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Abstract 

        Anharmonicity of the quantized motional states of ions in a Paul trap can be utilized to 

address the state-to-state transitions selectively and control the motional modes of trapped ions 

coherently and adiabatically [Zhao and Babikov, PRA 77, 12338, 2008]. In this paper we study 

two sources of the vibrational anharmonicity in the ion traps: the intrinsic Coulomb 

anharmonicity due to ion-ion interactions and the external anharmonicity of the trapping 

potential. Accurate numerical approach is used to compute energies and wavefunctions of 

vibrational eigenstates. Magnitude of the Coulomb anharmonicity is determined and shown to be 

insufficient for the successful control. In contrast, anharmonicity of the trapping potential allows 

controlling the motion of ions very efficiently using the time varying electric fields. Optimal 

control theory is used to derive the control pulses. One ion in a slightly anharmonic trap can be 

easily controlled. In the two- and three-ion systems the symmetric stretching mode is dark and 

cannot be controlled at all. The other two normal modes of the three-ion system can be 

controlled and used, for example, to encode a two-qubit system into the motional states of ions. 

A trap architecture that allows achieving the necessary amount of vibrational anharmonicity is 

proposed. 

                                                 
1 Corresponding author: Dmitri.Babikov@mu.edu 
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1. Introduction 

A new method for adiabatic coherent control of the quantized motional states of ions in a 

Paul trap was suggested recently by Zhao and Babikov [1]. They proposed to modify the 

harmonic trapping potential along the axial direction of the Paul trap in order to introduce small 

anharmonicity into the spectrum of collective motional/vibrational states of ions. When the 

spectrum of motional states is slightly anharmonic, different overtones occur at slightly different 

frequencies and the state-to-state transitions can, in principle, be controlled selectively by 

applying electric fields of appropriate frequency (in the MHz range), amplitude, duration and 

phase. In such control scenario all ions remain in the ground electronic state and the dynamics is 

adiabatic. The phase of motion can also be controlled [1], which makes this scheme potentially 

useful for coherent manipulations with ions and for quantum computation. For example, 

different qubits can be encoded into different normal vibration modes of the ion chain (e.g., the 

center-of-mass motion mode and the asymmetric stretching mode) and addressed selectively 

using different frequencies. Addressing of individual ions is unnecessary. Note that such control 

scenario is quite different from the original approach of Cirac and Zoller [2], according to which 

the qubits are encoded in the electronic states of individual ions and manipulated using lasers [2-

18]. Opportunity of using the vibrational states of ion chains for encoding qubits and the time 

varying electric fields for applying quantum gates is new and attractive and should be explored.  

In Ref. [1] Zhao and Babikov considered the simplest case -- single ion in an anharmonic 

trap, and employed an approximate analytic model in order to introduce anharmonicity into the 

spectrum of motional states. The state-to-state transition moment matrix was described 

analytically and approximately. The optimal control theory (OCT) was employed to derive 

shaped pulses for several major quantum gates such as qubit flips, phase shifts, NOT and 
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Hadamard transform. They showed that the value of anharmonicity parameter on the order of 

1% of the trap frequency is sufficient in order to obtain simply-shaped pulses optimized for 

accurate state-to-state transitions and for the quantum logics gates. Durations of predicted pulses 

were in the ten microsecond range; the field amplitudes were on the order of few mV/cm.  It 

seems that the practical realization of this approach is within the reach of today’s technology. 

In this work we lift the assumptions of Zhao and Babikov and employ accurate 

numerically converged methods to study this new scheme of the adiabatic coherent control. We 

also go beyond the one-ion system and explore the control of two and three ions in several 

different trap architectures.  

This paper is first in a series of two papers on this topic. Here (Paper I) we report results 

of numerical calculations of spectra of the motional states of ions in anharmonic traps and 

present analysis of their anharmonicities. It was emphasized in several earlier OCT studies [1, 

19-22] that the vibrational anharmonicity is essential for successful control of the ground state 

dynamics (adiabatic control). Here we make connection between the shape of the trap and the 

resultant anharmonicity of the motional spectrum of ions. We show that the relationship between 

the shape of trapping potential and the anharmonicity of motional spectrum is simple only for 

one ion in a trap. The results for two and three ions in a trap are very interesting and some of 

them are quite unexpected [18].  The main outcome of this paper is our proposal for architecture 

of the trap which should provide anharmonicity of the spectrum (~ 1% of the vibration 

frequency) sufficient to achieve accurate control in the three-ion system, suitable to encode two 

qubits into the motional states of trapped ions. We have already carried out the OCT calculations 

of shaped pulses for major quantum gates in such vibrational two-qubit system. These results 

will be reported in the near future in the next paper of this series, Paper II, Ref. [23].      
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This paper is organized as follows. In Section 2 we study one ion in a trap; results of this 

section mainly confirm the findings of Ref. [1]. The effect of Coulomb anharmonicities is 

explored in a system of two ions in a trap, and is reported in Sec. 3 of the paper. Section 4 is 

dedicated to studies of three ions trapped in three different types of potential. Major findings are 

summarized as Conclusions in Sec. 5.   

2. Single Ion in an Anharmonic Trap 

In all models we considered in this work we assumed that the axial motion of ions is 

sufficiently decoupled from the other two degrees of freedom. Such approximation is enabled by 

large separation of the axial and radial frequencies of the trap -- conditions typical to many 

modern trap architectures. For one ion in a trap the problem is simply one-dimensional, with the 

model Hamiltonian operator for the axial motion along z given by: 

)(
2
1ˆ

trap2

2

zV
dz
d

m
H +−= .                                                          (1) 

Here m is mass of the ion and )(trap zV  is the trapping potential along z-axis of the trap. The ion is 

assumed to be singly charged. The anharmonic trapping potential is taken in the following 

analytic form, which can be thought of as truncation to only first two symmetric terms of the 

Taylor series expansion:   

...
!42

)(
42

trap +′+= zkzkzV                                                        (2) 

Here the coefficients k  and k ′  are two force constants. For this model the numerical values of 

parameters were chosen to mimic the experiments in the group of Monroe [24-26], where the 

cadmium ions 111Cd+ were trapped with the axial (harmonic) frequency 77.22 =πω  MHz. The 

harmonic force constant was obtained as usual, 2ωmk = . The coefficient k ′  controls 
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anharmonicity; if it is set to zero the system is harmonic with analytic solutions to energies and 

wave functions. The value of k ′  was varied in our model. Independent calculations were carried 

out with different values of k ′ . Finally, the value of 710067.12 −×=′ πk  MHz/a0
4 was chosen 

in order to provide the value of anharmonicity parameter Δ  ~ 1% of the trap frequency ω , close 

to the amount of anharmonicity used in the previous work, Ref. [1]. Everywhere in this paper we 

use the atomic unit of length, which is the Bohr radius, a0.  

 Numerical calculations of vibrational states in this system are straightforward using the 

finite basis set representation approach (FBR). Since the system is only slightly anharmonic the 

orthonormal basis set of the harmonic oscillator functions, )(ziϕ , is a convenient choice. Matrix 

elements of the kinetic energy operator can be obtained analytically [27]:  

jijijijiji iijjjkT ,,2,2,2, 2)1(4)1(4[
4

δδδδ
α

−++−−−= −−  

)])2)(1()12(( 2,, −+++++ jiji iii δδ ,                                                      (3) 

where ωωα km == . Matrix elements of the potential energy function  

)(
!4

1
2
1)( 42

, zzkkzzV ijji ϕϕ ′+=                                                            (4) 

were computed numerically using large quadrature of the equally spaced points. Convergence 

studies were carried out in order to determine the appropriate range of integration and the 

number of points. The range from minz = – 650 a0 to maxz = + 650 a0 and the number of points M 

= 131 were finally adopted (leading to the integration step size 10=Δz a0). For comparison, the 

distance of 650 a0 equals to 34.4 nm. 

 The Hamiltonian matrix was diagonolized using DSYEV subroutine of ACML library 

[28]. All calculations of this paper were carried out at the NERSC center [29]. Careful 
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convergence studies with respect to the basis set size were conducted. We found that 20N =  

basis functions are sufficient to compute energies of the vibrational states up to 10=v  with 

accuracy better than 10–9 MHz. Energy eigenvalues, E, for the lowest eleven states, assigned the 

vibrational quantum numbers v , are presented in Table 1. Their deviations from analytic states 

of the harmonic ( 0=′k ) potential, computed as 

harmEEE −=δ ,                                                            (5) 

where 

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1vEharm ω ,                                                          (6) 

are also given in Table 1 and are presented in Fig. 1. The parabolic trend in Fig. 1 demonstrates 

clearly that the spectrum of states calculated numerically for the 0≠′k  case is anharmonic.  

In order to quantify the effect of anharmonicity, we used the numerical values of energies 

of three lowest states in the anharmonic potential ( v = 0, 1 and 2 from Table 1) to derive 

coefficients of the analytic Dunham expansion [30]:   

2

2
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛ +Δ−⎟

⎠
⎞

⎜
⎝
⎛ ++= vvDEv ω .                                             (7) 

We obtained: 

771.22 =πω  MHz, 

210179.22 −×−=Δ π  MHz, 

310214.52 −×−=πD MHz. 

These data show that the value of anharmonicity parameter, Δ , is close to 1% of the trap 

frequency. The value of ω  from this fit is very close to the harmonic frequency (within the 
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effect of small anharmonicity). Overall, the Dunham expansion describes relatively well the low 

energy part of spectrum in the anharmonic ion trap. 

Note that for the OCT calculations of Ref. [1] the approximate (analytic model) values of 

energies and matrix elements were used. Accurate (numerically converged) results obtained here 

gave us opportunity to check the results of Ref. [1]. Thus, using energies and wave functions 

obtained here we computed the transition moment matrix numerically and repeated all the OCT 

calculations of Ref. [1] for the qubit encoded into the 0=v  and 1=v  motional states of one 

ion in the anharmonic trap. The pulses optimized here for the gates NOT and Hadamard looked 

very similar to those obtained in Ref. [1]. The gate fidelities achieved with these pulses were 

nearly 0.9999, consistent with Ref. [1]. This comparison confirms rigorously the results of Ref. 

[1].  

The conclusion here is that by modifying the trap potential (making it slightly 

anharmonic) it is relatively easy to achieve control over the vabrational states of one single ion 

in a Paul trap.  

3. Two Ions in a Trap 

When two or more ions are placed into a trap their Coulomb interaction introduces some 

anharmonicity, even if the trapping potential is purely harmonic ( 0=′k ).  The purpose of this 

section is to quantify the effect of this intrinsic Coulomb anharmonicity onto the spectrum of 

vibrational states and to determine whether or not it is sufficient for the control of the ground 

state dynamics in a purely harmonic potential.  

For two ions in a linear harmonic trap the potential energy function is (in atomic units):  
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where z1 and z2 are Cartesian coordinates for positions of two ions. In the molecular dynamics 

calculations a two-dimensional potential energy function, such as one in Eq. (8), is called the 

potential energy surface (PES) and is often presented and analyzed using a color map, such as 

one given in Fig. 2. Color in this picture shows the value of potential energy, with violet color 

corresponding to low energy and red color corresponding to high energy. White area along the 

diagonal of this picture describes arrangements with 21 zz ≈ , where the two ions are close 

together and the energy is very large due to Coulomb repulsion. This picture demonstrates 

clearly that the overall PES is very anharmonic. Two minima in Fig. 2 describe two equivalent 

arrangements: 21 zz <  and 12 zz < ; we can focus on only one of these wells and we chose the one 

with 21 zz < .  

The first step in our procedure is to find the equilibrium positions of the two ions in a 

trap, i.e., to locate the minimum energy point on the PES of Fig. 2. For this purpose we 

employed the Newton-Raphson minimization method [31, 32]. For the trap parameters 

introduced above we obtained 3
1 10610.5 ×−=eqz a0 and 3

2 10610.5 ×=eqz a0. The value of 

potential energy at this point was 5
21 10340.12),(2 ×== ππ eqeqeq zzVV  MHz.  

The second step of our procedure is the normal mode analysis near the equilibrium point.         

The Hessian matrix at the equilibrium point can be constructed analytically using Eq. (9) in 

Cartesian coordinates [31, 32]:  
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Diagonalization of the Hessian matrix gives two normal mode frequencies: 

770.221 =πω  MHz, 

798.422 =πω  MHz, 

and their corresponding eigenvectors:  

7071.07071.0
7071.07071.0

2
2

2
2

2
2

2
2

2221

1211

−
≈

−
==

aa
aa

A .                      (10) 

These two vibration modes are familiar center-of-mass motion mode with 2111 aa =  (Mode 1) 

and the symmetric stretching mode with 2212 aa −=  (Mode 2). Note that here for two (and in the 

next Section for three) ions this step can be carried out either analytically or numerically. For 

four and more ions (in the future work) the numerical procedure is required. In order to test our 

computer codes we did both numerical and analytic diagonalization and obtained equivalent 

results.   

The third step is to transform the Hamiltonian operator from the Cartesian coordinates, 

eqVzzV
zmzm

zzH −+
∂
∂−

∂
∂−= ),(

2
1

2
1),(ˆ

212
2

2

2
1

2

21 ,                                   (11) 

into the normal mode coordinates. This is needed in order to use a simple direct-product basis set 

of one-dimensional Harmonic oscillator functions for the numerical solution of the two-

dimensional Schrödinger equation. In Eq. (11) the potential energy operator ),( 21 zzV  is from Eq. 

(8). Note that we introduced the constant energy shift into the Hamiltonian in order to account 
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for large Coulomb repulsion energy associated with the equilibrium (energy minimum) 

configuration. 

We introduce the mass-scaled coordinates iz , the corresponding displacement 

coordinates izΔ  , and the normal mode coordinates iζ  as follows:  

                 11 zmz = ,      22 zmz = ,                                                          (12) 

⎩
⎨
⎧

Δ=−
Δ=−

222

111

zzmz
zzmz

eq

eq

,                                                                     (13) 

2

1

2221

1211

2

1

ζ
ζ
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z
z

=
Δ
Δ

.                                                                    (14) 

In these mass scaled normal mode coordinates the Hamiltonian operator is expressed as: 

eqVVH −+
∂
∂−

∂
∂−= ),(

2
1

2
1),(ˆ

212
2

2

2
1

2

21 ζζ
ζζ

ζζ ,                                                     (15) 
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3.a. Harmonic Approximation 

It is instructive to consider an approximation to this Hamiltonian, which allows solving 

the Schrödinger equation analytically and approximately. Note that the Coulomb interaction is 

included only into the last term of Eq. (16). This term is clearly anharmonic and depends only on 

the symmetric stretching coordinate 2ζ . If this term is expanded into the Taylor series and all 

terms beyond quadratic in 2ζ  are neglected, we obtain: 

)(
22

)(
2
1

2
1),( 2

2
2

1
1222

2
2

121
eqeq

eqeq

zzk
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zzk
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m
kV ++−++= ζζζζζ  
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From this expression, using properties of the equilibrium point ( 021 == ζζ , eqeq zz 21 =−   and 

0/ =∂∂ eqzV ) we can obtain approximate analytical expressions for the equilibrium positions (in 

the harmonic approximation): 

3/1

1 4
1
⎟
⎠
⎞

⎜
⎝
⎛−=

k
zeq ,                                                                 (18) 

3/1

2 4
1
⎟
⎠
⎞

⎜
⎝
⎛=

k
zeq ,                                                                    (19) 

and for the equilibrium energy (in the harmonic approximation):  

3/1

21 22
3),( ⎟

⎠
⎞

⎜
⎝
⎛== kzzVV eqeqeq .                                              (20) 

Using Eqs. (15, 17, 18, 19, 20) the Hamiltonian can be presented in the following form (in the 

harmonic approximation):  

2
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⎛
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⎞
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∂
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k
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k .               (21) 

This approximate Hamiltonian operator is separable in 1ζ  and 2ζ  (two uncoupled harmonic 

oscillators) and has analytic solutions to energies and wave functions. We found it convenient to 

introduce the “unscaled” normal mode coordinates 1ζ  and 2ζ  (measured in the units of length, 

a0) according to the following equation: 
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In such unscaled coordinates the Hamiltonian is expressed simply as: 

2
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The Harmonic frequencies of two modes are (in the harmonic approximation): 

ωω == mk1 ,                                                                          (24) 

ωω 3
32 =⎟
⎠
⎞

⎜
⎝
⎛= mk .                                                                (25) 

Using parameters of our model we obtained, in the harmonic approximation, 

3
1 10610.5 ×−=eqz a0, 3

2 10610.5 ×=eqz a0, 510340.12 ×=πeqV  MHz, 770.221 =πω  MHz and 

798.422 =πω  MHz. These numbers are close to those obtained numerically at the beginning 

of this Section.  

Note that analytical expressions of Eqs. (18, 19) for the equilibrium distances and Eqs. 

(24, 25) for the vibration frequencies, obtained here within the harmonic approximation, are 

consistent with results of James and coworkers [33, 34] obtained in a different way, and also 

with the NIST data [35]. This comparison provides an important benchmark for our theory and 

clearly demonstrates that the exact framework (beyond the harmonic approximation) developed 

in this work goes beyond the existing theoretical treatments of the ion chains in Paul traps.  

3.b. Numerical Solution 
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 Using conclusions of the discussion above it is convenient to rewrite the exact 

Hamiltonian of Eq. (15) using the mass-unscaled normal mode coordinates iζ . The resultant 

expression is: 

eqVV
mm
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This expression is exact and contains all anharmonicities. It involves no approximations, just the 

transformation of coordinates. It is interesting that this full Hamiltonian is, in fact, also separable 

in 1ζ  and 2ζ  because the potential coupling terms proportional to the product 21 ζζ ×  cancel 

each other due to properties of the normal mode eigenvectors, Eqs. (10, 14). The Mode 1 is 

completely uncoupled and can be solved analytically. The Mode 2 is more complicated because 

the Coulomb repulsion term depends on 2ζ . Note, however, that this separability is not general. 

In the next Section the cases will be presented where the modes are coupled and the exact 

Hamiltonian is not separable. Since our purpose was to treat such inseparable cases too, we did 

not make use of separability here and followed a brute-force general approach to solve the 

Schrödinger equation numerically. We expressed the wave function in ),( 21 ζζ -coordinates and 

expanded it using the direct-product basis set of the harmonic oscillator functions with the 

normal mode frequencies 1ω and 2ω for the coordinates 1ζ  and 2ζ , respectively: 

)()(),( 21
,

21 ,
ζϕζϕζζψ ji

N

ji
vv ji

C∑= ,                      (28) 
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The basis set size was 151521 ×=× NN . The following parameters were used for numerical 

quadratures of the potential matrix elements: 500max
2

max
1 == ζζ a0, M1 = M2 = 101 

( 1021 =Δ=Δ ζζ a0). Convergence studies showed that with these parameters the accuracy of 

lowest 77 states is better than 10-9 MHz. 

        Some of the eigenvalues calculated numerically and their assignments in terms of the 

normal vibration mode quantum numbers are given in Table 2.  In order to elucidate the effect of 

Coulomb anharmonicity, we computed deviations of the numerical spectrum from the Harmonic 

one, harmEEE −=δ , where  

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ +=

2
1

2
1

2211 vvEharm ωω .                                                   (29) 

Here 1ω  and 2ω  are frequencies obtained numerically from diagonalization of the Hessian 

matrix. The values of Eδ are given in Table 2 and are also presented in Fig. 3 for nine lowest 

states of each normal mode progression.  Figure 3 shows very clearly that Mode 1 (center-of-

mass motion of two ions) remains harmonic, while Mode 2 (symmetric stretching) shows a 

distinct effect of Coulomb anharmonicity. 

This effect is easy to understand from general arguments. In Mode 1 two ions move 

together along the z-axis as a single pseudo-particle. Such simultaneous center-of-mass motion 

of two ions does not change the distance between them, and does not change the amount of 

Coulomb interaction. Excitation of the Mode 2, however, brings ions closer together and takes 

them further apart, changing the Coulomb repulsion energy of the system.  

Alternatively, the same explanation can be derived from a quick glance at Eq. (27) for 

the potential energy operator, which shows that the Coulomb interaction term includes only 2ζ , 

but no 1ζ .  
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In order to quantify the effect of Coulomb anharmonicity we calculated the coefficients 

for the 2D-Dunham expansion [30]: 

2
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⎜
⎝
⎛ +⎟
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⎞

⎜
⎝
⎛ +Δ−

2
1

2
1

2112 vv ,                                                                      (30) 

based on numerical values of six eigenstates (ground state, first exited states of each mode, their 

overtones, and the combination state). The results were:  

610280.62 −×=πD MHz, 

770.221 =πω  MHz, 

798.422 =πω  MHz, 

01 ≈Δ , 

6
2 10851.62 −×−=Δ π  MHz, 

012 ≈Δ . 

From these data we see that although the Coulomb interaction introduces some anharmonicity 

into the spectrum of the symmetric stretching mode, the value of this anharmonicity is way too 

low for the control. The anharmonicity parameter in this case is 2
6

2 10~ ω−Δ , which is about 

four orders of magnitude smaller than is needed for the successful control.  

We also encountered another fundamental problem that makes the symmetric stretching 

mode unsuitable for the scheme of control proposed in Ref. [1]. We will mention only briefly 

here, but will expand on this topic in the future publication, Paper II [23], that the proposal of 

Ref. [1] was to use the time-varying spatially homogeneous field for the control. It appears that, 

due to symmetry, all elements of the transition matrix for excitation of the symmetric stretching 
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mode appear to be zero, which means that this mode is “dark” and cannot be excited or 

controlled using spatially homogeneous electric fields. The symmetry properties of the transition 

moment matrix will be discussed in detail in Paper II [23]. (It should be possible, however, to 

control the symmetric stretching mode using spatially inhomogeneous fields. Creating the field 

gradients in the ion trap is trivial, but exploration of this opportunity goes beyond the scope of 

this paper.) 

Based on these findings, we decided not to study the system of two ions trapped in an 

anharmonic potential. We expect that anharmonicity of the trapping potential would make the 

center-of-mass motion mode (Mode 1) anharmonic, similar to the one-ion case. The Mode 2, 

even if anharmonic, would remain dark anyway. Our conclusion for two ions is following: If the 

spatially homogeneous time varying field is used for control, the two-ion system offers no 

advantages compared to the one-ion case.  

4. Three Ions in a Trap 

The numerical procedure for three ions in a trap follows closely that of the previous 

section. Only the key points will be emphasized here. The potential energy function of the three-

ion system is:  

231312
321trap321

111),,(),,(
zzzzzz

zzzVzzzV
−

+
−

+
−

+= ,                         (31) 

where z1, z2 and z3 are Cartesian  coordinates of three ions. Three different analytic forms of Vtrap 

were studied and are discussed separately further in this Section. For each Vtrap, numerical 

minimization was carried out using the Newton-Raphson method in order to determine 

coordinates ( eqz1 , eqz2  and eqz3 ) and energy ( eqV ) of the equilibrium configuration. At the 
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equilibrium configuration a 33×  Hessian matrix was constructed analytically and diagonalized 

numerically to obtain three normal mode frequencies ( 1ω , 2ω  and 3ω ) and their corresponding 

eigenvectors:  

333231

232221

131211

aaa
aaa
aaa

=A .                                (32) 

The eigenvectors were used to transform the Hamiltonian from Cartesian coordinates to the 

normal mode coordinates: 
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Finally,   the following relations: 
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were used to transform Hamiltonian to the “unscaled” normal mode coordinates:  
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Three-dimensional wave function of the system was expressed in these ( 1ζ , 2ζ , 3ζ )-coordinates 

and was expanded using the direct-product basis set of the one-dimensional harmonic oscillator 

functions with the frequencies 1ω , 2ω  and 3ω  for 1ζ , 2ζ  and 3ζ , respectively:  

)()()(),,( 321
,,

321 ,,
ζϕζϕζϕζζζψ lji

N

lji
vv lji

C∑= .                                   (38) 
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The eigenvalues were obtained numerically by diagonalizing the Hamiltonian matrix in this 

basis. In order to make the three-ion case numerically manageable we employed the Gaussian 

quadrature to calculate the matrix elements of the potential energy operator more efficiently [36] 

and used the Message Passing Interface (MPI) to parallelize the calculations [37]. The 

calculations for three ions were run using 16 processors of Franklin computer at NERCS [29], 

the run time for an average job was about 6 wall-clock hours. The normal mode quantum 

numbers were assigned based on shapes of wave functions. The spectrum was analyzed by 

computing harmEEE −=δ  with 
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332211 vvvEharm ωωω ,                               (39) 

where 1ω , 2ω  and 3ω  are the normal mode frequencies obtained from diagonalization of Hessian 

matrix. Also, for each computed spectrum, we derived a set of ten coefficients of the 3D-

Dunham expansion [30]: 
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For this purpose we used ten numerically computed eigenvalues: the ground state, first excited 

state and the overtone for each mode, and three possible combination states.  

4.a. Harmonic Trap 

When the trapping potential is harmonic the first term in Eq. (31) has the form of 

222
),,(

2
3

2
2

2
1

321trap
zkzkzkzzzV ++= .                                             (41) 
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The PES for this case is shown in Fig. 4 using Cartesian coordinates. As before, white areas 

correspond to the regions of strong Coulomb repulsion and occur when two ions approach each 

other. For the well defined by 123 zzz >>  numerical minimization gave 3
1 10593.9 ×−=eqz a0, 

02 ≈eqz , 3
3 10593.9 ×=eqz a0 and 5

321 10093.42),,(2 ×== ππ eqeqeqeq zzzVV  MHz. 

Diagonalization of the Hessian matrix gave the following frequencies of normal modes:  

770.221 =πω  MHz, 

798.422 =πω  MHz, 

671.623 =πω  MHz, 

with their corresponding eigenvectors:  

4083.07071.05774.0
8165.00000.05774.0
4083.07071.05774.0

−−

−
=A .                                      (42) 

These numbers describe the three familiar normal modes: Mode 1 with 312111 aaa ==   is the 

center-of-mass motion mode, Mode 2 with 3212 aa −=  and 022 =a  is the symmetric stretching 

mode, and Mode 3 with 332313 22 aaa =−=  is the asymmetric stretching mode. This information 

can be used to analytically simplify the anharmonic part of the potential energy function (last 

three terms in Eq. (37)). It is easy to show that the property 312111 aaa ==  leads to complete 

cancellation of all terms containing 1ζ , only the terms containing 2ζ  and 3ζ  remain in the 

anharmonic terms of the PES:  
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This transformation demonstrates analytically that the Mode 1 is uncoupled and is harmonic, 

while the Modes 2 and 3 are anharmonic (consistent with general arguments) and are coupled by 

the PES.  

In fact, the same conclusion can be obtained by analyzing the picture of potential energy 

surface in the normal mode coordinates presented in Fig. 5. Note that white area on the picture 

goes parallel to the 1ζ -axis. Recall that in this (white) area of the configuration space the 

Coulomb repulsion become very large. Figure 5 shows that excitation of Mode 1 does not bring 

the system closer to the white area, which suggests that Mode 1 must be harmonic. However, the 

motion along 2ζ  and/or 3ζ  does bring the system closer to the Coulomb interaction region, 

which suggests that Modes 2 and 3 must be anharmonic.  

In the numerical calculations the size of the Gaussian quadrature was M1 = M2 = M2 = 21 

and the basis set size was 1 2 3 15 15 15N N N× × = × × . With these parameters the accuracy of 

lowest 420 states was better than 10-9 MHz. Table 3 gives several eigenvalues computed 

numerically, their assignments and deviations Eδ  from the harmonic model, Eq. (39). Figure 6 

shows the deviations Eδ  for the three normal mode progressions. From these data we see that 

Mode 1 is indeed harmonic in agreement with the arguments given above, while Modes 2 and 3 

are slightly anharmonic, due to Coulomb interaction. Frequencies and anharmonicity coefficients 

for the Dunham expansion are given in Table 4. We see that in this case 2
6

2 10~ ω−Δ  and 

3
5

3 10~ ω−Δ , which means that the asymmetric stretching mode is more anharmonic (by about 



22 
 

an order of magnitude) than the symmetric stretching mode. Still this anharmonicity (due to 

Coulomb) is very low and is insufficient for the control.  

We had an intuitive feeling that the Coulomb anharmonicity could, probably, be 

increased by bringing the ions closer together, which can be achieved by raising the force 

constant k (i.e., by making the trapping potential sharper). In order to test this hypothesis we 

carried out a set of calculations with different values of k. In the most dramatic case we raised k 

by a factor of 50=α . Results are collected in three frames of Fig. 7. Figure 7(a) gives 

frequencies of three normal modes vs. equilibrium distances between ions. Figures 7(b) and 7(c) 

give the intra- and inter-mode anharmonicity parameters vs. frequency. From these pictures we 

see that amount of Coulomb anharmonicity (expressed through anharmonicity parameters) 

increases as we bring the ions closer together (by raising the value of k). However, this increase 

is not substantial (roughly linear) and occurs simultaneously with very fast increase of the 

frequencies. For example, when the value of k is raised by a factor of 50=α , the value of 

25003 ≈eqz a0 is observed and the values of frequencies are roughly a factor of seven larger 

compared to the original case ( 1=α ). The values of π21Δ  stay zero independently of k, while 

values of π22Δ , π23Δ and π223Δ  all increase. The values of π23Δ and π223Δ increase 

faster (compared to that of π22Δ ) and reach roughly –1.9×10-4 MHz when the frequency 

reaches 4723 ≈πω  MHz. As a result, we still have 3
5

3 10~ ω−Δ .  

In conclusion, the three-ion system in the harmonic trap shows some minor 

anharmonicity of two stretching modes, due to the Coulomb interaction. The amount of this 

anharmonicity is, however, insufficient for the control. The center-of-mass motion mode is 

exactly harmonic. Modifying the trapping potential is essential for achieving higher levels 

anharmonicity, which was attempted next. 
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4.b. Strongly Anharmonic Trap 

To represent the case of a strongly anharmonic trap we used the potential proportional to 

4z . The trap component of the 3D-PES in Eq. (31) was: 

!4!4!4
),,(

4
3

4
2

4
1

321trap
zkzkzkzzzV ′+′+′= .                                              (44) 

The value of 710494.12 −×=′ πk  MHz/a0
4 was chosen in order to obtain the inter-nuclear 

distances similar to those in the harmonic trap studied above (with the purpose to have similar 

magnitude of the Coulomb anharmonicity). Numerical minimization in this potential gave 

3
1 10209.2 ×−=eqz a0, 02 ≈eqz , and 3

3 10209.2 ×=eqz a0. Energy at the minimum was 

6
321 10482.12),,(2 ×== ππ eqeqeqeq zzzVV  MHz. Diagonalization of the Hessian matrix gave 

1 2 31.03ω π =  MHz, 2 2 56.07ω π =  MHz and 3 2 62.78ω π =  MHz. The eigenvectors of the 

three corresponding modes were: 

5691.07071.04197.0
5935.00000.08048.0
5691.07071.04197.0

−−

−
=A .      (45) 

The Hamiltonian was transformed into the normal mode coordinates using these eigenvectors; 

the PES transformed into these coordinates is shown in Fig. 8. From a brief glance at this picture 

it becomes apparent that all three modes are anharmonic. The motion from the minimum energy 

point along any axis ( 1ζ , 2ζ  or 3ζ ) brings the system closer to the white part of the picture 

(strong Coulomb repulsion) and results in appearance of the Coulomb anharmonicity. 

Note that the Modes 1 and 3 of the anharmonic trap, Eq. (45), are different from those of 

the Harmonic trap, Eq. (42). We see that in Eq. (45) 311121 aaa =>  and 331323 aaa => . This 
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happens because the ~ 4z  potential is flatter in the center and is sharper near the turning points, 

compared to the harmonic case. As a result, the amplitude of motion of the central ion is larger 

than the amplitudes of motion of the terminal ions. We found that in such normal mode 

coordinates the potential coupling terms do not cancel and the three-dimensional Hamiltonian is 

non-separable. All three degrees of freedom are coupled and this case must be treated 

numerically.  

In numeric calculations the size of the Gaussian quadrature was M1 = M2 = M2 = 21 and 

the basis set size was 1 2 3 15 15 15N N N× × = × × . This provided accuracy better than 10-9 MHz to 

the lower 250 vibrational states. The spectrum of states is given in Table 5. Deviations of the 

normal mode progressions from the harmonic model are presented in Fig. 9. Figure 9 shows very 

clearly that in the anharmonic trap all three normal modes are slightly anharmonic (contrast to 

Fig. 6).  Anharmonicities of the Modes 1 and 2 are very similar. Mode 3 is the most anharmonic 

mode.  

Unfortunately, we found that the absolute values of these anharmonicities are quite low. 

Coefficients of the fit by the Dunham expansion are given in Table 6. These data show that for 

the most anharmonic Mode 3 (asymmetric stretching mode) the parameter of anharmonicity 

reaches only 3
5

3 10~ ω−Δ , insufficient for the control. This means that a strongly anharmonic 

trap offers no improvements over the purely harmonic trap.   

 It was quite surprising to find that the spectrum of three ions in a highly anharmonic trap 

is only slightly anharmonic. It was especially unexpected to see that the center-of-mass motion 

mode (Mode 1) is the less anharmonic mode. Based on general arguments one might expect that 

the center-of-mass motion mode of three ions in an anharmonic trap describes the motion similar 

to vibration of one ion in an anharmonic trap. Since anharmonicity of the one-ion spectrum was 
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very pronounced (see Sec. 2), we expected to see the effect of similar magnitude in the three-ion 

case. It appears, however, that the Mode 1 in an anharmonic trap is special; it is different from 

the center-of-mass mode in the harmonic trap. Namely, in the anharmonic potential the terminal 

ions are allowed to move less than the central atom (see Eq. (45)), which compensates for 

anharmonicity of the trapping potential and makes the Mode 1 less anharmonic. Put another 

way, for Mode 1 in the anharmonic trap the arrangement of three ions is not rigid and adjusts to 

the changes of the potential, minimizing the effect of anharmonicity. The positive outcome of 

this effect is that all three modes become anharmonic. The negative outcome is that the values of 

anharmonicity parameters remain small.  

We hoped to increase the values of anharmonicity parameters in this system by raising 

the value of force constant k ′ . A number of computational experiments were carried out. Their 

results are presented in Fig. 10. As one might expect, the frequencies of three vibrational modes 

increase as k ′  is raised, while the eqilibrium internuclear distances decrease (see Fig. 10(a)). 

Frequenicies of Modes 2 and 3 remain close to each other and are about twice higher than the 

frequency of Mode 1. As k ′  is raised all three intramode anharmonicity parameters (see Fig. 

10(b)) and all three intermode anharmonicity parameters (see Fig. 10(c)) grow about linearly. 

The Mode 3 remains most anharmonic. When k ′  is raised by a factor of 525=β , anharmonicity 

of this mode reaches almost π23Δ  = –6.4×10-4 MHz. However, the frequency of this mode 

grows at the same time and reaches almost πω 23  = 64 MHz, leading to about the same relative 

effect of anharmonicity: 3
5

3 10~ ω−Δ . Indeed, the linear dependencies in Figs. 10(b, c) here and 

in Figs. 7(b, c) above demonstrate very clearly that raising force constant has negligible effect on 

the ii ω/Δ  ratios in both harmonic and strongly anharmonic traps. 
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We also experimented with combinations of the harmonic and anharmonic terms in the 

trapping potential !4/2/)( 42
trap zkzkzV ′+= βα  where both α  and β  were positive numbers. In 

this way we studied a large number of anharmonic traps with various α -to- β ratios, from 

slightly anharmonic to strongly anharmonic. We did not find any useful combination.  

In conclusion, we showed that the vibrational spectrum of three ions in the usual trap 

architectures (either purely harmonic, slightly anharmonic or strongly anharmonic) exhibits only 

minor anharmonicity. Motional states of ions in such traps cannot be efficiently controlled using 

approach of Ref. [1].  

4.c. Inverted Combined Trap 

Here we considered a trapping potential of the form: 

!42
)(

42

trap
zkzkzV ′+= βα ,                                                           (46)  

where β  is positive but α  is a negative number. When the βα /−  ratio is very large this 

expression describes a double well potential with two (separated, almost independent) wells, but 

we are far from that limit. In the cases considered here the first term of Eq. (46) lifts, just 

slightly, the potential in the middle of the 4z  well, creating a wide, strongly anharmonic trap 

[18], with the vibrational zero-point energy well above the top of the barrier at z = 0.  

The values of force parameters k  and k ′  here were equal to those before. The values of  

α  and β  were varied. In the discussion that follows we present a series of calculations with α = 

-100 and β = 1, 1.05, 1.10, 1.14, 1.19 and 1.43. Consider the case of 1=β . Numerical 

minimization gave 3
1 10862.2 ×−=eqz a0, 02 ≈eqz  and 3

3 10862.2 ×=eqz a0. Energy at this point 

was 5
321 10359.52),,(2 ×== ππ eqeqeqeq zzzVV  MHz. The normal mode frequencies were 
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1 2 2.734ω π =  MHz, 2 2 54.58ω π =  MHz and 3 2 54.89ω π =  MHz. Their corresponding 

eigenvectors were: 

6893.07071.01578.0
2231.00000.09748.0
6893.07071.01578.0

−−

−
=A .                              (47) 

Note that two frequencies in this system are very close and are much higher than the third 

frequency: 321 ~ ωωω << . The normal Modes 1 and 3 are very unusual. Mode 1 describes 

motion where amplitude of the central ion is almost an order of magnitude larger than amplitudes 

of the terminal ions: 311121 aaa =>> . Mode 3 shows just opposite: 331323 aaa =<< . The PES 

of this system, transformed into the normal mode coordinates of Eq. (47), is shown in Fig. 11.  

From analysis of Fig. 11 one can expect that in this system Mode 1 is the most anharmonic. 

Somewhat less obvious but still possible to derive from Fig. 11 is that the Modes 2 and 3 are also 

somewhat anharmonic, because the motion along 2ζ  and 3ζ  axes brings the system closer to the 

highly repulsive (white) area of the PES.   

The behavior of Mode 1 is easy to explain. The central atom sits on the top of a small 

“hill” so that its deviation from the equilibrium point reduces the potential energy, compensating 

for increase of potential energy due to the motion of terminal atoms. As a result, the PES is very 

flat along 1ζ  and is very anharmonic. The behavior of Mode 3 is less intuitive, or even 

somewhat counterintuitive. We think that the Mode 3 is as it is simply because it must be 

orthogonal to the Modes 1 and 2. Overall, the Mode 1 (low frequency mode) describes mostly 

the motion of central ion, while the Modes 2 and 3 (high frequency, nearly degenerate modes) 

describe mostly the motion of two terminal ions.  
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In numerical calculations, due to very different frequencies of the modes, we used the 

following parameters:  M1 = 21, M2 = M3 = 17 for the Gaussian quadratures in 1ζ , 2ζ  and 3ζ , 

respectively, and 1 2 3 15 10 10N N N× × = × ×  for the basis set size. Accuracy was comparable to 

or better than in the calculations presented above (10-9 MHz to the lower 364 vibrational states). 

The spectrum of numerical eigenvalues is given in Table 7, along with the state assignments and 

deviations of their energies from the analytic harmonic model. Figure 12 shows deviations from 

the harmonic model for the three normal mode progressions. From this picture we see that all 

three normal modes are strongly anharmonic, with the Mode 1 being the most anharmonic. 

Anharmonicities of the Modes 2 and 3 seem to be comparable. Coefficients of the Dunham 

expansion fit for this spectrum were computed and presented in Table 8. Anharmonicity 

parameters in this system show dramatic improvement compared to all cases studied above. We 

see that 1
2

1 10~ ω−Δ , which is well sufficient for the successful control. Mode 3 is less 

anharmonic, 3
4

3 10~ ω−Δ , but it is still more anharmonic than any mode in the 4~ z  potential 

studied above. 

Variations of the βα /−  ratio reveal an important and interesting property of this 

system. When β  is raised (from 1=β  to 43.1=β in Fig. 13) the frequencies of all modes 

increase (see Fig. 13(a, b)) while the values of anharmonicity parameters all drop (see Fig. 13(c-

f)). This behavior is exactly opposite to that seen in the 2~ z  and 4~ z  traps studied above. It 

appears that in the case of inverted combined potential there is no reason to raise β . When 

100α = − , small values of 1≤β  are appropriate. The dependence of anharmonicity vs. 

frequency in Fig. 13 is quite dramatic. Note that the case we presented here in detail ( 100α = − , 

1=β ) is, in fact, just on the edge of the region where anharmonicity increases very sharply. If 
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we move further into the region of small β  or, alternatively, increase the value of α , even more 

anharmonic system is obtained. We conclude that the low frequency/high anharmonicity system 

can be readily created by the appropriate choice of the two force constants in the inverted 

combined potential of Eq. (46).   

Using accurate energies and wave functions obtained here we computed the transition 

moment matrix numerically (for the 100α = − , 1=β  case) and carried out the OCT calculations 

of the major one-qubit gates (NOT, Hadamard transform, etc) and some two-qubit gates (such as 

CNOT) in this system. The control qubit was encoded into the 0=v  and 1=v  states of the 

less anharmonic Mode 3. Second qubit was encoded into the 0=v  and 1=v  states of the 

most anharmonic Mode 1. Results of these calculations are very optimistic. They will be 

reported in the second paper of this series (Paper II) in the near future.  

5. Conclusions 

In this paper we presented a general numerical approach to accurate theoretical studies of 

the vibrational spectra of ions in a trap. We applied this method to study one, two, and three ions 

in several different trapping potentials. For one ion in a slightly anharmonic trap we were able to 

confirm all conclusions of Ref. [1] concerning the new scheme of adiabatic and coherent control 

based on selective excitation of the vibrational states by optimally shaped pulses. By the OCT 

calculations we confirmed that anharmonicity of the vibrational spectrum on the order of 1% of 

the frequency, ω210~ −Δ , is sufficient for successful accurate control. 

For two ions in a harmonic trap we reached the level of accuracy that allowed us to 

quantify the anharmonic effect of Coulomb interaction, ω510~ −Δ . We believe that Coulomb 

anharmonicity in the ion trap has been accessed and characterized theoretically for the first time. 
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To our best knowledge in all previous studies the Coulomb anharmonicity has been neglected 

(as we discussed earlier in the harmonic approximation presented here). By studying two ions in 

a trap we also found that the symmetric stretching mode is dark and cannot be controlled. This 

conclusion is valid not just for two, but also for three and more trapped ions.  

For three ions in a harmonic trap we characterized the magnitude of Coulomb 

anharmonicity and concluded that it is insufficient for selective control of the vibrational motion, 

ω510~ −Δ . We also studied the system of three ions in a strongly anharmonic trap but found 

that it does not offer any advantages. Vibrational anharmonicities remain low due to special 

properties of the normal vibration modes: The center-of-mass motion of three ions is such that 

the anharmonic effect of the trapping potential is minimized and the system finds the less 

anharmonic path on the PES. All three modes in such systems are coupled and are somewhat 

anharmonic, but the amount of anharmonicity is insufficient for the control, ω510~ −Δ .  

The most practically important results of this work belong to the system of three ions in 

an inverted combined potential trap. We found that this system has a number of favorable 

properties. First of all, the lowest frequency mode (the center-of-mass motion mode) is also the 

most anharmonic, which provides ω210~ −Δ , well sufficient for the successful control. 

Although the other two modes are nearly degenerate, one of them is dark (symmetric stretching) 

and should not interfere with selective excitation of the active mode (asymmetric stretching). 

Anharmonicity of the asymmetric stretching mode is smaller, ω410~ −Δ , but this mode is 

anharmonic enough to serve for encoding the control qubit. Finally, frequencies of the two 

controllable modes (center-of-mass and the asymmetric stretching) are very different, which is 

quite useful for selective addressing of the two modes in the experiment. Large separation of 
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frequencies of these modes should also provide good coherence properties of two independent 

qubits encoded into these modes.  

The dependence of anharmonicity vs. frequency in the inverted combined potential is 

favorable and allows reaching a high degree of anharmonicity without raising the frequency. 

This property suggests that the suitable set of parameters we found and used in this work is not 

unique. By varying the values of two force constants in the inverted combined potential one can 

create a system with desirable properties. This suggests favorable applications to future 

experiments.  
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State # E/2π (MHz) v δE/2π (MHz) 
1 1.3964 0 0.0114 
2 4.2115 1 0.0565 
3 7.0702 2 0.1452 
4 9.9707 3 0.2758 
5 12.9115 4 0.4465 
6 15.8910 5 0.6560 
7 18.9079 6 0.9029 
8 21.9611 7 1.1861 
9 25.0494 8 1.5044 
10 28.1718 9 1.8568 
11 31.3273 10 2.2423 

 
Table 1: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational 
states of one ion in a slightly anharmonic trap. 
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State # E/2π (MHz) (v1, v2) δE/2π (10-4 MHz) 
1 3.7839 (0, 0) 0.0785 
2 6.5539 (1, 0) 0.0777 
3 8.5817 (0, 1) 0.2135 
4 9.3239 (2, 0) 0.0768 
5 11.3517 (1, 1) 0.2127 
6 12.0939 (3, 0) 0.0760 
7 13.3795 (0, 2) 0.4856 
8 14.1217 (2, 1) 0.2119 
9 14.8639 (4, 0) 0.0752 
10 16.1495 (1, 2) 0.4848 
11 16.8917 (3, 1) 0.2110 
12 17.6339 (5, 0) 0.0743 
13 18.1773 (0, 3) 0.8947 
14 18.9195 (2, 2) 0.4839 
15 19.6617 (4, 1) 0.2102 
16 20.4039 (6, 0) 0.0735 
17 20.9473 (1, 3) 0.8938 
18 21.6895 (3, 2) 0.4831 
19 22.4317 (5, 1) 0.2093 
20 22.9751 (0, 4) 1.4407 
21 23.1739 (7, 0) 0.0726 
26 25.9439 (8, 0) 0.0718 
29 27.7730 (0, 5) 2.1238 
40 32.5709 (0, 6) 2.9439 
53 37.3687 (0, 7) 3.9010 
67 42.1666 (0, 8) 4.9951 

 
Table 2: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational 
states of two ions in a harmonic trap.  
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State # E/2π (MHz) (v1, v2, v3) δE/2π (10-3 MHz) 
1 7.1194 (0, 0, 0) 0.0243 
2 9.8894 (1, 0, 0) 0.0243 
3 11.9172 (0, 1, 0) 0.0364 
4 12.6594 (2, 0, 0) 0.0243 
5 13.7905 (0, 0, 1) 0.0583 
6 14.6872 (1, 1, 0) 0.0364 
7 15.4294 (3, 0, 0) 0.0255 
8 16.5605 (1, 0, 1) 0.0595 
9 16.7150 (0, 2, 0) 0.0522 
10 17.4572 (2, 1, 0) 0.0364 
11 18.1994 (4, 0, 0) 0.0243 
12 18.5883 (0, 1, 1) 0.0838 
13 19.3305 (2, 0, 1) 0.0583 
14 19.4850 (1, 2, 0) 0.0522 
15 20.2272 (3, 1, 0) 0.0364 
16 20.4616 (0, 0, 2) 0.1214 
17 20.9694 (5, 0, 0) 0.0243 
18 21.3583 (1, 1, 1) 0.0850 
19 21.5128 (0, 3, 0) 0.0729 
20 22.1005 (3, 0, 1) 0.0583 
25 23.7394 (6, 0, 0) 0.0243 
34 26.3106 (0, 4, 0) 0.0996 
35 26.5094 (7, 0, 0) 0.0243 
38 27.1327 (0, 0, 3) 0.2089 
47 29.2794 (8, 0, 0) 0.0243 
56 31.1084 (0, 5, 0) 0.1287 
72 33.8039 (0, 0, 4) 0.3230 
86 35.9062 (0, 6, 0) 0.1651 
124 40.4751 (0, 0, 5) 0.4663 
126 40.7041 (0, 7, 0) 0.2040 
176 45.5019 (0, 8, 0) 0.2477 
196 47.1463 (0, 0, 6) 0.6363 
289 53.8175 (0, 0, 7) 0.8306 
403 60.4888 (0, 0, 8) 1.0491 

 

Table 3: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational 
states of three ions in a harmonic trap. 
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Mode frequency 

πω 2i  (MHz), i=1, 2, 3 

 

Intramode anharmonicity 

π2iΔ  (MHz), i=1, 2, 3 

 

Intermode anharmonicity 

2ij πΔ  (MHz) 

2.770 ~ 0 Δ12 ~ 0 

4.798 -2.343×10-6 Δ13 ~ 0 

6.671 -1.358×10-5 5
23 10393.12 −×−=Δ π  

 

Table 4: Coefficients of the fit by the Dunham expansion formula, Eq. (40), of the numerically 
calculated spectrum in Table 3 (vibrational states in the harmonic trap). The shift parameter was 

510757.12 −×−=πD  MHz. 
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State # E/2π (MHz) (v1, v2, v3) δE/2π (10-2 MHz) 
1 74.9440 (0, 0, 0) 0.1054 
2 105.9766 (1, 0, 0) 0.1778 
3 131.0160 (0, 1, 0) 0.1778 
4 137.0095 (2, 0, 0) 0.2827 
5 137.7282 (0, 0, 1) 0.2691 
6 162.0489 (1, 1, 0) 0.2788 
7 168.0428 (3, 0, 0) 0.4216 
8 168.7613 (1, 0, 1) 0.3905 
9 187.0885 (0, 2, 0) 0.2875 
10 193.0822 (2, 1, 0) 0.4119 
11 193.8006 (0, 1, 1) 0.3769 
12 199.0764 (4, 0, 0) 0.5926 
13 199.7947 (2, 0, 1) 0.5440 
14 200.5137 (0, 0, 2) 0.5556 
15 218.1217 (1, 2, 0) 0.4177 
16 224.1157 (3, 1, 0) 0.5790 
17 224.8340 (1, 1, 1) 0.5265 
18 230.1104 (5, 0, 0) 0.8004 
19 230.8285 (3, 0, 1) 0.7324 
20 231.5472 (1, 0, 2) 0.7247 
21 243.1613 (0, 3, 0) 0.4391 
22 249.1552 (2, 2, 0) 0.5809 
23 249.8734 (0, 2, 1) 0.5226 
24 255.1496 (4, 1, 0) 0.7830 
25 255.8677 (2, 1, 1) 0.7091 
26 256.5864 (0, 1, 2) 0.6975 
27 261.1446 (6, 0, 0) 1.0394 
28 261.8626 (4, 0, 1) 0.9520 
29 262.5812 (2, 0, 2) 0.9267 
30 263.3003 (0, 0, 3) 0.9617 
31 274.1948 (1, 3, 0) 0.5984 
32 280.1891 (3, 2, 0) 0.7810 
33 280.9071 (1, 2, 1) 0.7014 
34 286.1839 (5, 1, 0) 1.0180 
41 299.2346 (0, 4, 0) 0.6295 
55 326.0882 (0, 0, 4) 1.4921 
68 355.3082 (0, 5, 0) 0.8626 
92 388.8773 (0, 0, 5) 2.1449 
104 411.3823 (0, 6, 0) 1.1346 
148 451.6677 (0, 0, 6) 2.9181 

Table 5: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational 
states of three ions in a strongly anharmonic trap.  
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Mode frequency 

πω 2i  (MHz), i=1, 2, 3 

 

Intramode anharmonicity 

π2iΔ  (MHz), i=1, 2, 3 

 

Intermode anharmonicity 

2ij πΔ  (MHz) 

31.032 -1.667×10-4 4
12 2 2.916 10π −Δ = − ×  

56.071 -1.989×10-4 4
13 2 4.859 10π −Δ = − ×  

62.783 -6.103×10-4 4
23 2 3.517 10π −Δ = − ×  

 

Table 6: Coefficients of the fit by the Dunham expansion formula, Eq. (40), of the numerically 
calculated spectrum in Table 5 (vibtational states in the strongly anharmonic trap). The shift 
parameter was 42 5.269 10D π −= − ×  MHz. 
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State # E/2π (MHz) (v1, v2, v3) δE/2π (MHz) 
1 56.1289 (0, 0, 0) 0.0271 
2 58.9625 (1, 0, 0) 0.1264 
3 61.8832 (2, 0, 0) 0.3130 
4 64.8846 (3, 0, 0) 0.5802 
5 67.9611 (4, 0, 0) 0.9225 
6 71.1081 (5, 0, 0) 1.3354 
7 74.3218 (6, 0, 0) 1.8149 
16 110.6932 (0, 1, 0) 0.0122 
17 111.0009 (0, 0, 1) 0.0089 
46 165.2552 (0, 2, 0) -0.0049 
48 165.8757 (0, 0, 2) -0.0065 
89 219.8143 (0, 3, 0) -0.0251 
94 220.7524 (0, 0, 3) -0.0201 
149 274.3688 (0, 4, 0) -0.0498 
153 275.6304 (0, 0, 4) -0.0323 
222 328.9163 (0, 5, 0) -0.0815 
229 330.5096 (0, 0, 5) -0.0434 
311 383.4522 (0, 6, 0) -0.1248 
318 385.3897 (0, 0, 6) -0.0535 

 
Table 7: Eigenvalues, assignments and deviations (from the harmonic model) of the vibrational 
states of three ions in a combined inverted trap with 100α = −  and 1β = . See text for details.  
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Mode frequency   

πω 2i  (MHz), i=1, 2, 3 

 

Intramode anharmonicity 

π2iΔ  (MHz), i=1, 2, 3 

 

Intermode anharmonicity 

2ij πΔ  (MHz) 

2.738 –4.361×10-2 2
12 2 1.102 10π −Δ = − ×  

54.580 1.106×10-3 3
13 2 4.871 10π −Δ = − ×  

54.886 –1.371×10-3 2
23 2 3.872 10π −Δ = ×  

 

Table 8: Coefficients of the fit by the Dunham expansion formula, Eq. (40), of the numerically 
calculated spectrum in Table 7 (vibtational states in the combined inverted trap). The shift 
parameter was 22 2.115 10D π −= − ×  MHz. 
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Fig. 1: Effect of anharmonicity on the vibrational spectrum of one ion in a slightly anharmonic 
potential trap. 
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Fig. 3: Effect of anharmonicity on two modes of the vibrational spectrum of two ions in a 
harmonic ( 2~ z ) potential trap -- the center-of-mass motion (COM) mode and the symmetric 
stretching (SS) mode. 

 

 

Fig. 2: Potential energy surface of two ions in the harmonic potential trap.
Anharmonicities due to Coulomb repulsion of ions are clearly seen. 
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Fig. 4: Potential energy surface of three ions in the harmonic potential trap using Cartesian 
coordinates. Three slices through the 3D-surface are shown: a) perpendicular to 1z  through 

01 =z ,  b) perpendicular to 2z  through 02 =z  and   c) perpendicular to 3z  through 03 =z . 
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Fig. 5: Potential energy surface of three ions in the harmonic potential trap using the normal 
mode coordinates. Three slices through the 3D-surface are shown: a) perpendicular to 1ζ  

through 01 =ζ , b) perpendicular to 2ζ  through 02 =ζ  and c) perpendicular to 3ζ  through 
03 =ζ . Note that the Coulomb repulsion part (white) goes parallel to 1ζ  everywhere. 
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Fig. 6: Effect of anharmonicity on three modes of the vibrational spectrum of three ions in a 
harmonic ( 2~ z ) potential trap -- the center-of-mass motion (COM) mode, the symmetric 
stretching (SS) mode and the asymmetric stretching (AS) mode. 
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Fig. 7: Relations between the equilibrium distances, normal mode frequencies and vibrational 
anharmonicities for three ions in the harmonic potential trap.  
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Fig. 8: Potential energy surface of three ions in the strongly anharmonic potential trap using the 
normal mode coordinates. Three slices through the 3D-surface are shown: a) perpendicular to 1ζ  
through 01 =ζ , b) perpendicular to 2ζ  through 02 =ζ  and c) perpendicular to 3ζ  through 

03 =ζ .  
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Fig. 9: Effect of anharmonicity on three modes of the vibrational spectrum of three ions in a 
strongly anharmonic ( 4~ z ) potential trap -- the center-of-mass motion (COM) mode, the 
symmetric stretching (SS) mode and the asymmetric stretching (AS) mode. 
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Fig. 10: Relations between the equilibrium distances, normal mode frequencies and vibrational 
anharmonicities for three ions in the strongly anharmonic potential trap. 
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Fig. 11: Potential energy surface of three ions in the inverted combined potential trap using the 
normal mode coordinates. Three slices through the 3D-surface are shown: a) perpendicular to 1ζ  
through 01 =ζ , b) perpendicular to 2ζ  through 02 =ζ  and c) perpendicular to 3ζ  through 

03 =ζ . 
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Fig. 12: Effect of anharmonicity on three modes of the vibrational spectrum of three ions in an 
inverted combined potential trap (with 100α = −  and 1β = ) -- the center-of-mass motion 
(COM) mode, the symmetric stretching (SS) mode and the asymmetric stretching (AS) mode. 
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Fig. 13: Relations between the equilibrium distances, normal mode frequencies and vibrational 
anharmonicities for three ions in the inverted combined potential trap. 

(Fig. 13: 1.5 columns) 


