generators in G̃.

Remark The following Lemma places a bound on the
size of the pseudo-product.

Lemma 11. The pseudo-product of r pseudo-generators
contains at most 3r operators.

Proof. Every set in X̃ described in Definition II B 3 has a
cardinality of either 1 or 3, and the size of Ỹ is equal to
the product of the sizes of all the sets in X̃; since |X̃| = r,
we therefore conclude that the cardinality of Ỹ and hence
the number of operators in the pseudo-product is at most
3r.

Corollary 1 (to Lemma 11). Given a set of r pseudo-
generators, G̃, then the set Õ := {f(o) : o ∈ G̃(G̃)} can
be computed in time O((T + r)3r), where the time needed
to compute f is in O(T).

Proof. From Lemma 11 we know that there are at most
3r operators in the pseudo-product, so |Õ| ≤ 3r. Further-
more, for every element in the set we first need to com-
pute the corresponding operator in the pseudo-product,

which requires r time since it is the product of r opera-
tors, and then we need to compute f , which by assump-
tion requires a time in O(T).

Remark In order to be able to place a lower bound
on binary strings that have yet to be examined in the
Brouwer-Zimmermann enumeration, we need the gener-
ators of the binary strings over which we are searching to
have the property that each generator has a column such
that it is the only generator with a 1 in that column, so
that products of r generators must have at least weight
r. Because we want to similarly place a bound on unex-
amined products of pseudo-generators, we generalize this
property with the following definition.

Definition A set of pseudo-generators G̃ is said to be
disjoint if for every g̃ ∈ G̃ there exists some physical qubit
k such that either Xk or Zk (or both) anti-commutes
with every operator in G̃(g̃)\{I}, but both Xk and Zk

commute with every operator in
⋃

g̃′∈G̃\{g̃} G̃(g̃′).

Remark With the following Lemma, we show that the
property of disjointness is exactly what we need to obtain
the bounds that we want.

Lemma 12. All of the operators in the pseudo-product of
any r (distinct) pseudo-generators chosen from a disjoint
set of pseudo-generators have weight of at least r.

Proof. Every operator in the pseudo-product is the prod-
uct of r factors, each of which is associated with some dis-
tinct physical qubit k such that it anti-commutes with
either Xk or Zk (or both) but every other factor com-
mutes with both Xk and Zk; thus, the product must
anti-commute with at least r single-qubit operators act-
ing on distinct physical qubits, and so it must have a
weight of at least r.

Remark Now that we have the concept of a disjoint set
of pseudo-generators and a result showing that an op-
erator in a pseudo-product of r of them must have a
weight of at least r, we present in the following Lemma
an algorithm for searching through the space spanned by
the pseudo-generators for an operator satisfying a given
property.

Lemma 13. Given a set of pseudo-generators G̃ acting
on N physical qubits and a test function f : P̃ → {0, 1}
such that f−1(1) ∩ G̃(G̃) 6= ∅, then a solution o such
that f(o) = 1 and ωS̃(o) = mino′∈G̃(G̃),f(o′)=1w(o′) can

be computed in time O

(
(T + d)3d

(
|G̃|
r

))
where d :=

min
(
w(o), |G̃|

)
and T is the time needed to compute f .

Remark This Lemma follows directly from the results
in [43], though the proof is included here both for com-
pleteness and also to show specifically how the results
specialize to our case. A pseudo-code representation of
this algorithm can be found in Table V.

20

Proof. Define C̃r to be the set of all operators such
that if o ∈ C̃r then there is some subset of exactly r
pseudo-generators from G̃ such that o is contained in
their pseudo-product. Note that ∪rC̃r = G̃(G̃), so for
every operator o in the search space there is an integer r
such that o ∈ C̃r. Corollary 1 shows that we can evaluate
f on every element of the pseudo-product of r pseudo-

generators in time O((T +r)3r), so since there are
(
|G̃|
r

)
ways to choose r pseudo-generators from G̃ we conclude
that we can search C̃r for a solution to f(o) = 1 in time

O

(
(T + r)3r

(
|G̃|
r

))
.

From Lemma 12 we conclude that w(o) ≥ r for every
o ∈ C̃r. By extension this means that w(o) ≥ r for ev-
ery o ∈

⋃|G̃|
r′=r C̃r′ , and therefore that if o /∈

⋃r−1
r′=0 C̃r′

and o ∈ G̃(G̃) then w(o) ≥ r. Thus, if there exists an
r such that r = mino∈

Sr−1
r′=0

C̃r′ ,f(o)=1w(o) then we know
that r = mino∈G̃(Õ),f(o)=1w(o) — that is, r is exactly
the weight of the minimum weight solution to f(o) = 1,
since any operator in the search space that isn’t con-
tained in

⋃r−1
r′=0 C̃r′ must have a weight of at least r. Put

another way, after having enumerated all of the elements
in
⋃r−1

r′=0 C̃r′ we can check to see whether the smallest
solution to f we have seen so far (if any) has weight less
than or equal to r, and if so we are done since we have
found the minimal weight solution.

Now consider the procedure of searching through each
C̃r starting with r = 0. We know that we will eventually
find at least one solution to f(o) = 1, since in this Propo-
sition we have assumed that such an operator exists in the
search space (by the assumption that f−1(1)∩G̃(G̃) 6= ∅).
Furthermore, employing this procedure we will find the
minimal solution o no later than after we have searched
through C̃r for r = 0 . . . w(o), since at that point all of the
unexamined operators have a weight greater than w(o).
Thus, we conclude that we shall find the minimal weight
solution after having searched at most all of the elements
in
⋃min(w(o),|G̃|)

r=0 Cr, which we can do in time

O

min(w(o),|G̃|)∑
r=0

(T + r)3r

(
|G̃|
r

) ⊆ O((T + d)3d

(
N
d

))
,

where d := min(w(o), |G̃|).

Remark The proceeding Lemma is rather general, so
we shall show how it specializes to our case. First,
however, we use the following three Lemmas to prove
that our search space is generated by exactly N pseudo-
generators.

Lemma 14. Given a set of disjoint pseudo-generators,
G̃, the largest subset X̃ ⊆ Ũ(G̃) such that X̃ commutes
has size |X̃| ≤ |G̃|.

Find-Weight-Minimizer(f, ~G)

1 r ← 1
2 m←∞
3 while m > r and r ≤ | ~G|
4 do

5 for each ~H ⊆ ~G such that | ~H| = r,

6 and each o in the pseudo-product of ~H
7 do
8 if weight(o) < m
9 then

10 (q, u)← f(o)
11 if q is true
12 then
13 m← weight(o)
14 α← (o, u)
15 if m = r
16 then
17 goto 19
18 r ← r + 1
19 return α

TABLE V: Algorithm which finds the minimal weight
operator in a given generating set that satisfies a given
predicate. For the sake of convenience, we also allow the

query function to return auxiliary information that is
returned to the caller along with the minimal weight

operator.

Proof. If X̃ contained more that G̃ operators then by
the pigeon hole principle there would have to be at least
two operators from the same pseudo-generator, and thus
which did not commute

Lemma 15. A set of disjoint pseudo-generators G̃ acting
on N qubits satisfies |G̃| ≤ N .

Proof. This follows directly from the definition and the
pigeon hole principle.

Lemma 16. For any set of commuting operators S̃ act-
ing on N physical qubits, if G̃ is a set of disjoint pseudo-
generators satisfying G̃(G̃) = C̃P̃(S̃) then |G̃| = N .

Proof. Since C̃P̃(S̃) contains a subset of N independent
commuting operators, so must G̃(G̃) and therefore Ũ(G̃);
thus, Lemma 14 implies that |G̃| ≥ N , and combining
this bound with that given by Lemma 15 we see that
|G̃| = N .

Remark We now prove a Lemma which shows how the
search specializes to the case of our qubit optimization
algorithm.

Lemma 17. Given

• a set of Pauli operators S̃ acting on N physical
qubits,

21

• a set of disjoint pseudo-generator G̃ such that
G̃(G̃) = C̃(S̃), and

• a non-empty set of Pauli operators Q̃ such that Q̃∩
S̃ = ∅ and every operator in Q̃ is a member of a
conjugal pair in relation to Q̃ ∪ S̃,

then a minimal weight undetectable error acting
on any operator in Q̃ can be found in time

O

(
(|Q̃|+ d)3d

(
N
d

))
where d := min (w(o), N).

Proof. First observe that by Lemma 16 we know that
|G̃| = N .

Define the function f : G̃(G̃)→ {0, 1} by

f(o) :=

{
1 ∃ q ∈ Q̃ such that {o, q} = 0
0 otherwise,

Note that solutions to f are undetectable errors acting
on Q̃, and also that this function can be computed in
time O(|Q̃|) by checking the commutator for each ele-
ment in Q̃. Furthermore note that for every operator in
Q̃ there is another operator in Q̃ which anti-commutes
with it, and also that Q̃ ⊂ C̃P̃(S̃). Thus, since Q̃ is
non-empty, there is at least one operator o ∈ G̃(G̃) such
that f(o) = 1. Thus, by Lemma 13, we know that we
can compute a minimal weight solution to f in time

O

(
(|Q̃|+ d)3d

(
N
d

))
where d := min (w(o), N).

Remark In order to make use of the preceding result, we
need to have a set of disjoint pseudo-generators whose
pseudo-product covers our search space. However, we
usually start instead with a set of ordinary Pauli opera-
tors that generate this space. Thus, we shall now show
that the former can be computed from the latter — i.e.,
that given a set of Pauli operators, we can compute a set
of disjoint pseudo-generators that spans the same space.
First we present a Lemma that provides a criteria suffi-
cient to show that a set of pseudo-generators is distinct.

Lemma 18. Given a set of pseudo-generators, G̃, if
there exists a map p : Ũ(G̃) → ({Xk}k ∪ {Zk}k) such
that

1. for every o ∈ Ũ(G̃), o is the unique operator in
G̃(G̃) that anti-commutes with p(o) and

2. for every g̃ ∈ G̃, the operators in g̃ are both mapped
by p to single-qubit operators acting on the same
physical qubit k, and they are the only such oper-
ators in G̃(G̃) that are mapped by p to operators
acting on k,

then G̃ is disjoint.

Proof. For every g̃ ∈ G̃, we conclude from property 2 of
p that there is some physical qubit k such that every op-
erator in g̃ is mapped by p to either Xk or Zk, and hence

by property 1 this means that every operator in G̃(g)
anti-commutes with either Xk or Zk. Since by property
1 we know that the choice of Xk or Zk is different for
each operator in G̃(g̃), we conclude that if there is more
than one operator in g̃ then the product anti-commutes
with both Xk or Zk. Finally, by property 2 we know that
every operator in g̃′ for g̃′ ∈ ˜̃G\{g} commutes with Xk

and Zk.

Remark We now show that any set of operators that
we are using to generate a search space can be expressed
equivalently as a set of disjoint pseudo-generators.

Lemma 19. Given any a set of Pauli operators, Õ, there
exists a set G̃ of pseudo-generators such that

1. |G̃| ≤ |Õ|,

2. G̃(Õ) = G̃(G̃),

3. the map p described in Lemma 18 exists for G̃,

and G̃ can be computed in time O(|Õ|2).

Remark The structure of this proof bears some similar-
ities to Proposition 2. In contrast with Proposition 2,
however, in the setting of this Lemma we are working
with operators that in general will not commute.

Proof. Proof by induction. For the base case, we observe
that if Õ is empty, then the trivial set G̃ := ∅ and the
trivial function p whose domain is the empty set satisfy
the requirements.

Now assume that this Lemma has been proven for sets
of cardinality n − 1, and suppose we are given a (non-
empty) set Õ of cardinality n. Take any operator o ∈ Õ.
By recursive application of this Lemma, we know that
we can construct the set G̃′ := G̃ and the function p′ :=
p described in this Lemma given Õ := Õ\{o} in time
O
(
(n− 1)2

)
= O(n2).

Let

o′ := o ·
∏

x∈Ũ(G̃′),
{o,p(x)}=0

x.

Note that for every x ∈ Ũ(G̃′), it must be that o′ com-
mutes with p′(x), since o′ is formed from a product
that has either two factors that anti-commute with p′(x)
(namely, o and p′(x)) or no operators that anti-commute
with p′(x). If o′ is the identity operator, then let G̃ := G̃′

and p := p′ and we are done. Otherwise, there must be
some operator z ∈ ({Xk}k ∪ {Zk}k) /{p′(x) : x ∈ Ũ(G̃′)}
that anti-commutes with o. Define the function f by

f(x) :=

{
x · o′ {x, z} = 0,
x otherwise,

and let G̃′′ :=
{
{f(x) : x ∈ g̃} : g̃ ∈ G̃′

}
and p′′ := p′ ◦

f−1. Note that o′ must be independent of the operators

22

in Ũ(G̃′), because o′ is not the identity and the product
of o′ with any subset of operators Ã ⊂ Ũ(G̃′) cannot be
the identity since it must anti-commute with p′(a) for
every a ∈ Ã. Thus, f is a bijective map from Ũ(G̃′) to
Ũ(G̃′′) and hence is invertible, and so we conclude that
p′′ is well-defined. Since, as previously discussed, o′ com-
mutes with p(y) for every y ∈ Ũ(G̃′), we conclude that
multiplication by o′ does not change whether any opera-
tor x ∈ Ũ(G̃′) commutes or anti-commutes with p(y) for
any y ∈ Ũ(G̃′), and so we conclude that the properties
listed in Lemma 18 that p′ has in relation to G̃′ (from the
inductive hypothesis) are preserved in the transformation
by f so that p′′ also has the same properties in relation
to G̃′′. Furthermore, since every operator x ∈ Ũ(~G′) was
multiplied by a factor of o′ if and only if it anti-commutes
with z, we conclude that f(z) must commute with z, and
thus every operator in Ũ(~G′′) must commute with z.

There are two cases to consider: either there is no
operator x ∈ Ũ(G̃′′) such that p′′(x) acts on the same
qubit as z, or there is exactly one, since if there were
more than two then it would violate the properties of
p′′, and if there were exactly two then by construction
o′ would commute with z leading to a contradiction. In
the first case, let G̃ := G̃′′ ∪ {{o′}}. In the second case,
let G̃ :=

(
G̃′′\ {{x}}

)
∪ {{x, o′}}, where x is the single

operator in Ũ(G̃′′) such that p(x) acts on the same qubit
as z. In either case, define

p(x) :=

{
p′′(x) x ∈ Ũ(G̃′′),
z x = o′,

observing that it is well-defined since Ũ(G̃) = Ũ(G̃′′) ∪
{o′}.

To prove conclusion 1, we note that G̃ has at most
one more element than G̃′ and Õ always has one more
element than Õ\{o}, so conclusion 1 follows from this
fact combined with the inductive hypothesis.

To prove conclusion 2, we note that since o′ (and
hence o) is independent with respect to Ũ(G̃′), then
because of how G̃ was constructed and the inductive
hypothesis we have that G̃(G̃) = G̃

(
Ũ(G̃′′) ∪ {o′}

)
=

G̃
(
Ũ(G̃′) ∪ {o}

)
= G̃

(
(Õ\{o}) ∪ {o}

)
= G̃(Õ).

To prove conclusion 3, we need to show that p satisfies
the properties listed in Lemma 18. To prove the first
property, we note that for every x ∈ Ũ(G̃) we have that
either x ∈ Ũ(G̃′′), in which case we have already shown
that it is the unique operator that commutes with p(x) as
this is true for the operators in Ũ(G̃′′) as well as for o′ (by
construction), or x = o′, in which case this is still true
since by construction o′ is the only operator in Ũ(G̃) that
anti-commutes with z. To prove the second property, we
note that due to the inductive hypothesis we need only
consider the single change from G̃′′ to G̃, which consisted
of either adding or replacing a pseudo-generator; in the
first case (adding a generator), observe that we showed

earlier that no operator y ∈ G̃′′ is such that p′′(y) acts
on the same qubit as z, and in the second case (replacing
a generator), note that we added o′ to the only generator
in G̃′′ containing an operator y such that p′′(y) acts on
the same qubit as z; in either case, we see that the second
property holds for G̃.

Finally, we consider the running time. In addition to
the O(n2) time required to construct G̃′, we required an
additional O(n) multiplication operations to construct o′

and G̃′′; hence the total running-time is O(n2).

Corollary 2. Given any set of Pauli operators, Õ, there
exists a disjoint set of pseudo-generators G̃ such that
|G̃| ≤ |Õ|, G̃(Õ) = G̃(G̃) and G̃ can be computed in time
O(|Õ|2).

Proof. This follows immediately from Lemmas 18 and 19.

Remark We now have the tools that we need to analyze
the running time of the algorithm.

Proof of Theorem 5. First observe that from Lemma 18
we conclude that we can compute a set of disjoint pseudo-
generators G̃ such that G̃(G̃) = G̃(C̃) = C̃P̃(S̃) in
time O(|C̃|2). We will assume that this set of pseudo-
generators is implicitly available to us throughout the
algorithm so that we do not need to compute it more
than once.

At each step of the algorithm, we first need to find an
operator, o, that has an undetectable error of minimal
weight inside a set which we know from Proposition 5 has
at most |L̃| elements. By Lemma 17, we conclude that

this operator can be found in time O
(

(|L̃|+ d)3d

(
N
d

))
where d := min (w(o), N) = w(o) (since the weight of
any operator cannot be greater than N). After this
has been found, examination of the algorithm reveals
that the computation performed afterward takes a run-
ning time in O(|Q̃| + |~P |) = O(|L̃|), where the equal-
ity comes from Proposition 5. Thus, the total time

needed for each step is in O

(
(|L̃|+ d)3d

(
N
d

)
+ |L̃|

)
=

O

(
(|L̃|+ d)3d

(
N
d

))
.

Let (Q̃′, ~P ′, ~s′) be the second to last element of ~O(S̃, L̃)
and (Q̃, ~P ,~s) the last element. In the final step of the al-
gorithm, we move the last remaining pair in Q̃′ = {q}
over to ~P ′, which means that the operator o with the
minimal weight is a member of q. From Proposition 5,
we know that that ωS̃(o) ≥ mS̃(~P ′i) for any i. Thus,
at each step of the algorithm before this one we know

that we spent a time in O

(
(|L̃|+ d)3d

(
N
d

))
where

d := w(o) — i.e., a time no greater than the time
spent on the last step. Since the algorithm requires
at most |L̃| steps we conclude that the total running

23

Compute-Pseudogenerators(~O)

1 ~p← []
2 i← 0

3 while i < | ~O|
4 do

5 o← ~O[i]
6 for j ← 0 to i− 1
7 do
8 (n, z)← ~p[j]
9 if z = 0

10 then
11 if anti(o,Xn)

12 then o← o · ~O[j]
13 else
14 if anti(o, Zn)

15 then o← o · ~O[j]
16 if o is identity
17 then

18 delete ~O[i]
19 goto 3
20 for n← 0 to number of physical qubits
21 do
22 if anti(o,Xn)
23 then
24 z ← 0
25 goto 30
26 elseif anti(o, Zk)
27 then
28 z ← 1
29 goto 30
30 if z = 0
31 then
32 for j ← 0 to i− 1
33 do

34 if anti(~O[k], Xn)

35 then ~O[j]← ~O[j] · o
36 else
37 for j ← 0 to i− 1
38 do

39 if anti(~O[j], Zn)

40 then ~O[j]← ~O[j] · o
41 append (n, z) to ~p

42 ~O[i]← o
43 i← i+ 1

44 ~G← []
45 for n← 0 to number of physical qubits
46 do
47 ~g ← []

48 for i← 0 to | ~O| − 1
49 do
50 (n′,)← ~p[i]
51 if n = n′

52 then append ~O[i] to ~g
53 if ~g 6= []

54 then append g to ~G

55 return ~G

TABLE VI: Algorithm which computes a set of disjoint
pseudo-generators that generates the input set of

operators.

time, including that needed to compute the set of pseudo-

generators, is in O

(
|G̃|2 + |L̃|(|L̃|+ d)3d

(
N
d

))
. Since

ωS̃(o) = ~M(~P)|~P |, we conclude that d ≡ ~M(~P)|~P | (since
there can be at most N qubits in the choice), and so we
are done.

III. PRACTICE

A. Methodology

In the previous section we presented an algorithm that
computes the optimal subsystem code that can be im-
plemented using a given set of measurements. The pro-
cedure for optimizing the code requires an exponential
amount of time, but fortunately the power of the expo-
nential is a function of the distance of the best qubit in
the code. Because of this property, this algorithm can
be effectively applied to search over a set of choices of
measurement operators to see if there is any good choice
for implementing a code, since it can (relatively) quickly
skip over the bad choices of measurements.

In this section, we shall present an example of applying
this algorithm to search for codes on quantum systems
with the structure of a graph. That is, we assume that
we have a system of qubits, 2-body Pauli measurement
operators and a graph such that there is a bijection be-
tween the qubits and vertices and between the edges and
measurement operators, and also such that each mea-
surement only acts on the two qubits corresponding to
the vertices adjacent to its associated edge. Specifying a
particular graph constrains the number of qubits and the
types of measurement operators, but it still allows a great
deal of freedom in the choice of the measurement opera-
tor at each edge. In Figure 1 we illustrate an example of
a graph with two possible such choices of measurement
operator labelings; note that for the sake of generality we
do not impose the constraint that the two operators in
the 2-body measurement be identical.

For reasons that will become clear, it turns out to be
useful to specify choices of measurement operators in
terms of ray labelings rather than edge labelings since
the former is associated with vertices. Define a ray of a
graph to be a pair consisting of a vertex and an edge ad-
jacent to the vertex; note that every ray can be uniquely
associated with an edge, and every edge can be associated
uniquely with a ray for each of its two incident vertices.
Thus, we can define a particular choice of measurement
operators by labeling each ray in the graph with a single-
qubit Pauli operator acting on the qubit of the incident
vertex, and then letting the measurement operator as-
sociated with each edge be equal to the product of the
single-qubit operators in the edge’s two rays.

There is a natural symmetry of quantum codes that
can be factored out to reduce the search space: the rel-
evant properties of the code are invariant under single-

24

X
Y

Z Z
Y

Z

ZX

Z

Z

Z
Z

X Z

Z
Z

YX

Y

Y

FIG. 1: A figure illustrating two possible labelings of a
graph, which correspond to two possible choices of

2-body measurements. In both graphs we see that there
are four vertices and five edges, which indicates that our

system is constrained to have four qubits and five
2-body measurement operators. The edges (without the
labels) indicate the pairs of qubits on which the 2-body

measurement operators are constrained to act within
our system. Within these constraints, we see in this

figure two possible choices of measurement operators as
specified by the two labelings of the edges of the graph.

qubit rotations. That is, transformations such as swap-
ping the X and Z operators at the location of a single
physical qubit in every stabilizer, gauge qubit, and logi-
cal qubit operator does not affect the code. Thus, when
labeling the rays of a vertex, exactly which ray is labeled
X, Y , and Z is not important; what matters is which rays
commute and which rays anti-commute. We see therefore
that we need only search over the possible ways to divide
the rays into three indistinguishable groups, so that a
vertex with n rays only has 1 + 3n−1−1

2 relevant labelings
that need to be examined.

The specific graphs we shall examine in this section
are lattices generated by nine of the eleven convex vertex-
uniform (also known as the “Archimedean”) tilings of the
plane — that is, those tilings with the property that every
face is convex and every vertex has the same sequence of
faces [44]12. Since these tilings have many translational
symmetries, we intentionally narrow our search to the set
of labelings that share the translational symmetries of the
lattice13. Since the ray labelings must be preserved under
these symmetries, we can partition the rays of the graph
into equivalence classes such that two rays are equivalent
if and only if they are related by a translation symmetry;
thus we see that our narrowed search space is equivalent
to the space of possible labelings of each class of rays in
the lattice examined. Since there is a symmetry that can
be factored out at each vertex (as discussed previously),

12 In particular, see Theorem 2.1.3 on page 59 of Ref. [44] for the
proof that there are exactly eleven tilings with this property.

13 This is not to claim that there are no interesting codes that
break these translational symmetries; however, the investigation
of such codes is outside the scope of this particular study.

Archimedean Tiling # Classes # Rays # Labelings
quadrille 1 4 14
truncated quadrille 4 3 625
snub quadrille 4 5 2,825,761
isosnub quadrille 2 5 1681
hextille 2 3 25
truncated hextille 6 3 15,625
snub hextille 6 5 4,750,104,241
deltille 1 6 122
hexadeltille 3 4 2744
truncated hexadeltille 12 3 244,140,625
rhombihexadeltille 6 4 7,529,536

TABLE VII: A table listing the number of vertex
equivalence classes, the number of rays at each vertex,

and the total number of labelings for each of the 11
convex vertex-uniform tilings. By our scheme the

number of labelings is equal to
(

1 + 3n−1−1
2

)m

, where
m is the number of vertex equivalence classes and n is

the number of rays at each vertex.

we note that we can likewise partition the vertices into
equivalence classes of vertices related by translation sym-
metries. If there are m vertex equivalence classes, and
every vertex has n rays, then our search space consists
of
(

1 + 3n−1−1
2

)m

total possible labelings. In Table VII,
we list the eleven convex vertex-uniform tilings with the
number of vertex equivalence classes, the number of rays
at each vertex, and the total number of labelings. (Two
of the eleven tilings, “truncated hexadeltille” and “snub
hextille”, had such a large number of possible labelings
that we decided to exclude them from our search.)

Note that we could furthermore refine our search to
consist of those codes which also share the rotational
symmetries of the lattice. We explicit avoid making this
refinement because the existence of such codes as the
quantum compass model code [24] indicates that there
are good codes on lattices that require breaking the ro-
tational symmetry of the lattice. However, we can use
the rotational symmetries in a different way to reduce
the search space as follows. Partition the labelings into
equivalence classes such that two labelings are in the
same class if and only if there is a rotational symmetry
that relates them, and observe that all of the labelings
in each class will give rise quantum codes with identical
properties. Thus, we can reduce our search space to ig-
nore redundant labelings by only examining one labeling
in each equivalence class.

Our search algorithm thus works in the following man-
ner. We start by putting a total ordering on all of the
lattice labelings (after having factored out the symmetry
at each vertex.) We enumerate these labelings in order.
For each labeling, we generate new labelings by applying
each rotational symmetry to the current labeling. If any
of these new labelings is less than the current labeling
under our ordering, then we skip the current labeling be-
cause we know that we have already previously examined

25

Archimedean Tiling # Non-redundant # Total
quadrille 10 14
truncated quadrille 155 625
snub quadrille 706,881 2,825,761
isosnub quadrille 743 1681
hextille 11 25
truncated hextille 2392 15,625
deltille 58 122
hexadeltille 594 2744
rhombihexadeltille 904,741 7,529,536

TABLE VIII: A table listing the number of labelings
for each tiling that were not redundant under rotational
symmetry transformations. This number was obtained
by placing an ordering on the labelings and counting

the number of labelings such that no symmetry
transformation obtained a labeling less than the current
labeling. Also listed for the sake of comparison are the

total number of labelings from Table VII.

an equivalent labeling. Although this algorithm proceeds
serially through the search space, it can be parallelized
by making use of n walkers, each of which starts at a
different labeling (from 0 to n − 1) and which proceed
by examining the current labeling and then skipping di-
rectly to the nth labeling after the current one. In Table
VIII we list the number of non-redundant labelings for
each tiling.

In order to preserve the rotational symmetries of the
tiling, it is important that the lattice be constructed
such that the center of the lattice is at a point of ro-
tational symmetry. There is not a single unique center
point that preserves all of the rotational symmetries of a
given tiling, and furthermore for many tilings there are
multiple rotational symmetry groups (known as “wallpa-
per” symmetry groups), each of which has a different set
of center points. We thus chose the center of our lattice
by picking the largest of the wallpaper groups present
in the tiling and choosing the center to give rise to the
rotational symmetries in that group14. In table IX we
list the wallpaper symmetries for each of the 11 convex
vertex-uniform tilings along with (where applicable) the
particular symmetry group that we chose to utilize.

As is usually the case in physical systems, it is impor-
tant to pay careful attention to the boundary conditions
of the lattice. In order to minimize boundary effects, we
decided to put periodic boundary conditions on our lat-

14 Note that this approach does not mean that we have eliminated
redundant labelings resulting from all of the symmetries in the
lattice. For example, we have not eliminated labelings which are
equivalent under rotations around a different point, nor which
are equivalent under a glide-reflection symmetry. It is certainly
possible to eliminate these labelings, but we choose not to do so
in this project for the sake of simplicity. An implication of this
is that for many codes we expect to see multiple labelings giving
rise to them that are equivalent under symmetry transformations
but not eliminated by our approach.

Archimedean Tiling Symmetries Chosen
quadrille p4m p4m
truncated quadrille p4m p4m
snub quadrille p4g, p4, and pg p4
isosnub quadrille cmm cmm
hextille p6m p6m
truncated hextille p6m and p3m1 p6m
snub hextille p6 N/A
deltille p6m and p3m1 p6m
hexadeltille p6m and p3m1 p6m
truncated hexadeltille p6m N/A
rhombihexadeltille p6m p6m

TABLE IX: A table listing the wallpaper symmetry
groups (using crystallographic notation) for each of the

11 convex vertex-uniform tilings, along with the
particular group that we chose for our search. For two

of the tilings no symmetry group was chosen because we
decided not to search the tiling.

Tiling Maximum Radius # Qubits
quadrille 4 64
truncated quadrille 6 576
snub quadrille 5 200
isosnub quadrille 8 768
hextille 10 600
truncated hextille 5 600
deltille 8 256
hexadeltille 3 108
rhombihexadeltille 3 162

TABLE X: A table in which we show the maximum
radius lattice that was completely scanned (i.e., such

that every possible labeling was examined by the
algorithm) for each tiling. To give a sense of the size of
the lattices involved, we also list the number of physical

qubits (corresponding to vertices) for the lattice with
the maximum radius.

tices; care had to be taken to impose the periodic bound-
ary conditions in such a way as to preserve the rotational
symmetry group. For example, a boundary that only
wraps from left to right and from top to bottom breaks
some of the rotational symmetries for hexagonal tilings.
In Figure 2 we illustrate how we placed the centers and
the boundaries of the tilings.

Due to limits on our computational resources, we were
limited in the size of the lattices that we could search with
the algorithm. We describe the size of the lattices using a
quantity we call the ‘radius’, which is an integral quantity
equal to the length of the lattice divided by the length of
the smallest lattice defined for that tiling; the unit radius
lattices are those illustrated in Figure figure:boundaries.
In Table X we show the maximum radius lattice that was
completely scanned (i.e., such that every possible labeling
was examined by the algorithm) for each tiling.

Since each labeling of every lattice results in a quantum
code, we had to provide some criteria for our search al-
gorithm to decide whether a code was interesting enough

26

(a) quadrille (b) truncated quadrille (c) snub quadrille

(d) isosnub quadrille (e) hextille (f) truncated hextille

(g) deltille (h) hexadeltille (i) rhombihexadeltille

FIG. 2: A figure illustrating how we placed the centers and boundaries for each of the tilings that we scanned. The
boundaries are periodic, so that edges that pass through one side of the boundary wrap around to the opposite side.
Edges and vertices on a boundary are merged with the corresponding edges and vertices on the opposite edge. Note
that under this scheme there can be no vertices on a corner. For most tilings this will never happen, but it turns out

that in the case of the deltille tiling there are vertices on the corners when the radius (smallest distance from the
center to the boundary) is three times the radius of the unit cell; we thus ignore deltille tilings of these sizes.

27

to log. We set our criteria relatively low: a code was
deemed to be interesting if there was at least one logical
qubit with distance three, that is if there was at least
one logical qubit such that a single arbitrary error on
that qubit can be corrected. This was done under the
reasoning that as long as some of the logical qubits in
a code are sufficiently useful to us to make implement-
ing the code worthwhile, then we should not be troubled
by the fact that there might be other logical qubits that
are not useful because we can always ignore them (or,
equivalently, classify them as gauge qubits).

B. Results

In the previous subsection we described the search
space to which we applied the algorithm in order to
computationally find possible codes that can be imple-
mented using systems with 2-body interactions and a lat-
tice structure following nine of the eleven convex vertex-
uniform tilings. In this subsection we present the results
of this search. The codes that we found are shown in the
plots appearing in Figures 3 and 4. No plot appears for
the deltille tiling because no codes were found for that
tiling. It is worth emphasizing that these codes indicated
in these figures are all of the (useful) codes that exist for
the scanned lattices of that tiling given our constraints,
since we scanned every possible labeling that was not
redundant under a rotational symmetry transformation
about the center.

Observe that two kinds of trends appear frequently
in the results: codes that grow in distance but remain
constant in the number of logical qubits as the radius
increase, and codes that remain constant in distance
but grow in the number of logical qubits as the radius
increases. The former trend appears in the quadrille,
snub quadrille, isosnub quadrille, hexadeltille, and rhom-
bihexadeltille tilings15. The latter trend appears in the
truncated quadrille, snub quadrille, hextille, truncated
hextille, hexadeltille, and rhombihexadeltille tilings. In
many of the tilings there are also codes that were found
that do not seem to belong to an obvious trend.

In the follow subsections we will focus on some specifics
of the results for each of the tilings.

1. quadrille

For the quadrille lattice, we only saw one labeling, il-
lustrated in Figure 5, that resulted in an interesting code.
This labeling corresponds to the compass model code,
and the algorithm correctly found that the distance of

15 Note that where the former trend was present, the maximum
radius that we scanned was often quite limited; this is due to the
exponential explosion in the cost of finding the optimal code as
a function of the distance of the code.

the code grows linearly with the radius of the lattice and
is exactly equal to the square root of the number of qubits
in the lattice. This result is not terribly surprising, but
it is good to see that our search technique employing the
algorithm can correctly duplicate known results.

2. truncated quadrille

There are three kinds of codes that appear in this tiling
where the number of qubits increases with the radius:
two where the distance is fixed at 4, and one where the
distance is fixed at 3. For the best two of these three
kinds of codes, the number of logical qubits (l) is related
to the radius (r) by l = (2r − 1)2. Since the number of
physical qubits (n) is given by n = (4r)2, the number
of logical qubits per physical qubit is thus given by l

n =(
1
2 −

1
r

)2, a quantity which converges to 1
4 as r → ∞.

There were four labelings with this property that we saw
in our search: two with distance 3 qubits (illustrated in
Figure 6a), and two with distance 4 qubits (illustrated in
Figure 6b).

3. snub quadrille

There are two kinds of interesting codes found in this
filing. First, we saw exactly one labeling that has the
property that the distance is four and the number of
logical qubits (l) is given by l = 2r(r − 1), where r is
the radius of the lattice. Since the number of physi-
cal qubits (n) is given by n = 8r2, this means that the
number of logical qubits per physical qubit is given by
l
n = 2r(r−1)

8r2 = 1
4

(
1− 1

r

)
→ 1

4 as r → ∞. This labeling
is illustrated in Figure 7.

Second, more usefully, we saw twelve labelings which
result in a code that has one qubit whose distance grows
with the size of the lattice. Two of these labelings are
illustrated in Figure 8.

4. isosnub quadrille

We only saw two labelings of the isosnub lattice that
result in useful codes, both of which only have a single
qubit that seems (assuming that the trend seen in Figure
4 can be extrapolated) to have a distance that grows
with the radius of the lattice. These two labelings are
illustrated in Figure 9.

5. deltille

We scanned this tiling up to a radius of eight; no in-
teresting codes were found in any of the 122 labelings.

28

1
(4)

2
(16)

3
(36)

4
(64)

0

1

Radius
(Number of physical qubits)

N
u
m

b
er

 o
f

lo
g
ic

al
 q

u
b
it

s

Codes found for the
quadrille tiling

(a)

1
(12)

2
(48)

3
(108)

4
(192)

5
(300)

6
(432)

7
(588)

8
(768)

0

1

Radius
(Number of physical qubits)

N
u
m

b
er

 o
f

lo
g
ic

al
 q

u
b
it

s

Codes found for the isosnub quadrille tiling

(b)

1
(16)

2
(64)

3
(144)

4
(256)

5
(400)

6
(576)

0

20

40

60

80

100

120

Radius
(Number of physical qubits)

N
u
m

b
er

 o
f

lo
g
ic

al
 q

u
b
it

s

Codes found for the truncated quadrille tiling

(c)

1
(8)

2
(32)

3
(72)

4
(128)

5
(200)

0

10

20

30

40

Radius
(Number of physical qubits)

N
u

m
b

er
 o

f
lo

g
ic

al
 q

u
b

it
s

Codes found for the
snub quadrille tiling

(d)

FIG. 3: A figure containing plots of the results from scanning the (a) quadrille, (b) isosnub quadrille, (c) truncated
quadrille and (d) snub quadrille tilings. Every polygon in the plot corresponds to a code that was found with a

distance equal to the number of sides of the polygon, so that triangles indicate distance three codes, squares indicate
distance four codes, etc. The position along the x-axis indicates the radius of the lattice where the code was found,
where the radius is an integer defined to be the length of the lattice divided by the length of the smallest possible

periodic lattice for the tiling; it also indicates the number of physical qubits in the lattice where the code was found,
which appears on the x-axis just under the value of the radius. The position along the y-axis indicates the number
of logical qubits with that distance in the code. Note that in cases where multiple codes were found for the same

radius and with the same number of logical qubits, multiple polygons are drawn, so that for example in plot (c) we
see several cases in which a distance 3 code (triangle) and a distance 4 code (square) were found that were in lattices

with the same radius and also had the same number of logical qubits.

6. hextille

In this tiling we saw four labelings which resulted in
two kinds of interesting codes: two of the labelings (illus-

trated in Figure 10a) resulted in codes of distance 3 that
were present for every value of the radius, and two of the
labelings (illustrated in Figure 10b) resulted in codes of
distance 4 that were only present for even values of the

29

1
(6)

2
(24)

3
(54)

4
(96)

5
(150)

6
(216)

7
(294)

8
(384)

9
(486)

10
(600)

0

20

40

60

80

100

120

140

Radius
(Number of physical qubits)

N
u

m
b

er
 o

f
lo

g
ic

al
 q

u
b

it
s

Codes found for the hextille tiling

(a)

1
(18)

2
(72)

3
(162)

0

2

4

6

8

10

12

14

16

Radius
(Number of physical qubits)

N
u
m

b
er

 o
f

lo
g
ic

al
 q

u
b
it

s

Codes found for the
rhombihexadeltille tiling

(b)

1
(24)

2
(96)

3
(216)

4
(384)

5
(600)

0

10

20

30

40

50

Radius
(Number of physical qubits)

N
u

m
b

er
 o

f
lo

g
ic

al
 q

u
b

it
s

Codes found for the
truncated hextille tiling

(c)

1
(12)

2
(48)

3
(108)

0

2

4

6

8

10

12

Radius
(Number of physical qubits)

N
u
m

b
er

 o
f

lo
g
ic

al
 q

u
b
it

s
Codes found for the
hexadeltille tiling

(d)

FIG. 4: A figure containing plots of the results from scanning the (a) hextille, (b) rhombihexadeltille, (c) truncated
hextille and (d) hexadeltille tilings. See the caption of Figure 3 for an explanation of how to interpret these plots.

30

X

Z

X

Z
Z

XX

ZZ
X X

X
Z

Z

X

Z
Z

XX

Z
Z

XX

Z

Z
Z

X X

X X

XX
Z

Z
X X

Z
Z

Z
Z

XX
Z

Z

XX
Z

Z

Z
Z

X X

X X

XX

Z
Z

Z
Z

X X

Z
Z

XX

Z
Z

X X

Z
Z

FIG. 5: A figure illustrating the single labeling of the
quadrille tiling (on a radius 2 lattice) that results in a

useful quantum code.

radius. The former resulted in codes which had a number
of logical qubits (l3) given by l3 = (r−1)(r−2)

2 , where r is
the radius, and the latter resulted in codes which had
a number of logical qubits (l4) given by l4 = r(r + 3).
Since the number of qubits (n) is given by n = 6r2,
we have that the number of logical qubits per physi-
cal qubit for the distance and distance 4 codes were
given respectively by d3 = l3

n = 1
12

(
1− 1

r

) (
1− 2

r

)
and

d4 = l4
n = 1

6

(
1 + 3

r

)
; as r → ∞, we have that d3 → 1

12

and d4 → 1
6 .

It is interesting to observe that there is no dis-
tance/qubit count trade-off in this tiling. As long as the
radius is even, the distance 4 code is superior in both dis-
tance and logical qubit count over the distance 3 code.

7. truncated hextille

In the truncated hextille there are four kinds of codes
where the number of qubit increases with the radius:
three with the distance fixed at 3, and one with the dis-
tance fixed at 4.

The best of the distance 3 codes has the number of
logical qubits (l3) given by l3 = 2r2 − 1, where r is the
radius of the code. Since the number of physical qubits
(n) is given by n = 24r2, the number of logical qubits
per physical qubit is thus given by l3

n = 1
12

(
1− 1

24r

)2, a
quantity which converges to 1

12 as r → ∞. The two la-
belings we saw which give rise to this code are illustrated
in Figure 11.

The best of the distance 4 codes has the number of
logical qubits (l4) given by l4 = 2r(r−1), and the number

of logical qubits per physical qubit is thus given by l4
n =

1
12

(
1− 1

r

)
, a quantity which converges to 1

12 as r → ∞.
We see from this analysis that although the best distance
4 code contains fewer logical qubits than the best distance
3 code, they both converge to the same number of logical
qubits per physical qubit in the large radius limit. One of
the nine labelings we saw which give rise to this distance
4 code are illustrated in Figure 12.

8. hexadeltille

There are many codes that appear in the hexadeltille
tiling, but it is difficult to draw conclusions about trends
due to the limit on the size of the lattices that were
scanned. The good news, though, is that the reason
why scanning larger radii was difficult is because there
is a code in this tiling with a qubit whose distance grows
with the radius of the lattice. One of the nine labelings
that we saw with this property is illustrated in Figure 13.

9. rhombihexadeltille

This tiling is interesting because it had many more la-
belings that resulted in codes than all of the other tilings
combined; specifically, for the rhombihexadeltille tiling
we saw 48,807 labelings that resulted in useful codes,
whereas for all of the other tilings combined we saw only
421 labelings that resulted in useful codes. This is even
more remarkable considering that the largest lattice we
were able to scan for the rhombihexadeltille tiling was
smaller than that the for most of the other tilings.

As can be seen in Figure 4, this tiling is also interest-
ing because it features so many different kinds of codes,
including both codes that seem to grow in the number of
logical qubits with radius and codes that grow in distance
with size. It is the only tiling that features a lattice that
contains a labeling resulting in a code for every distance
up to 6.

The rhombihexadeltille tiling is the only tiling we have
seen which has code both with a distance greater than 4
and multiple qubits; we saw six labelings which resulted
in codes with distance 6 and two qubits, and four la-
belings which resulted in codes with distance 5 and four
qubits. In Figure 14 we show an example of each of these
labelings.

Two of labelings resulted in codes with the highest
number of qubits – 16 logical qubits at distance 4 for a
lattice of radius three. These two labelings are illustrated
in Figure 15.

C. Discussion

There are few surprises in our results. For example,
the best code that we found that maximized the logical
qubit distance per physical qubit was the compass model

31

Z

X

X

X
X

XZ

X

Z
X

Z
Z

X
Z

Z X
X

Z
X Y

Z

X

X
Z

X
X

YX

X
Z

Z X

X
Z

Z X
X

Z
X

Z

Z
X

X
X

YX

X
Z

X Y

Z
X

X
X

XZX
X

Z
X

X
X

X
Z

YX

X
Z

Z
X

XZ

Z
X

X
Z

Z
X

X Y

Z
X

X Y
X

X

X
Z

Z X

X
Z

Z
X

Z
X

XZ

YX

X
X

X
Z

Z

X

X

X
Z

XZ

X

Z
X

Z

Z

Z
Z

Z X
Z

Z
X Y

Z

X

Z
Z

X
Z

YX

X
Z

Z X

X
Z

Z X
Z

Z

X
Z

Z
X

Z
X

YX

X
Z

X Y

Z
X

X
Z

XZX
Z

Z
X

X
Z

X
Z

YX

X
Z

Z
X

XZ

Z
Z

Z
Z

Z
X

X Y

Z
X

X Y
Z

X

Z
Z

Z X

X
Z

Z
Z

Z
X

XZ

YX

X
Z

X
Z

(a) distance 3 code labelings

Z

X

X

X
X

XZ

X

Z
X

Z

Z

X
X

Z X
X

X
X Z

Z

X

X
X

X
X

ZX

X
Z

Z X

X
Z

Z X
X

X

X
Z

Z
X

X
X

ZX

X
Z

X Z

Z
X

X
X

XZX
X

Z
X

X
X

X
Z

ZX

X
Z

Z
X

XZ

X
X

X
X

Z
X

X Z

Z
X

X Z
X

X

X
X

Z X

X
Z

X
X

Z
X

XZ

ZX

X
X

X
Z

Z

X

X

Z
Z

XZ
X

Z
X

Z

Z

Z
Z

Z X
Z

Z
X Z

Z

X

Z
Z

Z
Z

ZX

X
Z

Z X

X
Z

Z X
Z

Z
X

Z

Z
X

Z
Z

ZX

X
Z
X Z

Z
X

Z
Z

XZZ
Z

Z
X

Z
Z

X
Z

ZX

X
Z

Z
X

XZ

Z
Z

Z
Z

Z
X

X Z

Z
X

X Z
Z

Z

Z
Z

Z X

X
Z

Z
Z

Z
X

XZ

ZX

Z
Z

X
Z

(b) distance 4 code labelings

FIG. 6: A figure illustrating four labelings of the truncated quadrille tiling (on a radius 1 lattice) that result in a
quantum code with distance 3/4 (in respectively 6a/6b), and a number of distance logical qubits proportional to the

square of the radius of the labeling.

code in the quadrille tiling, which is already well-known.
Furthermore, all of the codes obeyed the upper bounds
kd ∈ O(n) and d2 ∈ O(n) — where k is the number of
logical qubits in the code, d is the distance of the code,
and n is the number of physical qubits implementing the

code — that were derived in [30] for codes having spa-
tially local generators.

Some of the observed differences between the tilings
are an artifact of the search space. For example, every
code found on the hextille tiling could also be imple-

32

Z

Z

Z
Z

ZX

Z

X

XZ

Z
X

X
Z

ZX

ZZ

X
Z

Z
X

XZ

Z
Z

ZX

Z

X X
Z

ZX

Z

ZZ ZZ
X

X
Z ZZ Z

X

ZX

ZZ Z
XXZ

Z
XZX

ZZ

X
Z

Z
X

XZ

Z
Z

ZX

XZ X
Z

Z
XZ

Z

ZX

X
Z

ZX

Z
XZ

Z

XZ
Z X

X
ZZ ZZ

X
Z

Z X

X Z

Z
X

Z

X Z

Z
Z

Z X

Z Z
X

X
Z

Z X
XZ

Z
Z

ZX

X
Z

Z
X

X
Z

XZ

Z
X

Z
Z

Z X

X
Z

Z X

Z
Z

ZX

XZ

Z
X

X
Z

Z ZZ
X

XZ

ZX

XZ X
ZZ ZZ

X

X
Z

X Z

Z X

Z ZZ
X

X Z

Z
X

ZZ Z
X

X Z

Z X

Z
X

Z
Z

X Z
ZX

X
Z ZZ Z

XXZ

Z
X

X ZX
Z

ZX

ZZ

X
Z

Z
X

XZ
Z

Z

ZX

X
Z

ZX

Z
Z

Z X

X
Z

Z
X

X
Z

X Z

Z
Z

Z X
ZZ Z

X

X
Z

XZX
Z

Z X

Z
Z

ZX

XZ X
ZZ ZZ

X

X Z

Z
X

FIG. 7: A figure illustrating a labeling of the snub
quadrille tiling (on a radius 2 lattice) that results with

distance 4 and a number of distance logical qubits
proportional to the square of the radius of the labeling.

mented on the deltille tiling, but although we found two
kinds of codes for the hextille tiling we found no codes
for the deltille tilings. This is because our search space
included no way for the deltille tilings to “knock out” the
middle qubits in each hexagonal tiling, and furthermore
the hextille tiling search space included two classes of ver-
tices which could have independent labelings whereas the
deltille tiling search space had only one class of vertices.

Although it is not clear how many of the codes we
found will have practical applications, the success of this
search demonstrates the feasibility of using brute-force
computation to find useful codes within a constrained
search space.

IV. CONCLUSION

In this paper we have presented an algorithm for com-
puting the optimal quantum subsystem code that can be
implemented using a given set of measurements. We have
shown that although this algorithm requires exponential
time in the worst case, this exponential is a function of
the code distance, and so the algorithm terminates (rel-
atively) quickly when the optimal code has low distance.
Because of this, the algorithm can be used to perform a
brute-force search through a space of possible measure-
ments in order to see which give rise to “useful” (high-
distance) codes. We demonstrated the feasibility of this
approach by applying the algorithm to search for codes

implemented on systems with lattice structures corre-
sponding to nine of the eleven convex vertex-uniform
tilings, and on all but one of these nine tilings we found
useful codes.

This algorithm should prove helpful in two kinds of
ways in particular. First, it can be applied in an ex-
ploratory setting to do the tedious work of computing
the code resulting from a set of measurements so that
the researcher can experiment with new ideas for choices
of measurement to see how well they work. Second, it
can be applied to hone a ‘rough’ idea for how a code
might be implemented (such as a particular lattice con-
figuration) into a concrete idea by scanning through the
possible choices of the degrees of freedom to see if any re-
sult in useful codes; of course, cleverness can often come
up with an answer more quickly than a computationally
intensive search, but it is good to have the alternative of
brute-force computation to fall back on when brute-force
cleverness fails.

33

X

Z

Z
Z

ZX

Z

X

XX

Z
X

X
X

ZY

XX

Z
X

Z
X

XZ

Z
Z

ZX

X

X X
Z

ZY

X

XX XZ
X

X
Z XX X

X

ZY

XX X
XXX

Z
XZY

XX

Z
X

Z
X

XZ

Z
Z

ZX

XX X
X

X
ZZ

Z

ZX

X
Z

ZY
X

ZZ
Z

XX
Z X

X
XX XZ

X
Z

Z X

Y Z

X
Z

Z

X Z

Z
Z

Z X

X X
X

Z
X

X X
XZ

Z
Z

ZX

X
Z

Z
X

Z
X

XZ

Z
X

Z
Z

Z X

Z
X

X X

Z
Z

ZX

XX

Z
X

X
X

X XZ
X

XZ

ZY

XX X
XX XZ

X

X
Z

X Z

X X

X XZ
X

Y Z

X
Z

XX X
X

X Z

X X

Z
X

Z
Z

Y Z
ZX

X
Z XX X

XXX

Z
X

Y ZX
Z

ZY

XX

Z
X

Z
X

XZ
Z

Z

ZX
X

Z
ZY

Z
Z

Z X

X
X

X
Z

X
Z

X Z

Z
Z

Z X
XX X

X

Z
X

XZZ
X

X X

Z
Z

ZX

XX X
XX XZ

X

Y Z

Z
X

X

X

Z
Z

XX

Z

X

XZ

Z
Y

X
X

ZY

XZ

Z
X

X
X

XX

Z
Z

XX

X

X Y
Z

ZY

Z

XZ XX
X

X
X XZ X

X

ZY

XZ X
XXZ

Z
YZY

XZ

Z
X

X
X

XX

Z
Z

XX

XZ X
X

X
ZZ

Z

XX

Y
Z

ZY

X
ZZ

Z

XZ
X X

X
XZ XX

X
Z

X X

Y Z

X
Z

Z

X X

Z
Z

X X

Z X
X

Z
X

Z X
XX

Z
Z

XX

X
X

Z
Y

Z
X

XX
Z

Y

Z
Z

X X

Z
X

Z X

Z
Z

XX

XZ

Z
Y

X
X

Z XX
X

XX

ZY

XZ X
XZ XX

X

Y
Z

X X

Z X

Z XX
X

Y Z

X
Z

XZ X
X

X X

Z X

Z
Y

Z
Z

Y Z
XX

X
X XZ X

XXZ

Z
Y

Y ZX
X

ZY

XZ
Z

X

X
X

XX

Z
Z

XX

Y
Z

ZY

Z
Z

X X

X
X

X
Z

Y
Z

X X

Z
Z

X X
XZ X

X

Z
X

XXZ
X

Z X

Z
Z

XX

XZ X
XZ XX

X

Y Z

Z
Y

FIG. 8: A figure illustrating two of the labelings of the snub quadrille tiling (on a radius 2 lattice) that result in a
quantum code with a single qubit whose distance grows with the radius of the lattice.

Z

X

X

Z
X

Z
X

XX

Z
Z

ZX

XX

Z

X Z

X
Z

X

X

Z
Z

ZX

Z
X

Z
X

XX

Z
Z

ZX

X
ZZ

Z

X X

Z
X

Z

X X

X
Z

X
Z

Z
X

XX

Z
Z

ZX

Z
X

X
Z

X Z

Z
Z

X X

Z
X

Z

X

Z

X
Z

Z
Z

XZ

Z
Z

XX
ZZ

X

X X

Z
Z

Z

Z

Z
Z

XX

X
Z

Z
Z

XZ

Z
Z

XXZ
XZ

Z

Z X

Z
Z

Z

Z X

Z
Z

Z
Z

X
Z

XZ

Z
Z

XX

Z
Z

Z
X

X X

Z
Z

Z X

X
Z

FIG. 9: A figure illustrating two of the labelings of the isosnub quadrille tiling (on a radius 1 lattice) that result in
a quantum code with a single qubit whose distance grows with the radius of the lattice.

34

X

Z
X

XX

Z
Y

X X

Z
Y

Z
Y

X X

X

X

X

Z
X

XX

Z
X

Z
X

XX

Z
X

Y
Z

XX

X
Z

Z
Y

X
Z

Z
Y

X X

Z
Y

Z
Y

X X
Z

Y

X X

X X

X
Z

X
Z

X X

XX

XX

Z
X

Z
X

XX

Z
X

Y
Z

Z
X

Y
Z

Y
Z

XX

Y
Z

X
Z

Z
Y

X X

Z
Y

X X

X
Z

XX

Z
X

Y
Z

X

Z
Z

XX

Z
Y

X X

Z
Y

Z
Y

X X

X

X

X

Z
Z

XX

Z
Z

Z
Z

XX

Z
Z

Y
Z

XX

Z
Z

Z
Y

Z
Z

Z
Y

X X

Z
Y

Z
Y

X X

Z
Y

X X

X X

Z
Z

Z
Z

X X

XX

XX

Z
Z

Z
Z

XX

Z
Z

Y
Z

Z
Z

Y
Z

Y
Z

XX

Y
Z

Z
Z

Z
Y

X X

Z
Y

X X

Z
Z

XX

Z
Z

Y
Z

(a) distance 3 code labelings

X

Z
X

XX

Z
X

X X

Z
X

Z
X

X X

X

X

X

Z
X

XX

Z
X

Z
X

XX

Z
X

X
Z

XX

X
Z

Z
X

X
Z

Z
X

X X

Z
X

Z
X

X X

Z
X

X X

X X

X
Z

X
Z

X X

XX

XX

Z
X

Z
X

XX

Z
X

X
Z

Z
X

X
Z

X
Z

XX

X
Z

X
Z

Z
X

X X

Z
X

X X

X
Z

XX

Z
X

X
Z

X

Z
X

XX

Z
Z

X X

Z
Z

Z
Z

X X

X

X

X

Z
X

XX

Z
X

Z
X

XX
Z

X

Z
Z

XX

X
Z

Z
Z

X
Z

Z
Z

X X

Z
Z

Z
Z

X X

Z
Z

X X

X X

X
Z

X
Z

X X

XX

XX

Z
X

Z
X

XX

Z
X

Z
Z

Z
X

Z
Z

Z
Z

XX

Z
Z

X
Z

Z
Z

X X

Z
Z

X X

X
Z

XX

Z
X

Z
Z

(b) distance 4 code labelings

FIG. 10: A figure illustrating four labelings of the hextille tiling (on a radius 2 lattice) that result in a quantum
code with distance 3/4 (in respectively 10a/10b), and a number of distance logical qubits proportional to the square

of the radius of the labeling.

35

Z

X

X

X
X

XZ

X

Z
X

Z

Z

X
Z

Z X
X

Z
X Y

Z

X

X
Z

X
X

YX

X
Z

Z X

X
Z

Z X
X

Z

X
Z

Z
X

X
X

YX

X
Z

X Y

Z
X

X
X

XZX
X

Z
X

X
X

X
Z

YX

X
Z

Z
X

XZ

Z
X

X
Z

Z
X

X Y

Z
X

X Y
X

X

X
Z

Z X

X
Z

Z
X

Z
X

XZ

YX

X
X

X
Z

Z

X

X

X
Z

XZ

X

Z
X

Z

Z

Z
Z

Z X
Z

Z
X Y

Z

X

Z
Z

X
Z

YX

X
Z

Z X

X
Z

Z X
Z

Z

X
Z

Z
X

Z
X

YX

X
Z

X Y

Z
X

X
Z

XZX
Z

Z
X

X
Z

X
Z

YX

X
Z

Z
X

XZ

Z
Z

Z
Z

Z
X

X Y

Z
X

X Y
Z

X

Z
Z

Z X

X
Z

Z
Z

Z
X

XZ

YX

X
Z

X
Z

FIG. 11: A figure illustrating two labelings of the truncated hextille tiling (on a radius 1 lattice) that result in a
quantum code with distance 3 and a number of distance logical qubits proportional to the square of the radius of the

labeling.

36

Z

X

X

X
X

XZ

X

Z
X

Z
Z

X
X

Z X
X

X
X Z

Z

X

X
X

X
X

ZX

X
Z

Z X

X
Z

Z X
X

X
X

Z

Z
X

X
X

ZX

X
Z

X Z

Z
X

X
X

XZX
X

Z
X

X
X

X
Z

ZX

X
Z

Z
X

XZ

X
X

X
X

Z
X

X Z

Z
X

X Z
X

X

X
X

Z X

X
Z

X
X

Z
X

XZ

ZX

X
X

X
Z

FIG. 12: A figure illustrating two labelings of the
truncated hextille tiling (on a radius 1 lattice) that

result in a quantum code with distance 4 and a number
of distance logical qubits proportional to the square of

the radius of the labeling.

Z
Z

X

Z

XZ
X

X X
Z

Z
X X

Z

X

X

Z
Z

X

X
Z

ZX

X
Z

X
ZZ

Z X Z
X

XZ

Z
XZ

X

Z Z
X

XZ

Z
XZ

X

Z
X

X Z

X
Z

Z
X

X Z

X
Z Z

X

ZX

X
Z

X
ZZ

X

Z X

X
Z

FIG. 13: A figure illustrating one of the labelings of
the hexadeltille tiling (on a radius 1 lattice) that results
in quantum code whose distance grows with the size of

the tiling.

37

Z X

Z

Y X

X
Z

X
Z

X

Z Z

X
XX

X X

X

X X

X
Z

Y Z

X
X

X X

X
Z

X

Z X

X
Z

Y X

Z
X

Z X
Z

X

X
Z

XY

Z
X

X

Z

Z Z

X
X

Y X

Z Z

X
X

Y X

X

X

ZY

X
X

X

Y ZZ
X

Y X

Y ZZ
X

Y X

X
Z

XX

X
X

ZZ

X
Z

X

X

X
Z

X
Z

X
Z

X
Z

X
Z

Z X

X
Z

Y X

X
Z

X
Z

Z X

X
Z

Y X

X
Z

X

Z

Z
X

XY

Z
X

XZ

XXXXX

Z Z

X
XX

X
Z

X

X X

Z Z

X
XX

X
X X

XY X
X

ZY

XY X
X

ZY

X
X

X X Y XX
X

XY X
X

X X Y XX
X

X
Z

Y Z

X
X

X X
X

Z

Y Z

XY

Z
XZZ

XY

Z
XZZ

Y ZZ
X

XZ
ZZ X

Z

Y ZZ
X

XZ

X
Z

Y X

Z
X

Z X

X
Z

Y X

Z
X

X
Z

X
Z

XZ

XY

Z
X

X
Z

X
Z

XZ

Z Z

Z
X

X
Z ZY

Z Z

Z Z

X
X

Y X

XX
X

X

ZY

X
X

Z
X

XX

X
XX

X

Y XXY

X
XX

X

Y X

Y ZZ
X

Y X

X
Z

XX

X
X

ZZ

X
Z

X
Z

Z X

X
Z

X
Z

Z X

X
Z

Y X

X
Z

XY

Z
X

XZ

Z
X

Z
X

XX

Z
X

Z Z

X
XX

X

X X

XY X
X

ZY

X
X

X X Y XX
X

X
Z

Y Z

XY

Z
XZZ

Y ZZ
X

XZ

X
Z

Y X

Z
X

X
Z

X
Z

XZ
Z Z

XX

X
XX

X

Y X

X
Z

(a) distance 5 code labeling

X X

X
Y Z

X
X

Z
Y

Z

Z Y

X
XX

X X

X

X X

Y
Z

Z Y

X
X

X X

Y
Z

Y

X X

X
X

Y Z

Z
Y

X X

X

Z

Y
Z

ZY

X
X

X

X

Z Y

X
X

Y Z

Z Y

X
X

Y Z

X

X

YZ

X
X

Y

Z YX
X

Y Z

Z YX
X

Y Z

Z
Y

XX

X
X

YZ

Z
Y

X

X

Z
Y

Y
Z

Z
Y

Y
Z

Z
Y

X X

X
X

Y Z
X

X

Z
Y

X X

X
X

Y Z

X
X

X

X

Y
Z

ZY

X
X

XX

ZYZYZ

Z Y

X
XX

X
Y

Z

X X

Z Y

X
XX

X

X X

ZY X
X

YZ

ZY X
X

YZ

X
X

X X Y ZX
X

ZY X
X

X X Y ZX
X

Y
Z

Z Y
X

X

X X

Y
Z

Z Y

ZY

X
XYZ

ZY

X
XYZ

Z YX
X

XX
YZ X

X

Z YX
X

XX

X
X

Y Z

Z
Y

X X

X
X

Y Z

X
X

X
X

Y
Z

XX

ZY

X
X

X
X

Y
Z

XX

Z Y

X
X

X
X YZ

Z Y

Z Y

X
X

Y Z

XX

X
X

YZ

X
X

Z
Y

XX

X
XX

X

Y ZZY

X
XX

X

Y Z

Z YX
X

Y Z

Z
Y

XX

X
X

YZ

Z
Y

Z
Y

X X

Y
Z

Z
Y

X X

X
X

Y Z

X
X

ZY

X
X

XX

Y
Z

Z
Y

XX

Y
Z

Z Y

X
XX

X

X X

ZY X
X

YZ

X
X

X X Y ZX
X

Y
Z

Z Y

ZY

X
XYZ

Z YX
X

XX

X
X

Y Z

X
X

X
X

Y
Z

XX
Z Y

XX

X
XX

X

Y Z

Z
Y

(b) distance 6 code labeling

FIG. 14: A figure illustrating labelings of the rhombihexadeltille tiling (on a radius 2 lattice) that result in a
quantum code with distance 5 and four qubits (14a) and a quantum code with distance 6 and two qubits (14b) when

applied to a radius 3 lattice.

38

X X

X

Y X

X
X

Z
Z

Z

Z Z

X
XX

X X

X

X X

Z
Z

X Y

X
X

X X

Z
Z

Z

X X

X
X

Z Z

Z
Z

X X
X

Z

Z
Z

ZZ

X
X

X

X

Z Z

X
X

Z Z

Z Z

X
X

Z Z

X

X

YX

X
X

Z

X YX
X

Y X

X YX
X

Y X

Z
Z

XX

X
X

ZZ

Z
Z

X

X

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

X X

X
X

Y X

X
X

Z
Z

X X

X
X

Y X

X
X

X

X

Z
Z

XY

X
X

XX

ZZZZZ

Z Z

X
XX

X
Z

Z

X X

Z Z

X
XX

X
X X

XY X
X

YX

XY X
X

YX

X
X

X X Z ZX
X

XY X
X

X X Z ZX
X

Z
Z

X Y

X
X

X X

Z
Z

X Y

ZZ

X
XZZ

ZZ

X
XZZ

X YX
X

XX
ZZ X

X

X YX
X

XX

X
X

Z Z

Z
Z

X X

X
X

Z Z

X
X

X
X

Z
Z

XX

ZZ

X
X

X
X

Z
Z

XX

Z Z

X
X

X
X YX

Z Z

Z Z
X

X

Z Z

XX

X
X

YX

X
X

Z
Z

XX

X
XX

X

Y XZZ

X
XX

X

Y X

X YX
X

Y X

Z
Z

XX

X
X

ZZ

Z
Z

Z
Z

X X

Z
Z

Z
Z

X X

X
X

Y X

X
X

XY

X
X

XX

Z
Z

Z
Z

XX

Z
Z

Z Z

X
XX

X

X X

XY X
X

YX

X
X

X X Z ZX
X

Z
Z

X Y

ZZ

X
XZZ

X YX
X

XX

X
X

Z Z

X
X

X
X

Z
Z

XX
Z Z

XX

X
XX

X

Y X

Z
Z

X X

X
Z Z

X
X

Z
Z

Z

Z Y

X
XX

X X

X

X X

Z
Z

Z Z
X

X

X X

Z
Z

Z

X X

X
X

Y Z

Z
Z

X X

X

Z

Z
Z

ZY

X
X

X

X

Z Y

X
X

Y Z

Z Y

X
X

Y Z

X

X

ZZ

X
X

Z

Z ZX
X

Z Z

Z ZX
X

Z Z

Z
Z

XX

X
X

YZ

Z
Z

X

X

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

X X

X
X

Z Z

X
X

Z
Z

X X

X
X

Z Z

X
X

X

X

Z
Z

ZZ
X

X
XX

ZZZZZ

Z Y

X
XX

X
Z

Z

X X

Z Y

X
XX

X

X X

ZZ X
X

ZZ

ZZ X
X

ZZ

X
X

X X Y ZX
X

ZZ X
X

X X Y ZX
X

Z
Z

Z Z

X
X

X X

Z
Z

Z Z

ZY

X
XYZ

ZY

X
XYZ

Z ZX
X

XX
YZ X

X

Z ZX
X

XX

X
X

Y Z

Z
Z

X X

X
X

Y Z

X
X

X
X

Z
Z

XX

ZY

X
X

X
X

Z
Z

XX

Z Y

X
X

X
X ZZ

Z Y

Z Y

X
X

Y Z

XX

X
X

ZZ

X
X

Z
Z

XX

X
XX

X

Z ZZY

X
XX

X

Z Z

Z ZX
X

Z Z

Z
Z

XX

X
X

YZ

Z
Z

Z
Z

X X

Z
Z

Z
Z

X X

X
X

Z Z

X
X

ZZ

X
X

XX

Z
Z

Z
Z

XX

Z
Z

Z Y

X
XX

X

X X

ZZ X
X

ZZ

X
X

X X Y ZX
X

Z
Z

Z Z

ZY

X
XYZ

Z ZX
X

XX

X
X

Y Z

X
X

X
X

Z
Z

XX
Z Y

XX

X
XX

X

Z Z

Z
Z

FIG. 15: A figure illustrating two labelings of the rhombihexadeltille tiling (on a radius 2 lattice) that result in a
quantum code with distance 4 and sixteen when applied to a radius 3 lattice.

39

[1] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
[2] A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
[3] A. M. Steane, Phys. Rev. A 54, 4741 (1996).
[4] A. M. Steane, Proc. R. Soc. Lond. A 452, 2551 (1996).
[5] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
[6] D. Gottesman, Stabilizer Codes and Quantum Error Cor-

rection, Ph.D. thesis, California Insitute of Technology,
Pasadena, CA (1997).

[7] P. W. Shor, in Proceedings of the 37th Symposium on the
Foundations of Computer Science (IEEE, Los Alamitos,
CA, 1996) pp. 56–65.

[8] D. Aharonov and M. Ben-Or, in Proceedings of the
twenty-ninth annual ACM symposium on Theory of com-
puting (ACM Press, 1997) pp. 176–188.

[9] E. Knill, R. Laflamme, and W. H. Zurek, Science 279,
342 (1998).

[10] E. Knill, R. Laflamme, and W. H. Zurek, Proc. Roy. Soc.
London Ser. A 454, 365 (1998).

[11] J. Preskill, in Introduction to quantum computation and
information (World Scientific, New Jersey, 1998) pp.
213–269.

[12] P. Aliferis, D. Gottesman, and J. Preskill, Quantum In-
form. Compu. 6, 97 (2006).

[13] A. W. Cross, D. P. DiVincenzo, and B. M. Terhal, “Title:
A comparative code study for quantum fault-tolerance,”
(2007), arXiv:0711.1556.

[14] D. Poulin, Phys. Rev. Lett. 95, 230504 (2005).
[15] D. Kribs, R. Laflamme, and D. Poulin, Phys. Rev. Lett.

94, 180501 (2005).
[16] D. Kribs, R. Laflamme, D. Poulin, and M. Lesosky,

Quantum Information & Computation 6, 382 (2005).
[17] D. Kribs and R. W. Spekkens, “Quantum error correcting

subsystems as unitarily recoverable subsystems,” (2006).
[18] A. Kitaev, Ann. of Phys. 303, 2 (2003), arXiv:quant-

ph/9707021.
[19] A. Kitaev, Ann. of Phys. 303, 2 (2003).
[20] J. P. Barnes and W. S. Warren, Phys. Rev. Lett. 85, 856

(2000).
[21] D. Bacon, K. R. Brown, and K. B. Whaley, Phys. Rev.

Lett. 87, 247902 (2001).
[22] S. P. Jordan, E. Farhi, and P. W. Shor, Phys. Rev. A 74,

052322 (2006).
[23] Y. S. Weinstein and C. S. Hellberg, Phys. Rev. A 72,

022319 (2005).
[24] D. Bacon, Phys. Rev. A 73, 012340 (2006).

[25] D. Bacon, Phys. Rev. A 78, 042324 (2008).
[26] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D.

Sarma, Reviews of Modern Physics 80, 1083 (2008).
[27] H. Bombin, R. Chhajlany, M. Horodecki, and

M. Martin-Delgado, “Self-correcting quantum comput-
ers,” arXiv:0908.5228.

[28] S. Chesi, D. Loss, S. Bravyi, and B. M. Terhal, New
Journal of Physics 12, 025013 (2010).

[29] D. Bacon and A. Casaccino, in Proceedings of the
44th Annual Alerton Conference (2006) arXiv:quant-
ph/0610088.

[30] S. Bravyi, “Subsystem codes with spatially local genera-
tors,” (2010), arXiv:1008.1028.

[31] H. Bombin, Phys. Rev. A 81, 032301 (2010).
[32] P. W. Shor, in Proceedings of the 35th Annual Sympo-

sium on the Foundations of Computer Science, edited by
S. Goldwasser (IEEE Computer Society, Los Alamitos,
CA, 1994) pp. 124–134.

[33] D. Gottesman, Phys. Rev. A 54, 1862 (1996).
[34] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.

Sloane, Phys. Rev. Lett. 78, 405 (1997).
[35] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.

Sloane, IEEE Trans. Inform. Theory 44, 1369 (1998).
[36] M. Nielsen and D. Poulin, “Algebraic and information-

theoretic conditions for operator quantum error-
correction,” (2005).

[37] P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502
(2007).

[38] D. Bacon, Decoherence, Control, and Symmetry in Quan-
tum Computers, Ph.D. thesis, University of Calfornia at
Berkeley, Berkeley, CA (2001).

[39] J. Dorier, F. Becca, and F. Mila, Phys. Rev. B 72, 024448
(2005).

[40] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J.
Math. Phys. 43, 4452 (2002).

[41] S. Bravyi and B. Terhal, New Journal of Physics 11,
043029 (2009).

[42] S. Bravyi, D. Poulin, and B. Terhal, Phys. Rev. Lett.
104, 050503 (Feb 2010).

[43] G. White and M. Grassl, in IEEE International Sympo-
sium on Information Theory (2006).

[44] B. Grnbaum and G. C. Shephard, Tiling and Patterns
(W. H. Freeman and Company, 1987).

