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Analytic formulas describing high harmonic generation (HHG) by atoms in a short laser pulse are
obtained quantum mechanically in the tunneling limit. These results provide analytic expressions of
the three-step HHG scenario, as well as of the returning electron wave packet, in a few-cycle pulse.
Our results agree well with those of numerical solutions of the time-dependent Schrödinger equation
for the H atom, while for Xe they predict many-electron atomic dynamics features in few-cycle HHG
spectra and significant dependence of these features on the carrier-envelope phase of a laser pulse.
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Extremely short (few cycle) laser pulses are presently
available for high harmonic generation (HHG) experi-
ments [1]. For such pulses, HHG spectra are highly sen-
sitive to the electric field vector of the pulse, which for
the case of linear polarization may be parameterized as:

F(t) = ẑF (t) = ẑf(t) cos(ωt + φ), (1)

where f(t) is the pulse envelope (with its maximum at
t = 0), ω is the fundamental (carrier) frequency, and φ
is the so-called carrier-envelope phase (CEP). Although
the three-step scenario [2] remains applicable for under-
standing HHG by atoms in a short pulse, important dif-
ferences from the monochromatic field case appear for
few-cycle laser pulses. First, the HHG emission becomes
very broad spectrally, forming a (quasi) continuous spec-
trum, so that instead of HHG rates it is more appro-
priate to use the spectral density of radiation, ρ(EΩ),
where EΩ = ~Ω is the harmonic photon energy. Second,
the shape of ρ(EΩ) for a rapidly-varying pulse envelope,
f(t), becomes sensitive to the CEP, requiring an analysis
of subcycle dynamics for a proper description.

The significant CEP dependence of a short-pulse HHG
process has been established both experimentally and
theoretically [3–10]. The most significant differences were
found in the shape and the plateau-cutoff behavior of
HHG spectra for single-cycle “sine” (ϕ = π/2) and
“cosine” (ϕ = 0) pulses. Theoretical analyses of few-
cycle pulse HHG spectra are based primarily on numeri-
cal solutions of the time-dependent Schrödinger equation
(TDSE) [3, 5, 6, 8, 9] or on the use of the Lewenstein
et al. model [11] and its modifications. However, there
are as yet no closed-form formulas for ρ(EΩ) providing
an analytic description of the short-pulse HHG spectrum
similar to that for a monochromatic pulse [12].

Another open question is the validity for the case of
a few-cycle pulse of the phenomenological parametriza-
tion [13] of the HHG yield in terms of the photorecom-
bination cross section (PRCS) σ(r) (which describes the
final step of the three-step scenario) and the “electron
wave packet” (EWP) (which describes the ionization of
an atomic electron and its propagation in the laser field).

This parametrization is attractive since (i) it is valid
for harmonics with energies in the region of the HHG
plateau cutoff, which are precisely the ones used to pro-
duce attosecond pulses, and (ii) it involves a field-free
atomic parameter σ(r) that describes atomic structure
effects on HHG spectra [12–16]. However, the explicit
form of the EWP is known only for monochromatic [12]
and two-color [15] fields, while the possible manifestation
of atomic structure features in the few-cycle regime and
their modification by CEP effects remain unexplored.

In this Rapid Communication we present closed-form
formulas for the spectral density of radiation, ρ(EΩ), gen-
erated by atoms in a short laser pulse. These results
justify the factorization for ρ(EΩ), provide an explicit
form for the CEP-dependent EWP, and an analytic the-
oretical explanation for the CEP-effects and two kinds of
interference features (both large-scale and fine-scale os-
cillations) in HHG spectra. For the H atom, our TDSE
results for a single-cycle pulse confirm the high accuracy
of the analytic formulas, while for inert gases we predict
that atomic structure (including many-electron) features
in short pulse HHG spectra are significantly modified by
CEP effects and can enhance the HHG yield by an order
of magnitude in atom-specific intervals of the energy EΩ.

To describe HHG in a short laser pulse, we general-
ize the techniques used to obtain our ab initio quantum
description of HHG in a monochromatic field [17] to the
case of an infinite train of short pulses separated in time
by T . Each pulse of this train is the same as for an actual
short laser pulse of duration τ (τ < T ). Owing to the
periodicity in time (with period T ) of such a pulse train,
we can employ the quasistationary quasienergy state ap-
proach (cf., e.g., Ref. [18]) to treat the nonlinear inter-
actions of the train with an atomic system. In this ap-
proach, the HHG amplitude is expressed in terms of the
complex quasienergy of an active atomic electron [17].
For an electron in a short-range potential, this amplitude
can be presented (using time-dependent effective range
theory [19]) in analytic form in the tunneling limit [20].
This latter result can then be straightforwardly general-
ized to the case of an active atomic electron [12]. Having
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thus an explicit expression for the HHG amplitude for
the pulse train, the result for a single short pulse follows
by taking the limit T → ∞ for fixed τ .

Our analysis shows that the HHG amplitude for a short
pulse can be presented as a sum of amplitudes, Aj , de-
scribing the generation of radiation by electrons ionized
at each (jth) optical half-cycle of the pulse. The tem-
poral integrals (involving the Green function for a free
electron in a short laser pulse) in these amplitudes can
be estimated using a modified saddle-point analysis, as
done similarly in Refs. [15, 20]. As a result, the ampli-

tudes Aj depend on the ionization (t
(j)
i ) and recombina-

tion (t
(j)
r ) times for the jth half-cycle [where t

(j)
r lies in

the (j + 1)th half-cycle]. These times satisfy the system
of classical equations for the extreme closed classical tra-

jectory (starting and ending at times t
(j)
i and t

(j)
r ) along

which an electron having zero initial momentum gains

the maximum classical energy, E
(j)
cl (cf. Ref. [15]):

1

tr − ti

∫ tr

ti

A(τ)dτ − A(ti) = 0,

1

c

A(tr) − A(ti)

tr − ti
+ F (tr) = 0, (2)

where ẑA(t) is the vector potential of the electric field
F(t) [F (t) = −(1/c)∂A/∂t]. The desired solutions

(t
(j)
i , t

(j)
r ) of the system (2) are those real solutions that

lie in the time interval of the jth and (j + 1)th half-

cycles, ensuring the shortest return time, ∆tj = t
(j)
r −t

(j)
i .

The moment of ionization t
(j)
i determines also an effective

value of the Keldysh parameter, γ̃j , for the jth half-cycle,

γ̃j = ~ω/(|e|F̃jκ
−1), F̃j = |F (t

(j)
i )|, (3)

where κ =
√

2m|E0|/~ and E0 is the ground state energy

of the electron: E0 = −~
2κ2/(2m). With known t

(j)
i and

t
(j)
r , the amplitude Aj can be approximated in a way

similar to that for a monochromatic field [12, 20].
The resulting expression for the (dimensionless) spec-

tral density ρ(EΩ) can be presented in a factorized form
similar to that in Refs. [12, 13, 15],

ρ(EΩ) = w(E)σ(r)(E), E = EΩ − |E0|, (4)

where σ(r)(E) is the PRCS of an electron with momen-

tum p (p =
√

2mE) parallel to the polarization direction
ẑ of the harmonic (recombination) photon of energy EΩ.
The term w(E) in Eq. (4) is the EWP, which generalizes
the EWP W (E) for a monochromatic field [12] to the
case of a short pulse. The expression for w(E) involves
the sum of two terms,

w(E) = wdir(E) + wint(E). (5)

The “direct” term, wdir(E), originates from the sum of
|Aj |2 and involves the sum of EWPs wj(E) created dur-
ing each half-cycle of the laser pulse,

wdir(E) =
∑

j

wj(E). (6)

The interference term in Eq. (5) originates from the in-
terference between the half-cycle amplitudes Aj and Ak

(j 6= k) and thus involves their phase difference:

wint(E) =
∑

k 6=j

sjk

√

wj(E)wk(E) cos(ϕj − ϕk), (7)

where the phases ϕj and ϕk are (l = j, k):

ϕl = Ωt(l)r − 1

~

∫ t(l)r

t
(l)
i

{

e2

2mc2
[A(t

(l)
i ) − A(τ)]2 − E0

}

dτ.

The sign factor sjk (= ±1) in Eq. (7) is sjk =
(−1)j−ksign[Ai(ξj)Ai(ξk)], where Ai(ξ) is the Airy func-
tion [see Eq. (10)]. The half-cycle EWP wj(E) may be
presented in terms of the ionization (Ij) and propagation
(Wj) factors, which have the same form as for the case
of a monochromatic field [12]:

wj(E) =
πΩ

2ω2
IjWj(E), (8)

Ij =
4γ̃2

j Γst(F̃j)

(2l + 1)πκvat
, vat =

e2

~
, (9)

Wj(E) =
p

m

Ai2(ξj)

(vat∆tj)3ζ
2/3
j

. (10)

The (dimensionless) factor Ij involves the tunneling

rate, Γst(F̃j), for a bound atomic electron (with energy
E0, angular momentum l, and projection ml = 0) in a

static electric field ẑF̃j [21]:

Γst(F̃j) =
|E0|

~
(2l+1)C2

κl

(

2Fa

F̃j

)2ν−1

e−2Fa/(3F̃j), (11)

where ν = Z/(κa0) (a0 is the Bohr radius), Z|e| is the
charge of the remaining atomic core (Z = 1 for neutral

atoms), Fa =
√

8m|E0|3/(|e|~) = (Z/ν)3|e|/a2
0, and Cκl

is given by the known asymptotic form of the bound-state
wave function for a Coulomb-like potential (cf. Ref. [12]).

The dimensionless parameter ζj and the argument ξj of
the Airy function, Ai(ξj), in Eq. (10) for the propagation
factor are given by (cf. Ref. [15]):

ζj =
I(t

(j)
r )

2Iat

[∣

∣

∣

∣

∣

Ḟ (t
(j)
r )

F (t
(j)
r )

∣

∣

∣

∣

∣

∆tj +
F (t

(j)
r )

F (t
(j)
i )

− 1

]

, (12)

ξj =
E − E

(j)
max

ζ
1/3
j Eat

, (13)

E(j)
max =

[

eF (t
(j)
r )∆tj

]2

2m
− F (t

(j)
r )

F (t
(j)
i )

|E0|, (14)

where I(t
(j)
r ) = cF 2(t

(j)
r )/(8π), Iat = 3.51×1016 W/cm2,

and Eat = 27.21 eV. Note that the first term in E
(j)
max is

the aforementioned classical energy E
(j)
cl , while the sec-

ond term gives the quantum correction to E
(j)
cl [15].
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FIG. 1. (color online) The spectral densities ρ(EΩ) for the
H atom in single-cycle laser pulses [cf. Eq. (15)] with N = 1,
I0 = 1.75 × 1014 W/cm2, λ = 1.6 µm, and two CEPs: (a)
φ = 0; (b) φ = π/2. Thick (red) solid lines: TDSE results;
thin (blue) solid lines: the result (4); dotted lines: the CEP-

averaged result (4); dashed lines: σ
(r)
H(1s)(E) (in arb. units).

In Fig. 1 we compare our analytic predictions for ρ(EΩ)
with numerical TDSE results (see Ref. [15] for details of
the solution of the 3D TDSE for the H atom). In order to
exclude any DC component from both the electric field
F (t) and the vector potential A(t) of the laser pulse, the
pulse is parameterized using the integral,

∫ t

A(τ)dτ =
cF0

ω2
e−2 ln(2) t2/τ2

cos (ωt + φ) , (15)

from which A(t) and F (t) can be found by differentia-
tion. The pulse duration is τ = 2πN/ω, where N is
the number of cycles in the full width at half-maximum.
The peak intensity of the pulse is I0 = cF 2

0 /(8π). The
analytic result (4), shown in Fig. 1 for N = 1, is in excel-
lent agreement with the TDSE results in the high energy
plateau region. The dominant contributions to ρ(EΩ) for
a one-cycle pulse come from only two EWPs wj(E), one
“born” near the peak of the pulse’s major half-cycle and
the other near the minimum of the preceding half-cycle.
Only these two EWPs have substantial magnitudes of
both ionization factors Ij [which determine the absolute

value of wj(E) in Eq. (8)] and energies E
(j)
max [which de-

termine the maximum electron energy E, beyond which
the EWP wj(E) decreases exponentially, owing to the
behavior of the Airy function in Eq. (10)].

Our theory provides a clear explanation (that agrees
with previous numerical findings [3, 5, 8–10]) for the
strong CEP-dependence of ρ(EΩ). In particular, the two-
plateau structure of the spectrum for φ = 0 and its dis-
appearance for φ = π/2 originates from the strong CEP-

dependence of the “cutoff energies” E
(j)
cut for two con-

tributing half-cycle amplitudes Aj . (These energies are
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FIG. 2. (color online) The same as in Fig. 1, but for Xe
with I0 = 1.24 × 1014 W/cm2 and λ = 1.8 µm. Dashed lines:

the PRCS σ
(r)

Xe(5p)
(E) deduced (using the principle of detailed

balance) from the theoretical (relativistic random phase ap-
proximation) results for the photoionization cross section [23].

136.5 and 85.7 eV for φ = 0 and 129.3 and 118.7 eV for
φ = π/2.) The large-scale oscillations in Fig. 1 originate
from the interference of two (short and long) electron
trajectories that contribute to the half-cycle amplitudes
Aj and thus to the EWPs wj(E). These oscillations are
similar to those for a monochromatic field [20] and are
described by the Airy function in Eq. (10) [22], i.e., they
are unrelated to the interference between subcycle ampli-
tudes Aj . The latter interference produces another fea-
ture that occurs only for non-monochromatic pulses and
disappears upon omitting the term wint(E) in Eq. (5):
the fine-scale modulation of ρ(EΩ) visible in Figs. 1(a,b)
in regions where the two half-cycle amplitudes Aj inter-
fere. From the explicit form of wint(E) (7), one obtains
the interval ∆EΩ [cf. Fig. 1(b)] between two sequential
fine-scale maxima/minima in ρ(EΩ) as (cf. Ref. [6]):

∆EΩ = 2π~/∆tr = C~ω, (16)

where ∆tr = t
(j+1)
r − t

(j)
r and the constant C (1 . C . 2)

is sensitive to the pulse shape.
Figure 2 shows single-cycle results for ρ(EΩ) of Xe

for pulse parameters F0 and ω in Eq. (15) such that
(~ω/|E0|)H = (~ω/|E0|)Xe and FH

0 /FXe
0 = r3/2 (where

r ≡ |EH
0 /EXe

0 | = 1.12), which facilitates comparison with
ρ(EΩ) of H in Fig. 1. With these parameters, the EWPs
for H and Xe coincide upon multiplying the latter by
the ratio of asymptotic coefficients, (CH

κl/CXe
κl )2 ≈ 0.65,

and re-scaling the electron and harmonic energies for Xe
according to E (EΩ) → rE (EΩ). Thus, differences be-
tween Figs. 1 and 2 originate entirely from the PRCSs:

σ
(r)
H(1s)(E) is flat whereas σ

(r)
Xe(5p)(E) exhibits a resonance-

like feature, caused by many-electron correlations involv-



4

ing the Xe 4d-subshell [23]. Fig. 2 predicts such atom-
specific dynamical features (whose occurrence in HHG by
long pulses was discussed recently in Refs. [12, 15, 16]) to
occur also in single-cycle HHG spectra. Moreover, Fig. 2
predicts that the CEP can be used to modify their mag-
nitudes and shapes as compared to the CEP-averaged
results for ρ(EΩ) (cf. EΩ ≈ 100-110 eV).

As the number, N , of optical cycles increases, more
than two amplitudes Aj contribute to the HHG spec-
trum, thus leading to marked differences from the case
N = 1. First, already for N = 2, the two-plateau struc-
ture of ρ(EΩ) for ϕ = 0 disappears and our results for
this case are similar to the TDSE results for the H atom
in Ref. [3]. Second, the fine-scale modulation result-
ing from many interfering amplitudes Aj becomes much
more pronounced, leading to a CEP-sensitive “harmonic
structure” in the cutoff region and beyond. The positions
of these harmonics are different for sine and cosine pulses
and (for both cases) do not coincide with the position of
odd harmonics of the carrier frequency: EΩ = (2k+1)~ω
(cf. Refs. [3, 5, 6]). Our analysis shows that for a Gaus-
sian pulse these latter harmonics start to form in the
cutoff region only for pulses with N & 10, while for a
trapezoidal pulse they appear already for N = 3.

The evolution of ρ(EΩ) (4) as a pulse becomes long is
most easily derived for a flat-top (trapezoidal) pulse with

n half-cycles. For such a pulse, the times t
(j)
i and t

(j)
r for

neighboring half-cycles differ by π/ω, so that the EWPs
wj become the same for any j, while the factor sjk and
the phase difference in Eq. (7) reduce to sjk = (−1)j−k

and ϕj −ϕk = π(j − k)EΩ/(~ω). Calculating the sum of
wdir and wint in Eq. (5) analytically, we find:

ρ(EΩ) =
πΩ

2ω2
W (E)σ(E)D(n, Ω),

D(n, Ω) =
sin2

[

πn
2

(

Ω
ω + 1

)]

sin2
[

π
2

(

Ω
ω + 1

)] , (17)

where W (E) is the EWP for a monochromatic pulse [12],
while the factor D(n, Ω) ensures the 2~ω-spacing of the
HHG spectrum for a monochromatic field: For n → ∞,

D(n, Ω) ≈ 2ω2

π
Tn

∑

k

δ[Ω − (2k + 1)ω], Tn = πn/ω.

To conclude, we have derived quantum-mechanically
a factorized formula (4) for the high-energy part of the
spectral density ρ(EΩ) that is valid for a short laser pulse
of any shape. It predicts the existence of atom-specific,
many-electron dynamical features in HHG spectra for
even a one-cycle pulse and strong modification of these
features by CEP effects. It predicts also significant pulse
shape dependence for the evolution of HHG spectra with
increasing number of optical cycles. To apply our ana-
lytic results, only the PRCS σ(r)(E) for the target atom

and the solutions (t
(j)
i , t

(j)
r ) of the classical equations (2)

for a given short pulse are needed. Our results agree with
numerical TDSE results and provide an efficient tool for
analyses of HHG by few-cycle laser pulses.
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