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Detecting many-body entanglements in noninteracting ultracold atomic fermi gases
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We explore the possibility of detecting many-body entanglement using time-of-flight (TOF) mo-
mentum correlations in ultracold atomic fermi gases. In analogy to the vacuum correlations respon-
sible for Bekenstein-Hawking black hole entropy, a partitioned atomic gas will exhibit particle-hole
correlations responsible for entanglement entropy. The signature of these momentum correlations
might be detected by a sensitive TOF type experiment.

PACS numbers: 71.10.-w, 03.67.-a

I. INTRODUCTION

Quantum entanglement seems to provide an important
connection between several distinct fields of physics rang-
ing from conformal field theory [1] and topologically or-
dered phases in quantum field theories [2] to quantum
gravity [3]. The central quantity common to these studies
is the entanglement entropy, computed for a finite sub-
region of a quantum field theory (QFT) or many body
system. If, in a QFT in d spatial dimensions, a distin-
guished region A of volume Ld is formed, it follows that
the degrees of freedom which reside exclusively in the re-
gion A will appear to be in a mixed state. The degree
of mixing may be characterized by the entanglement en-
tropy, S = −trρ ln ρ, where the reduced density matrix
ρ = tr/∈A|0〉〈0| has been formed by tracing over the de-
grees of freedom of the ground state, |0〉, exterior to the
region A.

Entanglement entropy typically obeys an area law

and is proportional to the area of the bounding surface
(Ld−1), although several variants are possible depending
on the underlying particle statistics (fermion or boson)
and dimensionality. For many-body fermion systems on a
lattice, relevant for the ultracold atom systems discussed
here, S ∝ Ld−1 logL for a d-dimensional system of Ld

sites partitioned as described above.

Entanglement involving several particles has been
demonstrated in optical traps with atoms that are spe-
cially (quantum mechanically) prepared—a technique
critical to quantum computing. However we distinguish
this type of entanglement—with a few specially prepared
particles—from the entanglement of a many-body system
in its ground state, in that the entropy accorded the lat-
ter state satisfies an area law and is an intrinsic feature
of the many-body ground state, rather than a particular
preparation. So far, many-body entanglement entropy
has not been measured in any solid state, atomic or elec-
tromagnetic system, although an interesting proposal has
been made for measuring entropy in a periodically gated
quantum point contact [4].

Consider a set of identically prepared systems with a
distinguished subsystem A. A quantum measurement in
region A of any globally conserved quantity will fluctu-
ate in a way that is practically indistinguishable from

thermal fluctuations [5]. For instance, number fluctua-
tions in a partitioned gas of nonrelativistic fermions are
indistinguishable from thermal fluctuations at a specific
chemical potential.
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FIG. 1: (Color online) Idealized free expansion experiment to
illustrate many-body entanglement in the ground state of an
atomic fermion cloud. Two atomic clouds in optical lattices
are coupled by a weak link. Analogous to the correlations re-
sponsible for Hawing radiation, a particle state in one cloud is
correlated with a hole state in the other cloud. Entanglement
entropy (the rough analog of Hawking-Bekenstein black hole
entropy) is created when the entanglement between particle
and hole is severed. These correlations may only be observed
if propagation from cloud B to the detector (D) for A (and
vice versa) is blocked.

Our main statement is that the momentum distri-
bution in a series of such measurements is distinguish-
able from a thermal distribution, and by studying mo-
mentum correlations the presence of entanglement might
be inferred. In particular, a partitioned fermi gas will
exhibit particle-hole correlations across the boundary;
these correlations are exactly analogous to the particle-
antiparticle correlations responsible for Hawking radi-
ation and Bekenstein-Hawking entropy. In an atomic
gas—unlike a black hole—it is possible to look on both
sides of the boundary and, in principle, to measure these
correlations and infer entanglement.

The correlations that result from spatially partition-
ing the fermi gas very much resemble the momentum
correlations in a BCS superfluid state—even though the
partitioned system is completely noninteracting. TOF
correlations have been very successful in detecting BCS
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pairing and Mott insulating states in interacting fermi
systems [6]. Here we explore the possibility of using the
same detection scheme to look for momentum correla-
tions that are the hallmark of many-body entanglement.

II. THE SCHMIDT BASIS FOR FERMIONS

Consider two one-dimensional noninteracting fermi
atom clouds in separate optical lattices (subsystems A
and B), connected by a ”weak link” at one site (fig. 2).
The model hamiltonian is:

H = −t
∑

〈x,y〉α=A,B

(c†x,αcy,α + c†y,αcx,α) (1)

− w(c†0,Ac0,B + c†0,Bc0,A)

where x and y are one-dimensional site indices and A
and B denote the two identical systems with hopping
amplitude t and weak link amplitude, w. Each subsystem
consists of L sites and is taken to have fixed boundary
conditions at its ends. Furthermore, we will restrict our
considerations to the case of L fermions in 2L sites. cαx
(cα†

x ,) destroys (creates) fermions at site x in subsytem α
and obeys the conventional fermion algebra.

It is well known that the ground state wave function
for such a system may be written in the Schmidt basis in
which entanglements between A and B appear in a trans-
parent way. The Schmidt basis is found by diagonalizing
the free fermion ground state correlation function matrix

gxy ≡ 〈c†xcy〉 (2)

with x, y restricted to subsystem A [7]. The eigenvalues
{nl}, and eigenvectors, {Al(x)}, satisfy:

∑

x∈A

gxyAl(y) = nlAl(x) (3)

A canonical transformation to new set of fermion cre-
ation operators, {fA†

l }, that create fermions in the modes
{Al(x)} is made as follows:

fA†
l =

∑

x∈A

Al(x)c
A†
x (4)

Modes for the B subsystem are formed analogously; in
fact if we are restricted to A and B both of size L, the
modes for subsystem A are also the {Al(x)} but with a
coordinate system chosen so that x = 0 at the boundary
of A and B. The ground state wavefunction of noninter-
acting fermions on a lattice may then be written:

|ψ〉 =

L
∏

l=1

(
√

1 − nlf
B†
L−l +

√
nlf

A†
l )|0〉A|0〉B (5)

It has been known for some time that a system of free
fields (bosonic fields or fermionic fields) partitioned into
two nonintersecting spatial subsystems has a coherent

state wavefunction that resembles the BCS wavefunction
of superconductivity. This wavefunction dates back to
earliest explorations quantum fields in curved space and
black hole quantum mechanics by Fulling, Parker, Unruh
and Hawking [8]. Klich and others have independently
developed this type of wavefunction in connection with
entanglement entropy in condensed matter systems [9]
and the density matrix renomalization group [10].
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FIG. 2: (Color online) A and B optical lattices with hopping
amplitude t, coupled by a weak link with amplitude w. In ide-
alized TOF experiment, propagation from cloud A is blocked
from detector at cloud B.

The importance of the Schmidt basis for entanglement
is that each noninteracting many body fermion state for
subsystem A appearing in the wavefunction (a product of
fA†’s) is correlated with exactly one unique complemen-
tary fermion state for subsystem B (a product of fB†’s).
Equivalently [11], the wavefunction may be thought of
as a BCS type pairing wavefunction: the presence of a
particle in A in the state l is exactly correlated with a
hole in B in the state L− l.

Although the entanglement entropy of A is formally
defined as S = −trρA ln ρA, where ρA is the reduced
density matrix for subsystem A, it has a simple physical
description: the entanglement entropy, S, is related to
nl—the probability that level l in A is occupied—exactly
as it is in a thermal fermi gas (see reference [7] for details):

S = −
L

∑

l=1

(nl lognl + (1 − nl) log (1 − nl)) (6)

Close to l = L/2, the amplitudes for particle and hole
(equivalent to the BCS coherence factors) are approxi-

mately 1/
√

2 and the particle-hole pairs are maximally
entangled, each contributing an entanglement entropy of
approximately log 2 ≈ 0.69. For example, in an L = 40
lattice, with w = t/10, the entropy is approximately
S ≈ 1.11—the entropy is concentrated in just a few
particle-hole pairs that are strongly entangled.

In the weak coupling limit w << t, subsystems A and
B may be thought of as largely independent fermi seas
with L states, a small number of which participate in the
BCS coherence close to the pseudo fermi level at l = L/2.

Deep inside the fermi sea (l << L/2), an f †
l |0〉 state is

approximately equivalent to an unperturbed momentum

state c†l |0〉 related to c†x|0〉 in the usual way:

c†x =

√

2

L+ 1

L
∑

k=1

sin
kπx

L+ 1
c†k =

L
∑

k=1

φk(x)c†k (7)
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If a TOF type experiment sensitive to the momen-
tum correlations between subsystems A and B could be
performed, we would expect fermions in A with pseudo-
momentum l to be anticorrelated with fermions in B car-
rying pseudo-momentum L− l. However, unlike the BCS
pairing correlations observed in TOF experiments in in-
teracting fermion atomic gases, the momentum correla-
tions in the present noninteracting system are artifacts
of the spatial partitioning.

It is also important to realize that it is only in the
Schmidt basis that particles and holes are exactly cor-
related. In a free expansion experiment particles repre-

sented in the Schmidt basis (f †
l ) are projected onto par-

ticles in the unperturbed momentum basis (c†l ). Close
to the pseudo fermi surface, the relationship between the
Schmidt basis and the unperturbed momentum basis be-
comes complicated.

III. TOF MOMENTUM CORRELATIONS

In this manuscript, we illustrate the effect of these
particle-hole correlations by an idealized experiment
where two momentum ”detectors” are placed at oppo-
site ends of the 1-d sample, shown in figure 2. (In reality,
these are optical density measurements). To realize the
momentum correlations between A and B, the gas must
be allowed to freely expand in such a way that particles
from subsystem A are blocked from the B detector and
vice-versa, as depicted in figure 2. This might be achieved
by suddenly imposing a potential barrier between the
two subsystems and imaging the TOF momentum corre-
lations in the conventional way before the wavefunction
evolves out of the sudden approximation timescale.

Following the usual procedure, the spatial intensity-
intensity correlation function after a period of free expan-
sion captures the momentum correlations of the original
gas. Specifically, we consider the free expansion after
time, t, of a noninteracting fermi gas in a 1-d optical
lattice with spacing, a0. Following Altman et al. [6],
d ≡ h̄t/a0m is the characteristic size of the wavefunction
corresponding to an individual lattice site after free ex-
pansion. At time t, the continuum creation operator at
point r, A†(r), is related to the lattice creation operator
as follows:

A†(r) =
∑

x∈A,B

w∗
x(r, t)c†x (8)

x is an integer site index corresponding to subsystem A
or B (or both) and w∗

x(r, t) is the freely expanded single
lattice site wavefunction, approximately,

w∗
x(r, t) ≈ 1√

d
eirx/d (9)

The measured particle density—intensity—at point r

from atoms originating in subsystem A is then

〈I(r)〉A = 〈A†(r)A(r)〉 =
1

d

∑

x,x′∈A

ei(x−x′) r

d 〈c†xcx′〉 (10)

To form the intensity-intensity correlations function
〈I(r)I(r′)〉AB for the partitioned system, we block atom
propagation across the A − B boundary during free ex-
pansion. The ”connected” correlator is then:

〈I(r)I(r′)〉AB − 〈I(r)〉A〈I(r′)〉B = (11)

1

d2

∑

x,x′∈A

∑

y,y′∈B

ei(x−x′) r

d ei(y−y′) r
′

d 〈c†xcy′〉〈cx′c†y〉

Figure 3 shows a density plot of the connected correlator,
equation (11), obtained by discretizing the right hand
side of (11) into approximately O(105), two dimensional,
gray-scale pixels. Dark shades correspond to negative
correlations. The diffuse characteristic of the density-
density correlator in fig. 3 is a feature of the finite size of
the cluster; for instance, 〈I(r)〉 for a single 1-d cloud at
T = 0 should resemble the fermi step function, broadened
by 2πw/L. All features in the density-density correlator
are rounded by the same factor.

FIG. 3: Connected intensity-intensity correlation function
simulated for a partitioned ultracold fermi gas (L = 10;
w = t). The parameter d has been set to unity. Looking
at the (−π

2
, π

2
) point in the upper/left quadrant represent-

ing correlations at the fermi points of both subsystems, an
asymmetry about r′ = π

2
is seen. This asymmetry reflects

the anticorrelations (dark) between fermions below the fermi
level in A with fermions above the fermi level in B

The (−π
2 ,

π
2 ) point in the upper left quadrant repre-

sents correlations between left moving fermions from A
and right moving fermions from B, both originating close
to the pseudo fermi points of their respective subsystems
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(that is, with pseudo momentum l ≈ L/2). The asymme-
try under reflection about the line r′ = π/2 is an indica-
tion of the anti-correlation between a particle in A in the
state l = L/2+ ǫ, slightly above the pseudo fermi surface
of A, with a particle in B in the state L−l, slightly below
the pseudo fermi surface of B. (Specifically, this is the
lower left lobe of the two lobes at the (−π

2 ,
π
2 ) point.)

If the ground state corresponded to the unperturbed
particle momentum state, k, correlated with a hole state
L− k—as opposed to a correlation between the Schmidt
basis particles—the feature seen in fig. 3 would be a
diagonal stripe at the (−π

2 ,
π
2 ) point. (That is, the two

”lobes” seen at this point would be extended in the diag-
onal direction.) To understand this figure, consider the
canonical relation between the Schmidt basis and unper-
turbed momentum basis. Combining eqns. (4) and (7),

fA†
l =

L
∑

x,k=1

Al(x)φk(x)cA†
k =

L
∑

k=1

Plkc
A†
k (12)

define the coefficient Plk of the canonical transformation.
The sudden approximation, mentioned above, is simply
the projection of the ground state wavefunction (5) onto
the unperturbed momentum basis.

Figure 4 shows a representative set of Plk for l close
to the pseudo fermi surface (l = L/2) of subsystem A.
A single Schmidt basis state close to the fermi surface
involves an extensive mixture of unperturbed momenta
states. The horizontal feature in fig. 3, extending the the
right of the (−π

2 ,
π
2 ) point may be understood as the cor-

relation between a single Schmidt particle state, slightly
above the pseudo fermi surface in A, with a set of unper-
turbed momentum hole states below the fermi surface in
B.
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FIG. 4: Coefficients Plk for l at the pseudo fermi surface
(l = L/2) of an L = 80 lattice. Each Schmidt state close to
the fermi surface is an extensive mixture of real momentum
states.

IV. NUMBER FLUCTUATION AND ENTROPY

The particle-hole correlation seen in the TOF simula-
tion plot (fig. 3) is qualitative evidence for the entan-
glement between particles and holes responsible for en-
tanglement entropy in non interacting fermions. We now
turn to quantitative information in the TOF data about
entanglement entropy.

As the weak link amplitude w is reduced from the
translation invariant case, w = t, the connected corre-
lator depicted in fig. 3 does not change qualitatively.
However, the integrated weight over the 1st Brillouin
zone contains quantitative information about the entan-
glement entropy, S; specifically, we will show

∫ π

−π

dr

∫ π

−π

dr′〈I(r)I(r′)〉c ∝ S ≈ (
w

t
)2 logL (13)

where the connected correlator, 〈I(r)I(r′)〉c, is the first
line of eqn. (11). The integrated weight is proportional to
the number fluctuations in equilibrium of one side (A or
B) of the original fermion lattice [12]; but alternatively,
it may be understood as an approximate expression for
the entanglement entropy, S, as follows.

The number fluctuation for fermions in subsystem A,
〈N2

A〉c, may be computed by canonical perturbation the-
ory in the parameter w/t [11]. 〈N2

A〉c is found to be

〈N2
A〉c ≈ w2

t2
logL (14)

giving the result (13). However, 〈N2
A〉c may also be

computed from the wavefunction (5) using the canoni-
cal transformation (4):

〈N2
A〉c =

∑

x,y∈A

〈ψ|c†xcxc†ycy|ψ〉c =

L
∑

l=1

nl(1 − nl) (15)

The last sum in eqn. (15) is a measure of the width
of the distribution nl and, therefore, may also be in-
terpreted as the entropy accorded the fermionic distri-
bution nl within the Sommerfeld approximation. Thus
the integrated weight (13) in the idealized experiment is
proportional to entanglement entropy for noninteracting
fermions.

Considering the normalization in (13), an experimen-
tal measurement of the integrated weight with sufficient
precision to see the exact logarithmic dependence would
be difficult; however the dependence upon the weak link
amplitude might be more realistic. Simply confirming
the particle-hole correlation (the asymmetric feature dis-
cussed in connection with fig. 3) would be interesting.

In a 1-d translation invariant fermion system, it has
been rigorously established that the entanglement en-
tropy of a subsystem is proportional to the number fluc-
tuations in that subsystem [4, 5, 9, 13]. For such a con-
tinuum 1-d system, the entanglement entropy is propor-
tional to logL with a universal prefactor that depends
upon the central charge of the underlying CFT.
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Entanglement entropy when a defect is placed at the
boundary of a subsystem has been studied in several ways
[14–16] and a remarkable exact solution for the entropy
has recently been found by Eisler and Peschel [17]. When
a weak link is placed at the boundary of the two subsys-
tems, the entropy remains logarithmic but, curiously, a
feature of the exact solution is that the prefactor is non-
analytic about w = 0. In a sense, the non-analytic be-
havior at weak coupling is responsible for the behavior in
figure 4. At very weak coupling, the entropy is carried by
a very few maximally entangled Schmidt pairs. However,
despite the weakness of the coupling, each Schmidt state
involves an extensive mixture of real momentum states.
Experimental investigation of this feature might also be
interesting.

FIG. 5: Connected intensity-intensity correlation function
simulated for a partitioned ultracold fermi gas (L = 10; w = t)
at temperature T = 0.5t. The asymmetry about r′ = π

2
is

barely visible and represents an integrated weight that is di-
minished by approximately 25% from figure 3.

In figure 5 we show the same momentum correlation
as in figure 3, but at a temperature of T = 0.5t (as op-
posed to T = 0). This plot was made in the same way
as figure 3, but replacing 〈c†xcy′〉 and 〈cx′c†y〉 in equa-
tion (11) with finite temperature correlation functions.
As the (−π

2 ,
π
2 ) correlation is only sensitive to entan-

glement induced number fluctuations—and not thermal
number fluctuations—the coherence effect responsible for
the particle-hole correlations are quickly lost at finite
temperature. The integrated weight about the (−π

2 ,
π
2 )

point is significantly reduced compared to that of figure
3 (by a factor of approximately 0.25.) Presently there is
no analytic description of the temperature dependence of
the momentum correlations we have studied. In a single
flavor ultracold fermi gas, experimentally accessible tem-
peratures (corresponding to T ≈ 0.1t in our calculation)
should exhibit the effect we have described; it does not
appear to be necessary to visit an extremely degenerate
regime.

V. CONCLUSION

In conclusion, we have outlined an approach to mea-
suring many body entanglement in the ground state of
an ultracold fermi gas in an optical lattice. We have con-
centrated here on a one-dimensional prototype system,
however 2-d or 3-d clouds coupled by a weak link would
exhibit a similar effect. The s-wave fermion modes, with
respect to the impurity, define a quasi one-dimensional
system exactly analogous to the one described in this
manuscript [18]. Although we have proposed a realiza-
tion of the experiment involving a potential barrier im-
posed in the sudden approximation, it is our hope that
experimenters will discover a more nuanced approach.
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