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We study various types of multipartite states lying near the quantum-classical boundary. The class
of so-called classical states are precisely those in which each party can perfectly identify a locally held
state without disturbing the global state, a task known as non-disruptive local state identification
(NDLID). We show NDLID to be closely related local broadcasting and we introduce a new class of
states called generalized-classical states which allow for both NDLID and multipartite broadcasting
when the most general quantum measurements are permitted. Simple analytical methods and a
physical criterion are given for detecting whether a multipartite state is classical or generalized-
classical. For deciding the latter, a semi-definite programming algorithm is presented which may
find use in other fields such as signal processing.

PACS numbers: 03.67.-a, 03.65.Ud, 03.67.Mn

Introduction.—There are many ways in which compos-
ite quantum systems can exhibit non-classical properties.
The correlations between entangled states have generated
some of the most puzzling paradoxes in quantum theory;
however even unentangled, or separable states, possess
correlations that cannot be simulated by classical sys-
tems and thus defy our intuition. Recently, much in-
terest has been raised concerning the properties of these
non-classical correlations with applications to a variety
of fields [1–8].

In light of this, several measures have been designed
to isolate and quantify precisely the non-classical nature
of a quantum state such as quantum discord [9], quan-
tum deficit [1], measurement induced disturbance [10],
and similar quantities [2, 11–13]. One common feature
of all these measures is that they vanish for fully classical
states, i.e. those in which the shared correlations among
all the parties can be simulated on a classical system.
Thus, any such measure can be interpreted as quantifying
how far away a given state is from the classical-quantum
border, even within the class of separable states.

In this Letter, we take an alternative approach to the
sharpening of the quantum-classical boundary region; in-
stead of grouping states in this region according to some
numerical distance away from the set of classical states,
we identify a state as “nearly” classical if it possesses
a well-defined trace of some purely classical property.
Specifically, we address the following two questions: (i)
in what physical ways can general quantum states resem-
ble classical states, and (ii) how can one detect whether
a given state is classical or at least resemblant to one in
the sense of question (i)?

One answer to the first question, which we investi-
gate below, involves a state’s ability to undergo non-
disruptive local state identification (NDLID). In the re-
mainder of this letter, we will first give a precise descrip-
tion of NDLID and introduce the class of generalized-
classical states which exhibit this property. We find that
the ability for such states to undergo NDLID renders
them suitable for the related task of probabilistic local

broadcasting as studied by Piani et al. [5]. Since only
fully classical states can be locally broadcast with prob-
ability 1 [5], the stochastic possibility for generalized-
classical states to be locally broadcast further supports
the strongly classical nature of these states. Generalized-
classical states are found to occupy a measure zero vol-
ume of state space and belong to the class of so-called
minimal length separable states. After that, we will pro-
ceed to answer question (ii) by providing computational
and experimental methods for deciding whether or not a
given multipartite state is classical or even just similar
to one in its ability for NDLID. Our detection algorithm
can be efficiently implemented which differs drastically
from the best known methods of detecting separability.

NDLID and a Hierarchy of Separable States.—As a
motivating example, consider the fully classical state
ρ = 1

2 (|00〉〈00| + |11〉〈11|). Each party can perform
a projective measurement in the computational basis
and learn his/her local state to be either |0〉 or |1〉.
When these results are not recorded or kept secret, the
post-measurement state is still ρ, and the parties have
thus identified their state without perturbing the over-
all state. The ability for each party to perform such
an information-gathering process without failure is not
particular to this example but, in fact, completely char-
acterizes the set of fully classical states [9]. As a result,
the possibility for a given state to undergo some sort of
NDLID can be regarded as a signature of “classicalness.”

In general, we will say a state ρ allows for NDLID by

party k if there exists a decomposition ρ =
∑

i piρ
(k)
i ⊗

|φ(k)
i 〉〈φ(k)

i | and local measurement {M (k)
i }i=1...n with

∑n
i=1M

(k)†
i M

(k)
i ≤ I(k) such that

M
(k)
i |φ(k)

j 〉〈φ(k)
j |M (k)†

i = λδij |φ(k)
j 〉〈φ(k)

j | (1)

for some 0 < λ ≤ 1. Upon outcome i, party k can then

conclude that his/her system is in state |φ(k)
i 〉 among

the ensemble {|φ(k)
j 〉}, while the rest of the system is in

state ρ
(k)
i . Furthermore, it can easily be seen that under



2

the action of this measurement, the global state remains

invariant:
∑n

i=1(I
(k) ⊗M

(k)
i )ρ(I(k) ⊗M

(k)†
i ) = λρ.

From Eq. (1), it immediately follows that the task
of NDLID is equivalent to unambiguous state discrim-

ination among the states |φ(k)
j 〉 with a post-selection

rate of λ. A well-known necessary and sufficient con-

dition for accomplishing this feat is that the |φ(k)
j 〉 are

linearly independent [14]. In this case, the measure-

ment operators take the form M
(k)
i = |ψ(k)

ik
〉〈φ(k)⊥

ik
| where

〈φ(k)
jk

|φ(k)⊥
ik

〉 = δijλ for some 0 < λ ≤ 1 and |ψ(k)
ik

〉 form

an orthonormal basis (see [14] for details). Furthermore,

we have λ = 1 if and only if the |φ(k)
j 〉 are orthogonal

and the NDLID can be performed by a complete pro-
jective measurement. These facts motivate the following
classifications of multipartite separable states.

Definition 1 Let {|φ(~i)〉} = {|φ(1)
i1
φ

(2)
i2
. . . φ

(N)
iN

〉} denote
a product state basis.

a. A multipartite state ρ is called separable if it is

diagonal in some product state basis; i.e. ρ =
∑

~i p~i|φ(~i)〉〈φ(~i)|,

b. The state ρ is called generalized-classical for the kth

party if it is diagonal in some product state basis in

which the states {|φ(k)
ik

〉} are linearly independent.

c. The state ρ is called classical for the kth party if

it is diagonal in some product state basis in which

the states {|φ(k)
ik

〉} are orthogonal.

d. The state ρ is called fully generalized-classical or

fully classical if it is diagonal in some product state

basis in which statements b or c are true respec-

tively for all parties.

From the discussion preceding Definition 1, generalized-
classical states are nearly classical in the following sense:

A state is classical (resp. generalized-
classical) with respect to party k if and only
if party k can perform NDLID by a projective
(resp. generalized) measurement.

We observe another important physical interpretation
of generalized classical states which relies on a fundamen-
tal connection between unambiguous state discrimination
and probabilistic cloning [15]. As introduced in Ref. [5],
a multipartite state ρ(12...N) allows for local broadcast-
ing if there exists local maps Λ(i) : H(i) → H(i) ⊗ H(i)

such that the state σ(11′22′...NN ′) = [Λ(1) ⊗ ... ⊗ Λ(N)]ρ

has reduced states σ(12...N) = σ(1′2′...N ′) = ρ. The task
of probabilistically cloning a set of states {|φ1〉, ..., |φm〉}
involves a general CP map Λ with action Λ : |φi〉 7→√
qi|φi〉|φi〉 ∀i with

∑m
i=1 qi ≤ 1. The nonzero num-

ber qi is known as the efficiency for cloning the state
|φi〉, and the set can be probabilistically cloned if and
only if the |φi〉 are linearly independent [15]. Moreover,

if a probabilistic cloner exists with different efficiencies,
then one can always be constructed with all efficien-
cies equal to the smallest one q0, and so the action of
such a map on the mixed state 1

m

∑ |φi〉〈φi| is simply
q0

m

∑ |φiφi〉〈φiφi|. Therefore, since generalized-classical

states have locally linearly independent states |φk
j 〉, each

party can apply a local probabilistic cloner that trans-
forms ρ =

∑

~i p~i|φ(~i)〉〈φ(~i)| → λ
∑

~i p~i|φ(~i)φ(~i)〉〈φ(~i)φ(~i)|,
which is a local broadcast state. The authors of [5] show
that λ = 1 if and only if ρ is fully classical, and we thus
see the unification of tasks:

Deterministic Local Broadcasting ⇔ Deterministic
NDLID ⇔ ρ Fully Classical.

While for the “generalized form” of this statement we
have shown that Probabilistic Local Broadcasting ⇐
NDLID ⇔ ρ Generalized-Classical, it is not clear whether
the converse of the first relation is true, and we leave this
as an open research question.

There exists an even broader class of separable states
still hovering close to the quantum-classical border. An
N -partite state ρ of rank r will be called a mini-
mal length separable state if it has a decomposition

ρ =
∑r

i=1 λi|φ(1)
1 · · ·φ(N)

i 〉〈φ(1)
1 · · ·φ(N)

i | [16]. It is quite
easy to see from the following lemma that any fully
generalized-classical state is also a minimal length sep-
arable state.

Lemma 2 For some multi-index (i1, ..., iN ), if up to rep-

etition of states the |φ(j)
ij

〉 are linearly independent for all

parties j, then the product states |φ(1)
i1

· · ·φ(N)
iN

〉 are also
linearly independent.

By this lemma and Definition 1, if ρ is fully
generalized-classical, it has a decomposition ρ =
∑δ

i=1 |φ
(1)
i1

· · ·φ(N)
iN

〉〈φ(1)
i1

· · ·φ(N)
iN

| with δ ≥ r and each

|φ(1)
i1

· · ·φ(N)
iN

〉 linearly independent. This last property
implies that r = δ and so we see that each fully
generalized-classical state is a minimal length state. Fur-
thermore, in the bipartite case, if a state is generalized-
classical with respect to just one of the parties, it will
be of minimal length. The following chain of inclusions
summarizes the main parsings described in this letter:

separable ⊃ minimal length ⊃ fully generalized-classical
⊃ fully classical ⊃ product.

Here, product states refer to states of the form ρ = ρ1 ⊗
· · · ⊗ ρN .

There are two reasons to consider minimal length
states as also lying near the quantum-classical border.
First, it is known that only non-minimal length states
constitute the opposite end of the spectrum at the
separable/non-separable boundary [16]. While this alone
does not imply a closeness between minimal length and
classical states, such an interpretation becomes further
justified when considering the volumes of each set in state
space. Separable states possess a nonzero volume [17]
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while minimal length states are of measure zero [18]. This
final point has an even greater relevance to our discussion
since it implies that fully generalized-classical states are
also of measure zero. In other words, nearly all multipar-
tite quantum states lack the property of non-disruptive
local state identification. Also note that this provides an
alternative proof for the result in Ref. [19] which shows
a generic state to have a nonzero discord (i.e. is non-
classical).

Decision Algorithms for Classical and Generalized-
Classical States.— In the last portion of this Letter we
address the question of deciding whether a given mul-
tipartite state is classical or generalized-classical. Our
results, discovered independently, generalize the recent
works on this topic [7, 20–23] in which necessary and suffi-
cient conditions have been provided for deciding the non-
classical bipartite states. The techniques we use are sim-
ilar to those in Ref. [22] in that both our algorithms in-
volve checking commutation relations. Interestingly, we
find that deciding whether a state is generalized-classical
reduces to a problem similar in nature to those well-
studied in the field of signal processing [24, 25]. Hence,
our use of semi-definite programming (SDP) in detect-
ing generalized-classical states may be of interest to re-
searchers in that subject, as well as the linear algebra
community at large.

We first make an easy but important observation.

Lemma 3 The state ρ is fully generalized-classical (resp.
classical) if it is generalized-classical (resp. classical) for
all parties.

Proof. We will prove this for the bipartite case, but
the idea immediately generalizes to arbitrary number of
parties. Suppose ρ =

∑

i ρi ⊗ |bi〉〈bi| =
∑

i |ai〉〈ai| ⊗ σi

where the |bi〉 and |ai〉 are linearly independent (resp.
orthonormal). Then we see that each ρi is a linear com-
bination of the |ai〉〈ai| so that |ai〉⊗|bj〉 is a product basis
in which ρ is diagonal. ⊓⊔

By Lemma 3, it will be sufficient to only consider bi-
partite systems in the following discussion. So introduce
Alice and Bob and let dA and dB denote the dimen-
sions of their subsystems respectively. If ρ is classical
or generalized-classical with respect to Bob, there exists
some basis |bi〉 such that

ρ =
∑

i

piρi ⊗ |bi〉〈bi|, (2)

while for classical states, the |bi〉 are orthogonal.

Note that in both cases, the contraction 〈φ(A)
1 |ρ|φ(A)

2 〉
will be diagonal in the basis |bi〉 for any two states

|φ(A)
1 〉, |φ(A)

2 〉 ∈ HA. This fact leads to the following the-
orem.

Theorem 4 Let {|φ(A)
i 〉} be any orthonormal basis for

HA. Then ρ is generalized-classical (resp. classical) if
and only if

ρ
(B)
ij := 〈φ(A)

i |ρ|φ(A)
j 〉 (3)

is diagonal in the same (resp. orthonormal) basis {|bi〉}
for all i, j.

Proof. Necessity follows from the above observation.

For sufficiency, suppose that ρ
(B)
ij =

∑

m bijm|bm〉〈bm|
where {|bm〉} is any linearly independent (resp. or-
thonormal) set spanning HB. From the general expan-

sion ρ =
∑

ijmn cijmn|φ(A)
i 〉〈φ(A)

j | ⊗ |bm〉〈bn|, we see that
cijmn = δmnbijm and so

ρ =
∑

ijm

bijm|φ(A)
i 〉〈φ(A)

j | ⊗ |bm〉〈bm| =
∑

m

ρm ⊗ |bm〉〈bm|

(4)

where ρm =
∑

ij bijm|φ(A)
i 〉〈φ(A)

j | = 〈b⊥m|ρ|b⊥m〉 and |b⊥m〉
are vectors such that 〈bi|b⊥j 〉 = δij . The last equation
implies that ρm is semidefinite positive. Hence the state
ρ is generalized-classical (resp. classical) as defined in
Eq. 2. ⊓⊔

Theorem 4 implies that to decide whether ρ is
generalized-classical for Bob, we need to check if the
1
2dA(dA − 1) matrices {〈φ(A)

i |ρ|φ(A)
j 〉}1≤i≤j≤dA

of size
dB ×dB are simultaneously congruent to diagonal matri-
ces. In a more general form, this problem asks to decide
whether for some set {Ai}i=0...m of n× n matrices there
exists an invertible matrix P such that PAiP

† = Λi is
diagonal for all i. We thank Yaoyun Shi for his assis-
tance in constructing the following decision algorithm.
To our knowledge, SDP is a novel approach to solving
the described problem.

Since a general square matrix can always be expressed
as a complex combination of hermitian matrices, without
loss of generality we can assume the Ai are hermitian.
Then the PAiP

† are also hermitian, and if PAiP
† = Λi,

the PAiP
† are simultaneously diagonalized which means

[PAiP
†, PAjP

†] = 0 for all i, j. Conversely, if this latter
condition holds, then there exists a unitary U such that

UPAiP
†U † = P̃AiP̃ † = Λi for all i. So the question is

whether PAiP
†PAjP

† = PAjP
†PAiP

† for all i, j. Or
in other words, AiWAj = AjWAi where W is a positive-
definite matrix. Note that if W is positive-definite, then
we can scale appropriately so that W ≥ I. Thus, we have
the SDP feasibility problem:

Find W

subject to AiWAj = AjWAi for all i, j

W − I ≥ 0. (5)

Known algorithms based on the ellipsoid and interior-
point methods can efficiently solve this problem [26].

To decide whether ρ is classical for Bob, the situation
is easier since P must be a unitary matrix. Thus, the
Ai themselves must commute which in our case amounts
to the vanishing of at most 1

2d
2
A(d2

A − 1) commutation
relations.

Physical detection of classical states—Theorem 4 can
be experimentally implemented by a set of projective
operations and quantum state tomography. A direct



4

reconstruction of the elements in Eq. 3 is not pos-
sible since they are not Hermitian and therefore do
not correspond to anything physical. However, these
terms can be computed indirectly if Alice makes a
set of linearly independent projective operations (ob-
servables) that span her Hilbert-Schmidt space: L =

{|φ(A)
i 〉〈φ(A)

i |, |ψ(A)
ij 〉〈ψ(A)

ij |, |χ(A)
ij 〉〈χ(A)

ij |} where |χ(A)
ij 〉 =

1√
2

(

|φ(A)
i 〉 − i|φ(A)

j 〉
)

and |ψ(A)
ij 〉 = 1√

2

(

|φ(A)
i 〉 + |φ(A)

j 〉
)

for i > j. With that we have the elements of Eq.

3: 〈φ(A)
i |ρ|φ(A)

j 〉 = 〈ψ(A)
ij |ρ|ψ(A)

ij 〉 + i〈χ(A)
ij |ρ|χ(A)

ij 〉 −
1+i
2 (〈φ(A)

i |ρ|φ(A)
i 〉 + 〈φ(A)

j |ρ|φ(A)
j 〉).

According to Theorem 4 a state ρ is classical if and

only if it has the same orthonormal basis for 〈φ(A)
i |ρ|φ(A)

j 〉
for all i, j. It is clear that if TrA[Pρ] is diagonal for

all P ∈ L then ρ is classical. Conversely, 〈φ(A)
i |ρ|φ(A)

j 〉
diagonal in some orthonormal basis for all i, j implies
that TrA[Pρ] is diagonal in same basis for all P ∈ L. As
the elements of L span Alice’s space, any POVM she can
perform will have operator elements with each being a
linear combination of these projectors. Furthermore, if
we consider “Alice’s” system as the joint system of N−1
parties, then any local POVM performed by the N −
1 parties will have product operators E~i =

⊗N−1
j=1 E

(j)
ij

also being a linear combination of projectors from L, and
conversely any element of L can be expressed as a linear
combination of product operators constituting complete
local measurements on the N − 1 subsystems. Thus we
obtain the following:

Theorem 5 An N -partite state ρ is classical with respect
to party k if and only if for any local POVM performed
by the other parties,

[ρ~i, ρ~i′
] = 0 for all ~i, ~i′ (6)

where ρ~i = Trk[E~iρ].

Hence, we see that the non-classical nature of a state
can be detected precisely by the non-commutativity of
reduced states after some local POVM is locally imple-
mented on all but one of the subsystems.

Conclusion.—We have introduced a class of states
called generalized-classical which permit the purely clas-
sical task of non-disruptive local state identification when
general quantum measurements are used. In this sense,
generalized-classical states can be said to hover near the
quantum-classical boundary. We have provided meth-
ods, both analytic and physical, which decide if a state
is classical or generalized-classical. The interpretation
of generalized-classical states lying near the quantum-
classical border is further supported by the fact that
generalized-classical states can be probabilistically lo-
cally broadcast, a task known to be deterministically
possible only for fully classical states. It is interesting
how this ability to locally broadcast can be seen as a
consequence of probabilistic cloning among linearly in-
dependent states, and an intriguing question is whether
the no-cloning theorem is even more fundamental than
the no-broadcasting theorem of Ref. [5].

We have also shown the set of generalized classical
states to occupy zero volume
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