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n+1 dimensional gated fluorescence signals induced by n impulsive pulses are calculated using
a super operator formalism. The signals are given by a time and frequency convolution of a bare
signal expressed in terms of multipoint dipole correlation functions, with a gating spectrogram.
Different groups of quantum pathways can be separated by their variation with the phases of the
pulses (phase cycling), as is commonly done in NMR. Comparison is made with heterodyne-detected
coherent signals.
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I. INTRODUCTION

Coherent multidimensional signals are usually detected by interference with a reference (local oscillator) beam [1–3].
This heterodyne-detection mode provides both the amplitude and the phase of the signal field. Various groups of
Liouville space pathways of the molecular density matrix that contribute to the signal may be separated by simply
looking at signals generated in different phase matching directions. A different, incoherent fluorescence detection is
however the method of choice for single molecule spectroscopy, since it is more sensitive and background free[4–6].
Fluorescence is virtually isotropic in space; nevertheless the groups of pathways may be separated by their dependence
on the phases of the pulses. This phase cycling protocol is common in NMR [7–10] where the signal is isotropic as
well, since the sample is much smaller than the wavelength.

Coherent wave mixing spectroscopies detect a macroscopic electric field generated by a collection of molecules driven
in phase by the external laser pulses. Fluorescence is an incoherent technique: it does not generate a macroscopic
field (the average field vanishes) but produces photons that can be detected. Fluorescence signals do not carry phase
information but this can be retrieved by time and frequency gating [2, 11–15].

Both coherent and incoherent signals can be recorded vs several parameters of the incoming-pulses, thus producing
multidimensional signals. Fluorescence induced by multiple phase controlled pulses and no gating have been carried
out in bulk samples by several groups[16–21]. The technique was recently extended to single molecules [22]. Single
molecule spectroscopy typically resolves slow fluctuation timescales (msec and longer) [4, 23]. Gated fluorescence
signals offer a powerful femtosecond window for ultrafast molecules events, thus combining high spatial and temporal
resolution.

In this paper, we use an intuitive diagrammatic representation for incoherent signals, to derive closed microscopic
correlation function expressions for multidimensional spectroscopy with gated fluorescence detection. The driving
laser pulses are treated as classical, but a quantum description is used of the detected optical field. An application
is made to a three-band exciton model system. Bulk signals can be calculated by a slight modification of the single
molecule results.

∗
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II. INCOHERENT SIGNALS GENERATED IN RESPONSE TO SEQUENCES OF IMPULSIVE PULSES

Our description of incoherent signals starts with the light-matter Hamiltonian in the rotating wave approximation
[24, 25]:

H = H0 + H ′ (1)

H ′ = −E†(r = 0, t)V + −E(r = 0, t)V †, (2)

where the field operator E†(r, t) + E(r, t) and the dipole operator V † + V have been partitioned into their negative
and positive frequency parts. The molecule is located at position r = 0. To describe the fluorescence signal, E(r, t)
is taken as a field operator for the spontaneous emitted modes and a classical function for the other modes, which
represent the incoming laser pulses.

We shall calculate the fluorescence detected using a gate, whose input is located at rG, which consists of a time
gate Ft centered at time t0 followed by a frequency gate Fs centered at frequency ω0 [2, 12–14]. The temporal gate
first transforms the signal field as:

Et(rG, t′) = Ft(t
′, t0)E(rG, t′) (3)

By applying the spectral gate centered at ω0, we obtain the time and frequency gated field Ets(ω
′) = Fs(ω

′; ω0)Et(ω
′).

With E(ω) =
∫∞

−∞ E(t)eıωtdt. Note that the signal depends on the order of gating operations. Applying the spectral
gate first will result is a different signal that can be calculated similarly, as shown in appendix C. Combining the two
gates, the gated field Ets is finally related to the original (bare) signal field by

Ets(rD, t) =

∫ ∞

−∞

dt1Fs(t − t1, ω0)Ft(t1, t0)E(rG, t1), (4)

here rD is the position of the photon detector. To simplify the notation the propagation between rG and rD is
included inside the spectral gate function.

The gated fluorescence signal is given by [11, 26, 27]

S(ω0, t0; Γ) =

∫ ∞

−∞

dt′′〈E†
ts(rD, t′′)Ets(rD, t′′)〉, (5)

the angular brackets in the correlation function is defined as 〈. . . 〉 = tr(. . . ρ). Here Γ denotes a set of parameters
that characterizes the incoming laser pulses. These will be specified later. The signal will be displayed versus these
parameters as well as the gating parameters ω0 and t0. We further define the bare signal, (which is not generally an
experimental observable):

SB(t1, ω
′; Γ) =

∫ ∞

0

dτ〈E†(rD, t1 + τ)E(rD , t1)〉e
−ıω′τdτ (6)

We shall also introduce the gating spectrogram [12, 14]:

W (ω0, t0; ω
′, t1) =

1

2π

∫ ∞

−∞

dt′′
∫ ∞

−∞

dτeıω′τF ∗
s (t′′ − t1 − τ, ω0)F

∗
t (t1 + τ ; t0)Fs(t

′′ − t1; ω0)Ft(t1; t0) (7)

This can be recast in the form:

W (ω0, t0; ω
′, t1) =

∫ ∞

−∞

dω

(2π)2
|Fs(ω, ω0)|

2Wt(t1, ω − ω′, t0) (8)

where

Wt(t1, ω; t0) =

∫ ∞

−∞

F ∗
t (t1, t0)Ft(t1 + τ, t0)e

ıωτdτ (9)

By combining Eqs. (4-9) we get the final expression for the signal:

S(ω0, t0; Γ) =

∫ ∞

−∞

dt1

∫ ∞

−∞

dω′W (ω0, t0; ω
′, t1)SB(t1, ω

′; Γ) + c.c. (10)



3

The gating spectrogram thus connects the observed S and the bare SB signals and controls the temporal and spectral
resolution of the measurement.

To connect the bare signal SB with the molecular properties, we use the solution of the wave equation with a point
a dipole source V located at the origin r = 0 (see appendix B)[28]:

E(rG, t) = AV̈H(0, t − |rG|/c) (11)

The prefactor A is given by Eq. (B6). To simplify the expressions, we will omit in the following the time retardation,
assuming that the time scale at the detector are adjusted accordingly (t1 at lhs of Eq. (12) and following should read
t1 + |rG|/c.) Substituting Eq. (11) in Eq. (6), we obtain for the bare signal:

SB(t1, ω
′; Γ) = |A|2

∫ ∞

0

dτe−ıω′τ 〈V̈ †
H(t1 + τ)V̈H(t1)〉 (12)

The subscript H indicates that these operators are in Heisenberg picture i.e. evolve with the full Hamiltonian Eq.
(2).

We shall adopt a superoperator notation, which allows to derive compact expressions in Liouville space and clearly
reveals the relevant pathways [1, 29–31]. For any operator A we define the ”left” and ”right” superoperators ALX =
AX , ARX = XA by their action on any other operator X. We further introduce the two linear combinations A+ =
1
2 (AL + AR), A− = AL −AR. These definitions imply that A+X = 1

2 (AX + XA), and A−X = AX −XA. Using the
superoperator representation of the interaction picture [30, 31], we get:

SB(t1, ω
′; Γ) =

|A|2
∫ ∞

0

dτe−ıω′τ∂2
t1+τ∂2

t1tr[TV †
R(t1 + τ)VL(t1)exp(−

ı

~

∫ ∞

0

dτ1H
′
−(τ1))ρ0] (13)

The operators V are in the interaction picture defined as

V (t) = exp(ıH0t/~)V exp−(ıH0t/~) (14)

and here we used the formal expression for the density matrix:

ρ(t) = T exp(−
ı

~

∫ t

0

H ′
−(τ)dτ)ρ0 (15)

Here T is the time ordering operator, which rearranges the operators to its right in order of increasing time from right
to left. We are using partial derivatives, since the entire expression inside the trace can be viewed as a function of
the variables t1 + τ and t1 (cf. Eq. (12)).

Eq. (13) is the key formal result of this paper. Together with Eq. (10) we have thus recasted the gated signal in
terms of the underlying microscopic molecular dynamics.

We next consider two limiting cases for the detection. For an ideal frequency gating, when no time gating is applied,
we can set Ft(t

′, t0) = 1 and obtain:

W (ω0, t0; ω
′, t1) =

1

2π

∫ ∞

−∞

dt′′
∫ ∞

−∞

dτeıω′τF ∗
s (t′′ − t1 − τ, ω0)Fs(t

′′ − t1; ω0) (16)

Assuming Fs(τ ; ω0) = e−ıω0τe−γτΘ(τ) with γ → ∞, we obtain the ideal spectral gate:

W (ω0, t; ω
′, t1) = δ(ω′ − ω0) (17)

Substituting Eq. (17) in Eq. (10) gives the spectral resolved signal:

Ss(ω0; Γ) =

∫ ∞

−∞

dt1SB(t1, ω0; Γ) + c.c (18)

Combining with Eq. (12), we finally obtain:

Ss(ω0; Γ) = |A|2
∫ ∞

−∞

dt1

∫ ∞

0

dτ

e−ıω0τ∂2
t1+τ∂2

t1tr(TV †
R(t1 + τ)VL(t1)exp(−

ı

~

∫ ∞

0

dτ1H
′
−(τ1))ρ0) + c.c. (19)
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Assuming that the density matrix at time t1 is diagonal, that the coherent pulses and the gate are well separated,
and that there are no photons in system at t1 we get for the matter density matrix ρe:

ρe(t1) =
∑

n

Pn(t1)|n〉〈n| (20)

Pn(t1) = tr

[

|n〉〈n|T exp(−
ı

~

∫ t1

0

dτ1H
′
−(τ1))ρ0

]

(21)

Eq. (19) then becomes:

Ss(ω0; Γ) = B
∑

m<n

ωnmΓnm

∫ ∞

−∞

dt1Pn(t1)δ(ω0 − ωnm) (22)

where the sum runs over molecules states with εm < εn and B = 3π2|A|2c3ε0/~, with ωnm = εm − εn.

Γmn =
ω3

nm
|Vnm|2~

3πc3ε0
is the radiative decay rate from state m to n [24].

The signal in this limit can be alternatively derived by summing over the temporal derivative of the photon number
ni of all modes with frequency ω0 and integrating over time:

Ss(ω0; Γ) ∝
∑

i,ωi=ω0

∫ ∞

−∞

∂tni(t)dt (23)

We next turn to the second limiting case of ideal temporal gating. Here, we assume no frequency gating and set
Fs(τ, ω0) = δ(τ):

W (ω0, t0; ω
′, t1) =

1

2π
F ∗

t (t1; t0)Ft(t1; t0) (24)

Taking a short time filter with |Ft(t1, t0)|
2 = δ(t1 − t0) we get the ideal temporal gate:

W (ω0, t0; ω
′, t1) =

1

2π
δ(t1 − t0) (25)

Substitution this in Eq. (12) gives, the temporally resolved signal:

St(ω0.t; Γ) =
1

2π

∫ ∞

−∞

dω′SB(t, ω′; Γ) + c.c. (26)

Inserting Eq. (13) gives:

St(ω0, t; Γ) =
|A|2

2π

∫ ∞

−∞

dω′

∫ ∞

0

dτe−ıω′τ

∂2
t+τ∂2

t tr(TV †
R(t + τ)VL(t)exp(−

ı

~

∫ ∞

0

dτ1H
′
−(τ1))ρ0) + c.c (27)

The integrations can now be carried out and this finally gives:

St(t; Γ) = |A|2∂2
t+τ∂2

t tr(TV †
R(t)VL(t + τ)exp(−

ı

~

∫ ∞

0

dτ1H
′
−(τ1))ρ0)

∣

∣

∣

∣

τ=0

+ c.c (28)

In order to simplify this formula further, we again assume that the matter density matrix is given by Eqs. (20-21)
and the signal finally becomes:

St(t; Γ) =
∑

n

BΓnPn(t) (29)

Γn =
∑

m<n

ωnmΓnm (30)

The spectrum in this limit can be alternatively derived by summing over the temporal derivative of the photon
number ni of all modes with frequency ω0:

S(t; Γ) ∝
∑

i,ωi

ωi∂tni(t) (31)
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Figure 1: The three-band model system used to calculate the fluorescence signal.

Figure 2: Experimental setup for the gated fluorescence measurement.

III. FLUORESCENCE OF A THREE-BAND MODEL SYSTEM IN RESPONSE TO FOUR IMPULSIVE

PULSES

We now apply the formal expressions derived earlier to the three band model system shown in Fig. 1 subjected to
four temporally well separated excitation pulses:

E(t) = E1(t)e
ıω1t+ıϕ1 + E2(t − t1)e

ıω2t+ıϕ2

+E3(t − t1 − t2)e
ıω3t+ıϕ3 + E4(t − t1 − t2 − t3)e

ıω4t+ıϕ4 + c.c (32)

The pulse envelopes Ej(t) are temporally well separated, we assume impulsive fields Ei(t) = Eiδ(t). Furthermore,
hereafter we treat the four excitation pulses as classical. This generic model can represent for example excitons in
molecular aggregates or semiconductors.

The density matrix Eq. (15) calculated to the fourth order in the fields has 24 = 16 pathways.

ρ(4) =

(

−ı

~

)4

H ′
−G(t3)H

′
−G(t2)H

′
−G(t1)H

′
−ρ0 (33)

with the interaction picture operators H ′
−(t) = exp( ı

~
H0t)H

′
− exp(− ı

~
H0t). and G(t) = θ(t) exp(− ı

~
H−t). θ(t) is the

Heavyside step function that ensures causality.
When recast in Hilbert Space, Eq. (33) reads:

ρ(4) =

(

−ı

~

)4

[H ′(t1 + t2 + t3), [H
′(t1 + t2), [H

′(t1), [H
′, ρ0]]]] (34)

Eq. (34) can be divided into 16 groups of terms with respective phases ±ϕ1 ± ϕ2 ± ϕ3 ± ϕ4. Each of these groups
can be measured using phase cycling protocol which combines experiments with different phases [7–10]. Hereafter we
select the phase φ = ϕ1 + ϕ2 − ϕ3 − ϕ4, signals with other phases can be calculated similarly. Within the rotating
wave approximation (RWA), the density matrix corresponding to the phase shown in Figure 3 has four contributions
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Figure 3: The contribution the density matrix of system Fig. 1 driven by four impulsive pulses we have selected with phase
φ = ϕ1 + ϕ2 − ϕ3 − ϕ4 (Eq. 35)

Figure 4: Multidimensional fluorescence signal with phase φ = ϕ1 + ϕ2 − ϕ3 − ϕ4 of the model system of Fig. 1 induced by
four impulsive pulses.

labeled (i) - (iv)

ρ
(4)
φ (t1 + t2 + t3) =

(

∑

g1g2

ρi(g1, g2)|g1〉〈g2| +
∑

e2e3

ρii(e2, e3)|e2〉〈e3|

+
∑

e2e3

ρiii(e2, e3)|e2〉〈e3| +
∑

f1f2

ρiv(f1, f2)|f1〉〈f2|



 (35)
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To simplify the expressions we assume impulsive pulse Ei(t) = Eiδ(t). We then get:

ρi(g1, g2) =

(

−ı

~

)4

tr(|g2〉〈g1|VLG(t3)VLG(t2)V
†
LG(t1)V

†
Lρ0)Eφ (36)

ρii(e2, e3) = −

(

−ı

~

)4

tr(|e3〉〈e2|VRG(t3)VLG(t2)V
†
LG(t1)V

†
Lρ0)Eφ (37)

ρiii(e2, e3) = −

(

−ı

~

)4

tr(|e3〉〈e2|VRGfl3(t3)VLG(t2)V
†

LG(t1)V
†
Lρ0)Eφ (38)

ρiv(f1, f2) =

(

−ı

~

)4

tr(|f2〉〈f1|VRG(t3)VRG(t2)V
†

LG(t1)V
†
Lρ0)Eφ (39)

where we have defined the auxiliary parameter:

Eφ = eıϕ1+ıϕ2−ıϕ3−ıϕ4E1E2E
∗
3E∗

4eı(ω2−ω3−ω4)t1−ı(ω3+ω4)t2−ıω4t3 (40)

Eqs. (36-39) can be transformed to Hilbert space.

ρi(g1, g2) =

(

−ı

~

)4

〈g1|V (t1 + t2 + t3)V (t1 + t2)V
†(t1)V

†(0)ρ0|g2〉Eφ (41)

ρii(e2, e3) = −

(

−ı

~

)4

〈e2|V (t1 + t2)V
†(t1)V

†(0)ρ0V (t1 + t2 + t3)|e3〉Eφ (42)

ρiii(e2, e3) = −

(

−ı

~

)4

〈e2|V (t1 + t2 + t3)V
†(t1)V

†(0)ρ0V (t1 + t2)|e3〉Eφ (43)

ρiv(f1, f2) =

(

−ı

~

)4

〈f1|V
†(t1)V

†(0)ρ0V (t1 + t2)V (t1 + t2 + t3)|f2〉Eφ (44)

We now expand Eqs. (36-39) in eigenstates and use the approach of [32] to incorporate the finite pulse envelopes:

ρi(g1, g2) =
1

~4

∑

e1,e2,f

P0,g1
Vg2e2

Ve2fVfe1
Ve1g1

E1(ωe1g1
− ω1)E2(ωfe1

− ω2)E
∗
3 (ωfe2

− ω3)E
∗
4 (ωe2g2

− ω4)

exp(−ıωe2g1
t3 − γe2g1

t3 − ıωfg1
t2 − γfg1

t2 − ıωe1g1
t1 − γe1g1

t1) (45)

ρii(e2, e3) = −
1

~4

∑

g1,e1,f

P0,g1
Ve2fVfe1

Ve1g1
Vg1e3

E1(ωe1g1
− ω1)E2(ωfe1

− ω2)E
∗
3 (ωfe2

− ω3)E
∗
4 (ωe3g1

− ω4)

exp(−ıωe2g1
t3 − γe2g1

t3 − ıωfg1
t2 − γfg1

t2 − ıωe1g1
t1 − γe1g1

t1) (46)

ρiii(e2, e3) = −
1

~4

∑

e1,f,g1

P0,g1
Ve2fVfe1

Ve1g1
Vg1e3

E1(ωe1g1
− ω1)E2(ωfe1

− ω2)E
∗
3 (ωe3g1

− ω3)E
∗
4 (ωfe2

− ω4)

exp(−ıωfe3
t3 − γfe3

t3 − ıωfg1
t2 − γfg1

t2 − ıωe1g1
t1 − γe1g1

t1) (47)

ρiv(f1, f2) =
1

~4

∑

e1,e2,g1

P0,g1
Vf1e1

Ve1g1
Vg1e2

Ve2f2
E1(ωe1g1

− ω1)E2(ωf1e1
− ω2)E

∗
3 (ωe2g1

− ω3)E
∗
4 (ωf2e2

− ω4)

exp(−ıωf1e2
t3 − γf1e2

t3 − ıωf1g1
t2 − γf1g1

t2 − ıωe1g1
t1 − γe1g1

t1) (48)

Here, we have defined P0,ν ≡ Pν(t = 0).
We used for the example of Eqs. (45-48) the coherent limit, where the Green’s function matrix elements in the

system eigenstates basis v read:

Gvv′(t) = θ(t) exp(−ıωvv′t − γvv′t) (49)

ωνν′ is the frequency and γνν′ the dephasing rate of the νν′ transition. More complex relaxation models may be
used together with the equations before and the following equations.[1, 33] For example G can depend on a set of
collective bath coordinates Q that satisfy a Markovian dynamics (Master equation, Fokker-Planck eq. etc). We then
have G(Q, Q′, t) and the correlation functions are given by path integrals over the trajections of Q. G can describe
how states shift due to solvent reorganization.[1].
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Assuming fast dephasing, ρ(4) becomes diagonal and we have
∑

e2
ρii(e2, e2) = −

∑

g1
ρi(g1, g1) and

∑

e2
ρiii(e2, e2) = −

∑

f1
ρiv(f1, f1) we then get:

ρ
(4)
D = (

∑

e2

Pii,e2
|e2〉〈e2| −

∑

g1

Pi,g1
(|g1〉〈g1|)

+(
∑

f1

Piv,f1
|f1〉〈f1| +

∑

e1

Piii,e1
|e1〉〈e1|) (50)

Pii,e2
= ρii(e2, e2) Pi,g1

= ρi(g1, g1)

Piii,e1
= ρiii(e1, e1) Piv,f1

= ρiv(f1, f1) (51)

It is clear from Eq.(50) that Tr(ρ
(4)
s ) = 0. This follows immediately from Eq. (33) since this is given by the trace of

a commutator. In fact, the trace of all ρ(n), n = 1, 2 . . . must vanish so that the trace of ρ(0) is conserved.
If we do not resolve the fluorescence into states, the signal is given by the total excited state population. Given

by the sum of three terms ρii, ρiii and ρiv. If we distinguish the states (through either their temporal (Eq. (29)) or
spectral fluorescence profile (Eq. (22))) we can separate the Pe and Pf , contributions.

Substituting Eq. (33) in Eq. (13), we obtain for the bare time and frequency resolved fluorescence signal:

SB(ω′, t′, t3, t2, t1)

=
|A|2

~4

∫ ∞

0

(∂2
t′+τ∂2

t′tr(V
†
RG(τ)VLG(t′)H ′

−G(t3)H
′
−G(t2)H

′
−G(t1)H

′
−ρ0))

exp(−ıω′τ)dτ (52)

This includes all contributions ±ϕ1 ±ϕ2 ±ϕ3 ±ϕ4. Substituting in Eq. (10) yields a five dimensional signal (we now
denote t = t4)

S(ω, t4, t3, t2, t1) = Re

∫ ∞

−∞

dt′
∫ ∞

−∞

dω′SB(ω′, t′, t3, t2, t1)W (ω, t4; ω
′, t′) (53)

Translating the superoperators into Hilbert Space the bare signal reads

SB(ω′, t′, t3, t2, t1)

=
|A|2

~4
Eφ

∫ ∞

0

exp(−ıω′τ)

∂2
t′+τ∂2

t′tr(V
†(t1 + t2 + t3 + t′ + τ)V (t1 + t2 + t3 + t′)

[H ′(t1 + t2 + t3), [H
′(t1 + t2), [H

′(t1), [H
′(0), ρ0]]]])dτ (54)

We shall now select the contribution with phase φ = ϕ1 + ϕ2 −ϕ3 − ϕ4 and obtain for the gated fluorescence ( Eq.
(10)):

Sφ(ω0.t; Γ) =

∫ ∞

−∞

dt1

∫ ∞

−∞

dω′W (ω0, t; ω
′, t1)S

a
φ(t1, ω

′; Γ)

+

∫ ∞

−∞

dt1

∫ ∞

−∞

dω′W ∗(ω0, t; ω
′, t1)S

b
φ(t1, ω

′; Γ) (55)

Here the contributions Sa
φ and Sb

φ represent the bare signal SB (see diagrams of Fig. 4). We have three contributions
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to Sa
φ (pathways with (a)) and three contributions to the Sb

φ (pathways with (b)):

Sa
φ = Siia + Siiia + Siva (56)

Sb
φ = Siib + Siiib + Sivb (57)

Siia(ω′, t4, t3, t2, t1) =
|A|2

~4
Eφ

∫ ∞

0

dτ exp(−ıω′τ)

∂2
t4+τ∂2

t4tr(V
†
RG(τ)VLG(t4)VRG(t3)VLG(t2)V

†
LG(t1)V

†
Lρ0) (58)

Siib(ω
′, t4, t3, t2, t1) =

|A|2

~4
Eφ

∫ ∞

0

dτ exp(−ıω′τ)

∂2
t4+τ∂2

t4tr(VLG(τ)V †
RG(t4)VRG(t3)VLG(t2)V

†
LG(t1)V

†
Lρ0) (59)

Siiia(ω′, t4, t3, t2, t1) =
|A|2

~4
Eφ

∫ ∞

0

dτ exp(−ıω′τ)

∂2
t4+τ∂2

t4tr(V
†
RG(τ)VLG(t4)VLG(t3)VRG(t2)V

†
LG(t1)V

†
Lρ0) (60)

Siiib(ω
′, t4, t3, t2, t1) =

|A|2

~4
Eφ

∫ ∞

0

dτ exp(−ıω′τ)

∂2
t4+τ∂2

t4tr(VLG(τ)V †
RG(t4)VLG(t3)VRG(t2)V

†
LG(t1)V

†
Lρ0) (61)

Siva(ω′, t4, t3, t2, t1) = −
|A|2

~4
Eφ

∫ ∞

0

dτ exp(−ıω′τ)

∂2
t4+τ∂2

t4tr(V
†
RG(τ)VLG(t4)VRG(t3)VRG(t2)V

†
LG(t1)V

†
Lρ0) (62)

Sivb(ω
′, t4, t3, t2, t1) = −

|A|2

~4
Eφ

∫ ∞

0

dτ exp(−ıω′τ)

∂2
t4+τ∂2

t4tr(VLG(τ)V †
RG(t4)VRG(t3)VRG(t2)V

†
LG(t1)V

†
Lρ0) (63)

In appendix D we expand these expressions in the system states. Again we make use of the approach developed in
[32], which allows us to include finite pulse envelopes (temporally well separated but not impulsive pulses).

Figure 5: Coherent signal with phase ϕ4 = ϕ1 + ϕ2 − ϕ3 Eq. (A8).

The total fluorescence from state e is given by ρii and ρiii and the fluorescence from f is given by ρiv.
The corresponding coherent heterodyne detected signal generated at ϕ4 = ϕ1 + ϕ2 − ϕ3 is depicted in Fig. 5. For

completeness, we derive this signal in appendix A (Eq. (A8).

IV. DISCUSSION

Coherent heterodyne-detected signals generated by n fields (including the local oscillator) constitute an (n − 1)D
phase-sensitive spectroscopy obtained by varying the n − 1 delay periods. The total incoherent fluorescence signal
induced by n pulses is also (n − 1) D . Additional (either spectral or temporal) resolution of the final emitting state
makes it nD and allows to separate some groups of pathways. Time and frequency gating turns the technique into
(n + 1)D. Eqs. (D1)- (D6) give the fluorescence signal with phase φ = ϕ1 + ϕ2 − ϕ3 − ϕ4 and n = 4.
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The superoperator formalism allows to derive exact compact formal expressions for all possible signals. Each
technique depends on a different combination of pathways. Coherent signals ( Eq. (A1)) depend on any number of
V− operators but the last interaction must be VL (in fact, due to invariance of the trace the last VL can be replaced
by VR or V+ without affecting the result). Fluorescence, in contrast, contains several V− followed by two operators
corresponding to the detected photons one VL and the other VR. Coherent signals are given by causal response
functions. Fluorescence is non causal since in this technique at least one field mode is correlated with the material
system and the signal is a combination of response and spontaneous fluctuations[29, 34].

With small modifications the results of this article also apply to signals from bulk samples. The field produced at
distance z by a sheet of identical emitting dipoles with η dipoles per unit area, is [28]:

E(r, t) = −
η

2ε0c
V̇H(0, t − z/c) (64)

Eq. (12) now reads

SB(t1, ω
′; Γ) = |As|

2

∫ ∞

0

dτe−ıω′τ 〈V̇ †
H(t1 + τ)V̇H (t1)〉 (65)

with AS = −η/(2ε0c). All our results apply except that the prefactor A is modified and only a first instead of a
second time derivative is applied to the last two interactions. In the frequency domain we have for a single point
dipole source:

E(r, ω) = −
1

ε0c2
ω2 eı(ω/c)|r|

4π|r|
V (0, ω) (66)

compared with the bulk formula for a sheet:

E(r, ω) = −ıω
1

2ε0c
eı(ω/c)|z|ηV (0, ω) (67)

The extra ı factor implies a π/2 phase shift between the two fields.
In our calculations (Fig. 4), we assumed that the gating is temporally well separated from the excitation pulses.

The VL and VR operators are therefore the last. We note however that Eq. (13) is more general and can also describe
Raman processes, where other time ordering contribute. In each diagram either VL or VR must be the last but
the other one can be at any time, fluorescence is generated by pathways, where the VL and VR are temporally well
separated from the excitation pulses. Otherwise we have additional Raman pathways.

Finally we would like to point out the possible extension to a different incoherent technique: time resolved pho-
tonelectron spectroscopy, where electrons rather than photons are detected. Phase sensitive photoelectron detection
has been reported [35–37]. Multidimensional photoelectron spectroscopy can be calculated by combining the present
results with the formalism of [38]. This will be an interesting topic for future study.
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Appendix A: The coherent heterodyne signal

Starting with Eq. (15), density matrix to the n-th order is given:

ρ(n) = H ′
−

(

n
∑

i=1

ti

)

G(tn−1) . . . G(t2)H
′
−(t1)G(t1)H

′
−(0)ρ(0) (A1)

The coherent n-D signal is given by

S
(n)
coh(tn, ..., t1) =

(

−ı

~

)n

tr(H ′
LG(tn)H ′

−...G(t2)H
′
−G(t1)H

′
−ρ0〉 (A2)
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Compared to Eq. (13), we see that we have only one ṼL operator, where we have in the incoherent case a ṼL and

ṼR operator. Since each Ṽ− represents a commutator this constitutes 2n possible pathways. This can be seen by
recasting Eq. (A2) in Hilbert space:

S
(n)
coh(tn, . . . , t1) =

(

−ı

~

)3

tr(H ′(t1 + t2 + .... + tn)[H ′(t1 + · · · + tn−1) . . . , H ′(t1 + t2)[H
′(t1), [Ṽ (0), ρ]]]])

(A3)

The third order coherent signal has the form:

Scoh(t3, t2, t1) =

(

−ı

~

)3

tr(H ′
LG(t3)H

′
−G(t2)H

′
−G(t1)V−ρ0) (A4)

Scoh(t3, t2, t1) =

(

−ı

~

)3

tr(H ′(t1 + t2 + t3)[H
′(t1 + t2)[H

′(t1), [H
′(0), ρ0]]]) (A5)

This is the analog to Eq. (52).
Again we focus on the signal with phase ϕ4 = ϕ1 + ϕ2 −ϕ3. Other signals can be collected similarly for our model.

In the RWA this has the two contributions (Fig.5).

Scoh(t3, t2, t1) =

(

−ı

~

)3

tr(VLG(t3)VLG(t2)V
†
LG(t1)V

†
Lρ0)Eφ

−

(

−ı

~

)3

tr(VLG(t3)VRG(t2)V
†
LG(t1)V

†
Lρ0)Eφ (A6)

These can be recast using ordinary (Hilbert Space) correlation functions.

Scoh(t3, t2, t1) =

(

−ı

~

)3

tr(V (t1 + t2 + t3)V (t1 + t2)V
†(t1)V

†(0)ρ0)Eφ

−

(

−ı

~

)3

tr(V (t1 + t2)V (t1 + t2 + t3)V
†(t1)V

†(0)ρ0)Eφ (A7)

Expanding Eq. (A6) in system states, using the coherent limit Eq. (49) and using the approach of [32] to include the
finite field envelopes finally gives:

Scoh(t3, t2, t1) =

(

−ı

~

)3
∑

g,e1,e2,f

P0,gVge2
Ve2fVfe1

Ve1gE1(ωe1g)E2(ωfe1
)E∗

3 (ωe2f )E∗
4 (ωge2

)

exp(−ıωe2gt3 − γe2gt3 − ıωfgt2 − γfgt2 − ıωe1gt1 − γe1gt1)

−

(

−ı

~

)3
∑

g,e1,e2,f

P0,gVge2
Ve2fVfe1

Ve1gE1(ωe1g)E2(ωfe1
)E∗

3 (ωge2
)E∗

4 (ωe2f )

exp(−ıωfe2
t3 − γfe2

t3 − ıωfgt2 − γfgt2 − ıωe1gt1 − γe1gt1) (A8)

Appendix B: The field Green’s function

Unlike the rest of the paper all operators in this appendix are given in Heisenberg picture. The electric field obeys
the usual homogeneous wave equation derived from Maxwell equations:

∇×∇× E(r, ω) −
ω2

c2
E(r, ω) = ω2 1

ε0c2
VH(r, ω) (B1)

Here V is the molecular dipole moment and ε0 is the vacuum permittivity. Since Eq. (B1) is linear it applies also for
a quantum field, where the electric field and V become operators [24, 39]. If we restrict ourselves to the transverse
part in far field, this equation simplifies to:

∇2
E(r, ω) +

ω2

c2
E(r, ω) = −ω2 1

ε0c2
VH(r, ω) (B2)
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This equation can be solved using a Green’s function. For simplicity, we assume the Green function for an infinite
space and ignore the polarization.

The Green’s function solution of Eq.(B2) for a single point dipole molecule is point at r = 0 is [28, 39]:

E(r, ω) = −
1

ε0c2
ω2 eı(ω/c)|r|

4π|r|
VH(0, ω) (B3)

In the time domain, this gives:

E(r, t) =
1

ε0c2

1

4π|r|
∂2

t VH(0, t − |r|/c) (B4)

The electric field which enters the gate at position rG, is given by:

E(rG, t) = AV̈H(0, t − |rG|/c) (B5)

A =
1

ε0c2

1

4π|rG|
(B6)

To simplify the expressions, we will omit in the following the time retardation, assuming that the time scale at the
detector are adjusted accordingly. We now write V̈H(0, t − |rG|/c) = ∂2

t VH(0, t − |rG|/c).
The detector geometry may affect the signal, depending if an angle is used with a lens or if it enters in parallel.

These details will affect the prefactor A and are not considered here.

Appendix C: Gating spectrogram for frequency gate followed by temporal gate

When the frequency gate is applied first, the gating spectrogram can be calculated similar to Eq. (7) and it has
the form [13]:

W (ω0, t0; ω
′, t1) =

1

2π

∫ ∞

−∞

dt′′
∫ ∞

−∞

dτeıω′τF ∗
t (t′′; t0)F

∗
s (t′′ − t1 − τ, ω0)Ft(t

′′; t0)Fs(t
′′ − t1; ω0) (C1)

For the signal Eq. (10) holds in this case as well but the gating spectrogram is now given by:

W (ω0, t0; ω
′, t1) =

1

2π

∫ ∞

−∞

dt′′|Ft(t
′′; t0)|

2Ws(t
′′ − t1, ω

′; ω0) (C2)

with

Ws(t, ω
′; ω0) =

∫ ∞

−∞

dτeıω′τF ∗
s (t − τ, ω0)Fs(t; ω0) (C3)
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Appendix D: Sum over state expression for the fluorescence signal with phase φ = ϕ1 + ϕ2 − ϕ3 − ϕ4

Below we expand Eqs. (58-63) in eigenstates using the model system of Fig. 1 in the coherent limit Eq. (49).

Siia(ω′, t4, t3, t2, t1) =
|A|2

~4

∑

e1,e2,e3,f,g1,g2

P0,g1
(−ıωg2e3

− γg2e3
)2(−ıωe2g2

− (γe2e3
− γg2e3

))2

E1(ωe1g1
− ω1)E2(ωfe1

− ω2)E
∗
3 (ωfe2

− ω3)E
∗
4 (ωe3g1

− ω4)

Vg1e3
Ve3g2

Vg2e2
Ve2fVfe1

Ve1g1

ı

−(ω′ + ωg2e3
) + ıγg2e3

exp(−ıωe2e3
t4 − γe2e3

t4)

exp(−ıωe2g1
t3 − γe2g1

t3 − ıωfg1
t2 − γfg1

t2 − ıωe1g1
t1 − γe1g1

t1) (D1)

S∗
iib(ω

′, t4, t3, t2, t1) =
|A|2

~4

∑

e1,e2,e3,f,g1,g2

P0,g1
(−ıωe2g2

− γe2g2
)2(−ıωg2e3

− (γe2e3
− γe2g2

))2

E1(ωe1g1
− ω1)E2(ωfe1

− ω2)E
∗
3 (ωfe2

− ω3)E
∗
4 (ωe3g1

− ω4)

Vg1e3
Ve3g2

Vg2e2
Ve2fVfe1

Ve1g1

−ı

(−ω′ + ωe2g2
) − ıγe2g2

exp(−ıωe2e3
t4 − γe2e3

t4)

exp(−ıωe2g1
t3 − γe2g1

t3 − ıωfg1
t2 − γfg1

t2 − ıωe1g1
t1 − γe1g1

t1) (D2)

Siiia(ω′, t4, t3, t2, t1) =
|A|2

~4

∑

e1,e2,e3,f,g1,g2

P0,g1
(−ıωg2e3

− γg2e3
)2(−ıωe2g2

− (γe2e3
− γg2e3

))2

E1(ωe1g1
− ω1)E2(ωfe1

− ω2)E
∗
3 (ωe3g1

− ω3)E
∗
4 (ωfe2

− ω4)

Vg1e3
Ve3g2

Vg2e2
Ve2fVfe1

Ve1g1

ı

−(ω′ + ωg2e3
) + ıγg2e3

exp(−ıωe2e3
t4 − γe2e3

t4)

exp(−ıωfe3
t3 − γfe3

t3 − ıωfg1
t2 − γfg1

t2 − ıωe1g1
t1 − γe1g1

t1) (D3)

S∗
iiib(ω

′, t4, t3, t2, t1) =
|A|2

~4

∑

e1,e2,e3,f,g1,g2

P0,g1
(−ıωe2g2

− γe2g2
)2(−ıωg2e3

− (γe2e3
− γe2g2

))2

E1(ωe1g1
− ω1)E2(ωfe1

− ω2)E
∗
3 (ωe3g1

− ω3)E
∗
4 (ωfe2

− ω4)

Vg1e3
Ve3g2

Vg2e2
Ve2fVfe1

Ve1g1

−ı

(−ω′ + ωe2g2
) − ıγe2g2

exp(−ıωe2e3
t4 − γe2e3

t4)

exp(−ıωfe3
t3 − γfe3

t3 − ıωfg1
t2 − γfg1

t2 − ıωe1g1
t1 − γe1g1

t1) (D4)

Siva(ω′, t4, t3, t2, t1) = −
|A|2

~4

∑

e1,e2,e3,f1,f2,g1

P0,g1
(−ıωe3f2

− γe3f2
)2(−ıωf1e3

− (γf1f2
− γe3f2

))2

E1(ωe1g1
− ω1)E2(ωf1e1

− ω2)E
∗
3 (ωe2g1

− ω3)E
∗
4 (ωf2e2

− ω4)

Vg1e2
Ve2f2

Vf2e3
Ve3f1

Vf1e1
Ve1g1

ı

−(ω′ + ωe3f2
) + ıγe3f2

exp(−ıωf1f2
t4 − γf1f2

t4)

exp(−ıωf1e2
t3 − γf1e2

t3 − ıωf1g1
t2 − γf1g1

t2 − ıωe1g1
t1 − γe1g1

t1) (D5)

S∗
ivb(ω

′, t4, t3, t2, t1) = −
|A|2

~4

∑

e1,e2,e3,f1,f2,g1

P0,g1
(−ıωf1e3

− γf1e3
)2(−ıωe3f2

− (γf1f2
− γf1e3

))2

E1(ωe1g1
− ω1)E2(ωf1e1

− ω2)E
∗
3 (ωe2g1

− ω3)E
∗
4 (ωf2e2

− ω4)

Vg1e2
Ve2f2

Vf2e3
Ve3f1

Vf1e1
Ve1g1

−ı

(−ω′ + ωf1e3
) − ıγf1e3

exp(−ıωf1f2
t4 − γf1f2

t4)

exp(−ıωf1e2
t3 − γf1e2

t3 − ıωf1g1
t2 − γf1g1

t2 − ıωe1g1
t1 − γe1g1

t1) (D6)

.
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