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We explore the physical limits of pulsed dynamical decoupling methods for decoherence control
as determined by finite timing resources. By focusing on a decohering qubit controlled by arbitrary
sequences of m-pulses, we establish a non-perturbative quantitative upper bound to the achievable
coherence for specified maximum pulsing rate and noise spectral bandwidth. We introduce numer-
ically optimized control “bandwidth-adapted” sequences that saturate the performance bound, and
show how they outperform existing sequences in a realistic excitonic-qubit system where timing con-
straints are significant. As a byproduct, our analysis reinforces the impossibility of fault-tolerance
accuracy thresholds for generic open quantum systems under purely reversible error control.
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Building on the discovery of spin-echo and multiple-
pulse techniques in nuclear magnetic resonance [1], dy-
namical decoupling (DD) methods for open quantum sys-
tems [2] have become a versatile tool for decoherence con-
trol in quantum engineering and fault-tolerant quantum
computation. DD involves “open loop” (feedback-free)
quantum control based on the application of a time-
dependent Hamiltonian which, in the simplest setting,
effects a pre-determined sequence of unitary operations
(pulses) drawn from a basic repertoire. Physically, DD
relies on the ability to access control time scales that are
short relative to the correlation time scale of the inter-
action to be removed. The reduction in decoherence is
achieved perturbatively, by ensuring that sufficiently high
orders of the error-inducing Hamiltonian are removed.
Recently, a number of increasingly powerful pulsed DD
schemes have been proposed and validated in the lab-
oratory. Uhrig DD (UDD) sequences [3], for instance,
perturbatively cancel pure dephasing in a single qubit
up to an arbitrarily high order n while using a minimal
number (n) of pulses, paving the way to further opti-
mization for given sequence duration [1, 5] and/or spe-
cific noise environments [6], to nearly-optimal protocols
for generic single-qubit decoherence [7]. Experimentally,
UDD has been employed to prolong coherence time in
systems ranging from trapped ions [4, 5, 8] and atomic
ensembles [9] to spin-based devices [10], and to enhance
contrast in magnetic resonance imaging of tissue [11].

In a realistic DD setting, the achievable performance is
inevitably influenced by errors due to limited control as
well as deviations from the intended decoherence model.
Since it is conceivable that both model uncertainty and
pulse non-idealities can be largely removed by more ac-
curate system identification and control design, some of
these limitations may be regarded as non-fundamental
in nature. Composite-pulse [12] and pulse-shaping [13]
techinques can be used, for instance, to cancel to high
accuracy the effects of both systematic control errors and
finite-width corrections. We argue, however, that even in
a situation where pulses may be assumed perfect and in-
stantaneous, an ultimate constraint is implied by the fact
that the rate at which control operations are effected is

necessarily finite — as determined by a “minimum switch-
ing time” Ty, for the available control modulation. Our
goal in what follows is to rigorously quantify the perfor-
mance limits to preserving coherence using DD as arising
from the sole constraint of finite timing resources.

We focus on the paradigmatic case of a single qubit un-
dergoing pure dephasing due to either a quantum bosonic
bath at equilibrium or classical (Gaussian) noise, and
controlled through a sequence of instantaneous w pulses.
While representing an adequate idealization of realistic
decoherence control settings [4, 5, 8, 9, 11], this problem
is exactly solvable analytically [2, 3|, enabling rigorous
conclusions to be established. Our first result is a non-
perturbative lower bound for the minimum decoherence
error achievable by any DD sequence subject to a timing
constraint 7y, for noise spectra characterized by a finite
spectral bandwidth w.. Secondly, we show how to gener-
ate “bandwidth-adapted” DD sequences that achieve op-
timum performance over a desired storage time while re-
specting the pulse-rate constraint, and demonstrate their
advantages in a realistic excitonic qubit. Conceptually,
our analysis highlights connections between DD theory
and complex analysis of polynomials, and provides fur-
ther insight into the fundamental capabilities and limita-
tions of open-loop non-dissipative quantum control.

Control setting.— Our target system is a single qubit
whose dephasing dynamics in the quantum regime is de-
scribed by a diagonal spin-boson Hamiltonian of the form
H=Hs®Ig+ Hsp + Is ® Hp, with Hg = wS, and

Hsp=5.® Z(gkbk + gzblﬁ Hp = Zwkblbk-
% %

Here, Ig(p) denote the identity operator on the system
(bath), S, = ho./2 is the spin operator along the quanti-
zation axis, and by, (bL) are canonical ladder operators for
the kth bosonic mode, characterized by a frequency wy
and coupling strength gi. If the bath is initially at ther-
mal equilibrium at temperature 1/(kg(3), its influence on
the qubit dynamics is encapsulated by the spectral den-
sity function I(w) =3, |gx|*6(w — wi). Without loss
of generality, we shall assume that I(w) decays to zero
beyond a finite ultraviolet cutoff w,.



DD over an evolution interval [0,7] is achieved by
applying a train of n instantaneous 7 pulses (each im-
plementing a Pauli o, operator) at times {¢;}, where
0 <t <...<t, <T, and we also let t5 = 0 and
tp+1 = T. While keeping the number of pulses n to a
minimum may be desirable for various practical reasons,
neither n nor the resulting sequence duration need to be
constrained a priori. An arbitrary long duration 7" may,
in fact, be needed for quantum memory. In contrast, infi-
nite pulse repetition rates are both fundamentally impos-
sible and undesirable as long as 7" > 0. Let the minimum
switching time Tmin > 0 lower-bound the smallest control
time scale achievable by any sequence:

jefo,....n}. (1)

If the system is initially in a nontrivial coherent su-
perposition of S, eigenstates, its purity in the presence
of DD decays with a factor of exp(—2xy,,}), where the
decoupling error x ;3 = 0 can be exactly expressed in
the following form (see e.g. Eqgs. (8c) and (10) in [3]):

T = min(tj+1 — tj) 2 Tmins

~
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Xits} = / @) 17,y (@) Pdw, T =
f{fj}(w) — (_1)j(eifjwr _eifﬁlwr)’ (3)
7=0

and the “spectral measure” A\(w) = 2 coth(fw/2)I(w)/w?.
In terms of the rescaled pulse times ¢;, Eq. (1) becomes
ti+1 —t; > 1. Physically, Eqs. (2)-(3) can also de-
scribe the purity decay resulting from pure dephasing
in the semi-classical limit, as due to stochastic fluctu-
ations of the qubit energy splitting and experimentally
investigated in [4, 5, 9]. In this case, Hep = 0 and
Hs = [w + &(t)]S., where £(t) is a Gaussian random
variable with a power spectrum S(w) [14]. In order to
evaluate Xy, it suffices to redefine A(w) = S(w)/2mrw?.
The objective of DD is to minimize x(;j. Our main
problem then directly ties to the following: Given the
fundamental constraint of Eq. (1), what is a lower bound
on Xt}

Non-perturbative performance bound.— A lower bound
on x{¢,) can be obtained by restricting the integral in
Eq. (2) to a finite range [0, w,], with a tight bound ensu-
ing if w. coincides with the spectral cutoff in either I(w)
or S(w). We separate the dependencies of X{t;} upon
the timings and the spectral measure A\(w) by applying
Cauchy’s inequality to the functions \'/2?|f| and \~1/2:

“e dw

1 e 2
N> — = d Miynw=[ —. (4
X{t;} = M{)\}( ; |fii,3 (@) w) , Mix /O ) (4)

Thus, the integral [ |f;,}(w)|dw, which is the L;-norm
of the “filter function” fzy over [0,w.], determines a
worst-case lower bound on Xy} for all spectral densi-
ties A(w) for which the integral defining My, is finite.
Interestingly, upon letting e™“™ = 2z € C in Eq. (3), the
function f7 y(w) takes the form of a complex “polyno-
mial” P{gj}(z) with non-integer exponents. Such Miintz

polynomials have been studied in the mathematical lit-
erature, and a plethora of results (and conjectures) exist
on their associated norm inequalities, zeroes, and multi-
plicities [15]. The (now resolved) Littlewood conjecture
in harmonic analysis [16] may be invoked, in particular,
to lower-bound the Li-norm of fij 4:

2

w

< C(logn)?,
Miny (logm)

X{t;} = if we.r > 27, (5)

with C' = O(1). Also note that, regardless of w.7, an
upper bound follows immediately from Eq. (2): xy,) <
myxyn?, where myyy = [;° A(w)dw. Eq. (5) implies that
in the “slow-control” regime where w.7 > 27, the DD er-
ror worsens when more pulses are applied, and coherence
may be best preserved by doing nothing. This reinforces
how sufficiently fast modulation time scales are essential
for achieving decoherence reduction, as we discuss next.

The “fast-control” regime (w.7 < 2m) is implicit in
perturbative DD treatments, where the filter function
f1i,3(w) is chosen to have a Taylor series that starts at
(wT)™, so that Xy, remains small for sufficiently small
values of w,7. While this perturbative approach has been
used for designing efficient DD schemes, it cannot lead
to a lower bound on the attainable DD error in the pres-
ence of a timing constraint. Consider for example UDD,,
sequences, in which case ¢; = T'sin?[rj/(2n + 2)] for
j=1,--- . n,and 7 = t;. If 7 is kept fixed, increasing
n is only possible at the expense of lengthening the total
duration as T'(n) = O[rn?]. Irrespective of the fact that
perturbatively the error scales as O[(w.7)"], it carries a
prefactor that grows too fast with n, eventually causing
the perturbative description to break down [17, 18].

A non-perturbative lower bound may be established by
directly mapping the Li-norm integral of f (i} to the size
of the corresponding Miintz polynomial Py; ;(z) over an

arc of the unit circle of length w.7. Theorem 2.2 in [19],
in conjunction with Eq. (4), then implies:

Xfe1 = 1 ce=/(weT)
{t;} = M{)\}T2 ’

if wer <2m,  (6)
for some numeric constants ¢ and a independent of 7, w,
and {t;}. The bound in Eq. (6) is strictly positive for
spectral measures of compact support. That it cannot be
obtained by perturbative methods is manifest from the
fact that it describes an essential singularity in w.7.

It is worth to further interpret Eq. (6) in the light of
existing results. If the control rate is identified as the key
resource that DD leverages for removing errors, a zero
lower bound on x{;,;; would allow, in principle, arbitrar-
ily high DD accuracy to be achieved by using sufficiently
long sequences with a fized Ty, — that is, in analogy with
fault-tolerant quantum computation [20], with a constant
resource overhead relative to the noise-free case. Histor-
ically, the impossibility of reliable computation with a
constant blow-up in resources (circuit depth) was estab-
lished in [21] in the broader context of noisy reversible
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FIG. 1: (Color online) Decoupling error for UDD,, sequences
vs. wer, for a “flat” spectral measure A% (w) = O(w — w,).
The comparison curve denotes the general lower bound, Eq.
(6), evaluated for a = 3, ¢ = 1/2, chosen to approximate a fit.

circuits, both classical and quantum. Therefore, our re-
sults may be taken to reinforce the fundamental limita-
tions of purely unitary quantum error correction, while
explicitly characterizing the way in which such limiting
performance depends upon the physical parameters.
Achieving the performance bound.— Note that the
minimum switching time 7, enters Eq. (6) naturally,
whereas both the total duration 7" and pulse number n
are markedly absent from it. Thus interestingly, if the
bound can be achieved, it should be possible to do so
irrespective of how long 7', provided that n is uncon-
strained. We can show that the error associated with
UDD sequences, xYPP| saturates the fundamental limit
in Eq. (6) in functional form although not necessarily
in absolute sense (see also Fig. 1). This follows from
noting that an upper bound to xYPP in the presence of
a hard spectral cutoff may be obtained from an upper
bound to |fVPP(w)|, by tailoring n to the bandwidth,
n =no~ 1/(e?w.7) (see Remark 2.6 in [19]). This yields:

UDD(w)|2 < M} clefal/(wc‘r)7

UDD
< myyy- max
Xn _ { } no WCT

we[0,w.] |

where ¢/ = 2/(me?), ' = 2/€?, and a similar functional
form as in Eq. (6) is manifest. With 7 = t; = 7y, fixed,
the duration T of the “tailored UDD,,” sequences scales
as O[1/(w2Tmin)], and the longest allowed 7-value that re-
sults in coherence improvement scales as 1/(nw.). Thus,
UDD provides no guarantee that the error reaches its
absolute minimum and accessing the required 7 becomes
increasingly harder as T grows. This motivates searching
for DD sequences that can operate beyond the perturba-
tive regime and retain their efficacy over the broadest
range possible, up to 1/(nw.) <7 < 1/we.

Various optimized DD strategies have been investi-
gated for the qubit-dephasing setting under considera-
tion. In “locally optimized” (LO) DD [4], optimal pulse
timings are determined via direct minimization of the
error Xy} for a fixed target storage time 7', whereas in
“optimized noise filtration” (OF) DD, only the integral of
the filter function is minimized [5] (see also [6] for a noise-
adapted perturbative approach). While LODD/OFDD
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FIG. 2: (Color online) Decoupling error for BADD (dashed),
LODD (dotted), and UDD (solid) sequences vs. total dura-
tion 7" with the minimum interval 7’s indicated, for a dephas-
ing exciton qubit operating at temperature 77K (see text).
The search space for BADD and LODD covers up to n = 100
pulses, whereas for UDD n < 20. See [22] for further detail
and a comparison between different pulse timing patterns.

can access regimes where perturbative approaches are not
efficient, they focus on matching the total sequence du-
ration T" as the fundamental constraint. However, this
may fail to produce a satisfactory control solution if the
timing constraint imposed by Eq. (1) is significant.

To guarantee that such a fundamental limitation is
obeyed, we introduce optimized bandwidth-adapted DD
(BADD) sequences where both the minimum switching
time and the total time are constrained from the outset,
see Supplementary Material in [22] for additional techni-
cal detail. We demonstrate the usefulness of BADD by
focusing on the exciton qubit analyzed in [18], for which a
spin-boson dephasing model with a supra-Ohmic spectral
density and a Gaussian cutoff is appropriate, I¥*(w) =
aw® exp(—w?/w?) with s = 3, a ~ 1.14 x 107202,
we ~ 3radps™!, and the need to avoid unwanted ex-
citation of higher-energy levels enforces a timing con-
straint Tyin & 0.1 ps [23]. The results are summarized in
Fig. 2. Besides indicating the inadequacy of perturba-
tive UDD for T' 2 1 ps, two main features emerge. First,
as predicted by Eq. (6), the minimum error achievable
by BADD is mainly dictated by 7, largely independently
of the total time T'. Second, LODD performance is fairly
sensitive to the timing constraint: for a fixed 7' (10 ps
in Fig. 2), “softening” the constraint selects LODD se-
quences that outperform BADD, the opposite behavior
being seen if the constraint on the intended 7 is “hard-
ened”. Thus, a BADD protocol effectively optimizes over
a set of LODD sequences where the timing constraint is
only approximately met, consistent with intuition.

In practice, an important question is whether the per-
formance of a DD scheme is robust against uncertain-
ties in the underlying spectral measure: in particular,
sequences adapted to a presumed w.Tmin need not be ad-
equate for the actual W/ 7. Some illustrative results are
depicted in Fig. 3 for sequences subject to the same tim-
ing constraint, but applied to a setting where w!, # w.
Clearly, a smaller cutoff v/, leads to smaller decoherence,
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FIG. 3: (Color online) Purity loss, 1 — eiQX“J'}, vs. actual
over presumed cutoff, w,/w., for the supra-Ohmic Gaussian
spectral density (s = 3) corresponding to the exciton qubit.
All sequences are adapted to T =~ 10ps, 7 ~ 0.1ps. Varying
the “actual” power law of the noise to s = 4 and s = 2 resulted
in a qualitatively similar behavior (data not shown).

but much more so for perturbative UDD sequences. Ex-
pectedly, the knowledge of the spectral density explicitly
assumed in generating BADD and LODD results in far
better coherence compared to OFDD and UDD, espe-
cially when this knowledge is precise (w/,/w. = 1) or over-
estimates the cutoff. Comparatively, BADD sequences
appear to be more robust than LODD sequences when
the cutoff is underestimated.

Discussion.— Our mathematical description has re-
lied on the solvability of the dephasing spin-boson model
in the limit of instantaneous control pulses, however we
expect similar timing-induced lower bounds to exist un-
der more general conditions. In principle, non-Gaussian

classical dephasing such as random telegraph noise could
be addressed based on the exact solution presented in
[24], whereas non-bosonic dephasing models of the form
Hsp+ Hp = S, ® B, + By, could be tackled by matching
the leading-order contributions in B, with the bosonic
case studied here. Note, however, that bounded tim-
ing resources do not prevent the DD accuracy bound to
be zero in special cases — such as “monochromatic” or
“non-dynamical” baths (Hp = 0), for both of which the
length of the arc appearing in Eq. (6) vanishes. Similarly,
“nilpotent” environments, where powers of the bath op-
erators in Hgp and Hp vanish at some order, allow per-
turbative DD schemes to achieve perfect decoupling, as
perturbation theory becomes exact. For more “adversar-
ial” environments, where Hgp is not restricted to but in-
cludes single-axis decoherence, similar lower bounds must
exist by inclusion. Elucidating the algebraic features re-
sponsible for a finite vs. zero performance bound remains
an interesting open problem with implications for quan-
tum error correction in general. As opposed to pulsed
control scenarios, continuous-time modulation subject to
finite energy/bandwidth constraints has also been ex-
plored for decoherence control [25]. Although, even for a
purely dephasing qubit, finding the optimal modulation
requires solving a non-linear integro-differential equation,
it would be interesting to quantify the extent to which
the extra freedom afforded by continuous controls may
improve the achievable performance lower bounds.
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