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In the strong interaction limit, attractive fermions with N-component hyperfine states in a one-
dimensional waveguide form unbreakable bound cluster states. We demonstrate that the ground
state of strongly attractive SU(N) Fermi gases can be effectively described by a super Tonks-
Girardeau gas-like state composed of bosonic cluster states with strongly attractive cluster-cluster
interaction for even N , and a Fermi duality of a super Tonks-Girardeau gas-like state composed of
fermionic cluster states with weakly interacting cluster-cluster p-wave interaction for odd N .

PACS numbers: 03.75.Ss, 05.30.Fk

I. INTRODUCTION

The experimental progress on trapping ultracold atoms
in tightly confined waveguides in a well-controlled way
[1–4] has stimulated intensive study of the physical prop-
erties of one-dimensional (1D) quantum gases. The
effective interaction strength between atoms in a 1D
waveguide can be tuned via Feshbach resonance or
confinement-induced resonance [5], leading to the exper-
imental realization of Tonks-Girardeau (TG) gases [3, 4].
The TG gas describes the strongly repulsive Bose gas
[6, 7]. Starting from the TG gas and then switching
the interaction between atoms from strongly repulsive
to strongly attractive, the experimental realization of a
1D super Tonks-Girardeau (STG) gas of bosonic Cesium
atoms was reported very recently [8]. In contrast to the
TG gas, the STG gas describes a gas-like phase of the
attractive Bose gas [9–11], which is metastable against
falling into its cluster-type ground state [12], despite the
fact that the interaction between atoms is strongly at-
tractive [13, 14].

Although the STG gas realized in [8] is a metastable
highly excited state of the attractive Bose gas, in recent
theoretical work [15] it was found that the ground state of
a strongly attractive spin-1/2 Fermi gas can be effectively
described by the STG gas. Intuitively, two fermions with
opposite spins form a tightly bound state and the bound
pairs of fermions can be viewed as composite bosons with
a mass of 2mF . The effective interaction between the
composite bosons is also attractive with the interaction
strength given by cB = 2cF [15, 16]. Conversely, the
ground state of the bound Fermi pairs is described by
the STG phase of attractive bosons [15]. Very recently,
multi-component Fermi gases have attracted considerable
interest [17–19] due to the novel existence of different
sizes of molecules. Here we consider the interesting ques-
tion of whether the ground state of a strongly attractive
multi-component fermionic system can be also effectively
described by a STG gas of multi-particle bound states.

A positive answer is confirmed by explicit identification
of the general mapping relation between the attractive
SU(N) Fermi gas and the STG gas.

II. ATTRACTIVE N-BOUND FERMIONS

We consider a delta-function interacting system com-
posed of NF atomic attractive fermions with equal mass
mF which occupy N hyperfine levels with identical par-
ticle numbers N i = NN = NF /N (i = 1, . . . , N) and
constrained by periodic boundary conditions to a line of
length L. If the interactions are spin independent, the
Hamiltonian reads

HF =

NF
∑

i=1

−
h̄2

2mF

∂2

∂x2
i

+ gF

∑

i<j

δ(xi − xj), (1)

where gF = −2h̄2/(mF aF
1D) is the interaction strength

with aF
1D the 1D effective s-wave scattering length. Al-

though the interactions in Hamiltonian (1) are repre-
sented in terms of delta interaction, the exchange anti-
symmetric wavefunction for fermions gives the restriction
that interactions among the same fermion level are pro-
hibited. Different symmetries of the wavefunction pro-
duce different Bethe ansatz equations even if the Hamil-
tonian has the same form as Eq. (1) [20, 21]. For
simplicity, we use the dimensionless coupling constant
γF = cF /nF with density nF = NF /L and cF = −2/aF

1D.
In the strongly attractive limit (gF → −∞), atoms form
tightly bound states with each bound state composed of
N fermions in different hyperfine states [22]. No tightly
bound state with more than N fermions can be formed
in an N -component Fermi gas due to the Pauli exclusion
principle.

If N is even, the tightly bound state can be viewed
as a composite boson with a mass mB = NmF . In this
work, we find that the ground state of the strongly at-
tractive SU(N) Fermi gas with N even can be effectively
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described by a STG gas of attractive composite bosons.
This can be viewed as a direct generalization of the SU(2)
Fermi gas result [15]. On the other hand, if N is odd, the
tightly bound state can only be viewed as a composite
fermion. Obviously, strongly attractive SU(N) fermions
with N odd cannot be mapped to an effective bosonic
gas as for the two-component case [15]. Nevertheless, we
shall show that it can be mapped to a spinless Fermi
gas with weakly interacting p-wave interaction. Due to
a general Fermi-Bose mapping [23], eigenstates of a spin-
less Fermi gas with p-wave interaction of any strength
can be mapped to those of a 1D Bose gas with delta-
function interactions. Therefore the gas-like state of a
weakly repulsive p-wave Fermi gas can be viewed as the
Fermi correspondence of the STG phase of a strongly
attractive Bose gas.

Before construction of the mapping between the
ground state of the strongly attractive SU(N) Fermi gas
and the STG phase of composite bosons or fermions, we
first discuss the solution of the SU(N) Fermi gas which
is exactly solvable by the Bethe ansatz method. The
eigenvalues of Hamiltonian (1) are given by

E =
h̄2

2mF

NF
∑

j=1

k2
j (2)

with quasi-momentum kj determined by the Bethe
ansatz equations (BAEs) [20–22]

exp(ikjL) =

M1
∏

α=1

kj − Λ
(1)
α + ic′F

kj − Λ
(1)
α − ic′F

, (3)

Mℓ−1
∏

β=1

Λ
(ℓ)
α − Λ

(ℓ−1)
β + ic′F

Λ
(ℓ)
α − Λ

(ℓ−1)
β − ic′F

= −

Mℓ
∏

γ=1

Λ
(ℓ)
α − Λ

(ℓ)
γ + icF

Λ
(ℓ)
α − Λ

(ℓ)
γ − icF

×

Mℓ+1
∏

ν=1

Λ
(ℓ)
α − Λ

(ℓ+1)
ν − ic′F

Λ
(ℓ)
α − Λ

(ℓ+1)
ν + ic′F

, (4)

for j = 1, . . . , NF , α = 1, . . . , Mℓ and ℓ = 1, . . . , N −

1. We have denoted M0 = NF and Λ
(0)
j = kj . The

parameters
{

Λ
(ℓ)
α

}

are the spin rapidities. The quantum

numbers are given by Ml = (N − l)NN and c′F = cF /2.
For strongly attractive attraction, i.e., L|cF | ≫ 1, the

BAEs permit different sizes of charge bound state. As
a consequence of the Pauli exclusion principle and the
SU(N) symmetry, there is no tightly bound state with
more than N fermions for the SU(N) Fermi gas [24]. For
the ground state, there are equal numbers of particles in
each hyperfine spin state. In this state, the charge bound
state in k-space is of the form

kq,j = Λ(N−1)
q + (N + 1 − 2j) c′F + O (iδ|cF |) , (5)

for j = 1, 2, . . . , N and q = 1, 2, . . . , NF /N . The spin
rapidities form a certain pattern of spin string solutions.
For the ground state, each charge bound state kq,j with

different q is accompanied by a spin string
{

Λ
(1)
q,α

}

of

length N−1with α = 1, 2, . . . , N−1, a spin string
{

Λ
(2)
q,α

}

of length N −2 with α = 1, 2, . . . , N −2, and so on, until

the real root Λ
(N−1)
q in the last spin branch [22]. In this

special case, the spin strings read

Λ(r)
q,α = Λ(N−1)

q + i (N − r + 1 − 2α) c′F + O (iδ|cF |) , (6)

with α = 1, . . . , N − r for r = 1, ..., N − 2, respectively.
In the above equations δ is a very small number of order
exp(−L|cF |).

Substituting the charge bound states kq,j with j =
1, 2, . . . , N and the spin strings into Eq. (3) results in N
equations. After multiplying these N equations together
and combining with Eq. (4) (see Appendix A) the BAEs
reduce to

exp (N iΛqL) = (−1)
NF −1

NN
∏

β=1

N−1
∏

r=1

Λq − Λβ + ircF

Λq − Λβ − ircF
. (7)

The eigenvalues of Hamiltonian (1) are then given by

E = −NNǫb +
h̄2

2mF

NN
∑

q=1

NΛ2
q (8)

with binding energy ǫb =
(

h̄2/2mF

)

N
(

N2 − 1
)

c2
F /12.

In the strongly attractive limit and in the absence of
an external field, the N -fermion clusters are unbreakable
and we may subtract the binding energy from the energy,
i.e.,

EF = E + NN ǫb =
h̄2

2mF

NN
∑

q=1

NΛ2
q, (9)

which includes the kinetic energy of the bound clusters
and the interaction energy produced from cluster-cluster
scattering.

In the thermodynamic limit, NF → ∞ and L → ∞
at fixed density nF , the energy of the system can be
represented in the integral form

EF =
h̄2L

2mF
N

∫ B

−B

Λ2ρF (Λ) dΛ (10)

where ρF (Λ) is the density distribution for Λ determined
by the integral form of BAEs (7) as

ρF (Λ) =
N

2π
−

1

π

N−1
∑

r=1

∫ B

−B

r |cF |

r2c2
F + (Λ − Λ′)

2 ρF (Λ′) dΛ′.

(11)
The integration limit B is determined by the linear den-

sity nF = N
∫ B

−B ρF (Λ)dΛ.

In terms of the dimensionless energy eN (γF ), we have

EF =
h̄2L

2mN
n3

NeN (γF ) , (12)
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where nN = nF /N , mN = NmF and

eN (γF ) =
N6 |γF |

3

λ3

∫ 1

−1

z2gN (z)dz. (13)

Here we have defined z = Λ/B, λ = |cF | /B and gN (z) =
ρ (Bz) /N . The scaled density distribution gN (z) is de-
termined by

gN (z) =
1

2π
−

1

π

N−1
∑

r=1

∫ 1

−1

rλ

r2λ2 + (z − z′)2
gN (z′) dz′,

λ = N2 |γF |

∫ 1

−1

gN (z)dz,

which come from Eq. (11) and the linear density nF .
In the strongly attractive limit with |γF | ≫ 1, we can
expand the dimensionless energy in terms of 1/|γF |. Up
to 3rd order, this gives

EF =
h̄2N3

N

2mNL2

π2

3

[

1 +
4

|γN |
+

12

γ2
N

+
32

|γN |
3

(

1 −
π2η

15ζ3

)

]

, (14)

in which γN = N2γF /ζ, with ζ =
∑N−1

r=1 1/r and η =
∑N−1

r=1 1/r3.

A. Equivalence to a super TG gas for N even

The unbreakable N -fermion cluster state is effectively
described as a composite boson for even N . Before con-
structing the mapping relation, we first give a brief re-
view of the STG state of the attractive Bose gas. The 1D
interacting Bose gas composed of NB bosons with mass
mB is described by the Hamiltonian

HB =

NB
∑

i=1

−
h̄2

2mB

∂2

∂x2
i

+ gB

∑

i<j

δ(xi − xj), (15)

with interaction gB = −2h̄2/(mBaB
1D) where aB

1D is the
1D s-wave scattering length. The energy eigenvalues are
given by

EB =
h̄2

2mB

NB
∑

j=1

k2
j , (16)

where the kj are determined by the BAE [7]

exp (ikjL) = −

NB
∏

l=1

kj − kl + icB

kj − kl − icB
, (17)

with cB = mBgB/h̄2 = −2/aB
1D.

For attractive bosons, the ground state solution for
the BAE (17) is a complex string solution correspond-
ing to McGuire’s cluster state [12]. On the other hand,
the BAE (17) has real solutions even for cB < 0, which
correspond to some highly excited states of the attrac-
tive Bose gas. The super TG state is the lowest gas-like
state with real solutions for BAE (17) [11, 13, 15]. In the
strongly attractive limit, the energy of the STG state of
the attractive Bose gas can be expressed as

ESTG =
h̄2N3

B

2mBL2

π2

3

[

1 +
4

|γB|
+

12

|γB|
2

+
32

|γB|
3

(

1 −
π2

15

)

]

(18)

with γB = cB/nB.
Comparing equations (14) and (18), it is clear that the

two expressions are identical up to the second order of
γF if γB = γN = N2γF /ζ, NB = NN = NF /N and
mB = mN = NmF . Since the N -bound state formed
by N fermions with opposite spin for even N has a mass
mB = NmF , we can conclude that the NN N -bound
states are equivalently described by the super-TG phase
of the interacting Bose gas with the effective 1D scatter-
ing length

aB
1D =

ζ

N
aF
1D. (19)

Schematically, we illustrate such a mapping in Fig.
1(a) by taking the SU(4) Fermi gas as an example. We
also compare the ground state energy of the SU(N)
(N = 2, 4) Fermi gas with the energy of the STG phase
of the Bose gas composed of composite bosons with mass
NmF in Fig. 2. The ground state energy of the SU(2)
Fermi gas is identical to the energy of the STG phase of
the Bose gas for all γN [15], whereas the ground state en-
ergy of the SU(4) Fermi gas matches very well to that of
the STG gas for large γN . As shown in Fig. 3, the rela-
tive error for the ground state energy of the SU(N) Fermi
gas and the energy of the corresponding STG gas is less
than 0.1 for |γN | = 10, and less than 10−7 for |γN | = 600.
This indicates that the STG gas provides a good effective
description for the ground state of the strongly attractive
SU(N) Fermi gas, although the mapping is not exact for
all γN like for the SU(2) case.

B. Equivalence to a super Fermi TG gas for N odd

The Hamiltonian for the 1D p-wave interacting polar-
ized Fermi gas reads

Hp =

Np
∑

i=1

−
h̄2

2mp

∂2

∂x2
i

+ gp

∑

i<j

V (xi − xj), (20)

where V (xi − xj) =
(

∂
∂xi

− ∂
∂xj

)

δ(xi − xj)
(

∂
∂xi

− ∂
∂xj

)

is the pseudo-potential for p-wave interaction [25–27]
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p-wave
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FIG. 1: (Color online) The strongly attractive N-bound state
Fermi gas can be effectively described by a super Tonks-
Girardeau gas composed of attractive bosons for (a) even
N and can be effectively described by a super Fermi Tonks-
Girardeau gas composed of p-wave repulsive fermions for (b)
odd N .
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FIG. 2: (Color online) Comparison of the ground state ener-
gies of the attractive SU(N) Fermi gas and the energy of the
corresponding STG phase of bosons (for even N) or p-wave
fermions (for odd N) (effective repulsive p-wave fermions) for
different N with large interaction γN . The inset shows a mag-
nified view of ground state energies.

and gp = −2h̄2ap
1D/mp [25, 26]. The dimensionless in-

teraction parameter is defined by γp = mpgpnp/h̄2 =
−2ap

1Dnp. For p-wave interacting fermions, the energy
eigenvalues are given by

Ep =
h̄2

2mp

Np
∑

j=1

k2
j , (21)
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FIG. 3: (Color online) The relative error vs |γN |, where
∆e (γN ) = e (γN) − eSTG (γN).

where the quasi-momenta kj are determined by the BAE
[28, 29]

exp (ikjL) = −

Np
∏

l=1

kj − kl + icp

kj − kl − icp
, (22)

where the parameter cp = −1/(2ap
1D).

It is clear that BAE (22) is identical to BAE (17)
if cp = cB and Np = NB [28, 29], which means that
there is a one-to-one correspondence between the p-wave
Fermi gas and the interacting Bose gas [23]. Correspond-
ingly, the STG state of the attractive Bose gas has a
Fermi correspondence which is the lowest gas-like state
of the weakly interacting p-wave fermions with gp → 0+.
For weakly interacting p-wave fermions in the thermody-
namic limit, the energy of the lowest gas-like state has
the form

Ep =
h̄2

2mp

N3
p

L2

π2

3

[

1 + 4 |γp| + 12 |γp|
2

+32

(

1 −
π2

15

)

|γp|
3

+ · · ·

]

(23)

where |γp| ≪ 1.
Comparing equations (14) and (23), it is clear that the

two expressions are identical up to the second order in
γF if γp = 1/γN = ζ/

(

N2γF

)

, Np = NN = NF /N and
mp = mN = NmF . Since the N -bound state formed by
N fermions with different hyperfine states for odd N is
a composite fermion with a mass mp = NmF , we can
conclude that the NN N -bound states are equivalently
described by the gas-like state of the weakly interacting
p-wave Fermi gas with the effective 1D scattering length

ap
1D =

ζaF
1D

4N
. (24)

The mapping is schematically displayed in Fig. 1(b).
The comparison of the energies of the SU(N) (N = 3, 5)
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Fermi gas and the STG phase of the p-wave Fermi gas is
also given in Fig. 2, which indicates a good matching in
the limit of large |γN |. Similarly, as shown in Fig. 3, the
relative error for the ground state energy of the SU(N)
Fermi gas and the energy of the corresponding STG state
of the p-wave Fermi gas is less than 10−7 for |γN | = 600.
This indicates that, although not exact for all γN , the
mapping provides a very good description for large |γN |.

III. SUMMARY

In summary, we have examined the equivalence be-
tween the ground state of the strongly attractive N -
component Fermi gas and the super Tonks-Girardeau
phase of an effective Bose or p-wave Fermi gas. By
comparing the ground state energy of strongly attractive
fermions with the energy of the super Tonks-Girardeau
phase of the Bose gas or p-wave Fermi gas, we find that
the bound N -fermion clusters formed in the strongly at-
tractive regime should be described by the super Tonks-
Girardeau phase of attractive composite bosons (for even
N) or composite fermions with effective p-wave interac-
tions (for odd N). The super Tonks-Girardeau gas phase
thus provides an effective description for the ground state
of strongly attractive multi-component fermions.
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No. 10974234, programs of CAS, 973 grant No.
2010CB922904 and National Program for Basic Research
of MOST. The work of X.-W.G and M.T.B. has been par-
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Appendix A: Derivation of Bethe ansatz equations

for Fermi bound states

Here we show how to derive BAEs for Fermi bound
states by taking as example the system of 3-component
fermions. For simplicity, we define the function

en (x) =
x + inc′F
x − inc′F

.

For 3-component fermions the BAEs (3) and (4) are

eikjL =

M1
∏

α=1

e1

(

kj − Λ(1)
α

)

, (A1)

NF
∏

j=1

e1

(

Λ(1)
α − kj

)

= −

M1
∏

β=1

e2

(

Λ(1)
α − Λ

(1)
β

)

×

M2
∏

l=1

e−1

(

Λ(1)
α − Λ

(2)
l

)

,(A2)

M1
∏

α=1

e1

(

Λ
(2)
l − Λ(1)

α

)

= −

M2
∏

m=1

e2

(

Λ
(2)
l − Λ(2)

m

)

(A3)

for j = 1, 2, . . . , NF , α, β = 1, 2, . . . , M1 and l, m =
1, 2, . . . , M2. Here we confine our attention to the equally
populated case NF = 3N3, M1 = 2N3 and M2 = N3.

For strong attraction, i.e., for L|cF | ≫ 1, the charge
bound states and spin strings are of the form

kq,h1
= Λq + i (4 − 2h1) c′F + O (iδ|cF |) , (A4)

Λ
(1)
q,h2

= Λq + i (3 − 2h2) c′F + O (iδ′|cF |) , (A5)

for exponentially small δ and δ′, with Λq = Λ
(2)
q , h1 =

1, 2, 3, h2 = 1, 2, and q = 1, 2, . . . , N3.
For the attractive regime, the common real parts in

the bound states (A4) and spin strings (A5) lead to zero
factors in the BAEs (A1-A3). In order to avoid ill-defined
equations, we eliminate such zero factors in the BAE level
by level. The first step is to deal with the charge bound
state kq,h1

with h1 = 1, 2, 3 in the BAE (A1), i.e.

ei3ΛqL = ei(kq,1+kq,2+kq,3)L

=

2
∏

h2=1

3
∏

h1=1

e1

(

kq,h1
− Λ

(1)
q,h2

)

×

M1/2
∏

α=1

e2 (Λq − Λα) e4 (Λq − Λα) (A6)

The first terms on the r.h.s. of (A6) contain zero factors
which have to be eliminated. From the second BAE (A2),
we have

2
∏

h2=1

3
∏

h1=1

e−1

(

kq,h1
− Λ

(1)
q,h2

)

×

NF /3
∏

α=1

e2 (Λq − Λα) e4 (Λq − Λα)

=

2
∏

h2=1

e−1

(

Λ
(1)
q,h2

− Λq

)

×

M1/2
∏

α=1

e2 (Λq − Λα) e4 (Λq − Λα) . (A7)

In order to eliminate the first factor on the r.h.s. of
these equations, we extract this factor from the third
BAE (A3), i.e.

2
∏

h2=1

e−1

(

Λ
(1)
q,h2

− Λq

)

M1/2
∏

α=1

e2 (Λq − Λα)

=

M2
∏

m=1

e2 (Λl − Λm) . (A8)

Substituting (A8) into (A7), Eq. (A6) becomes

ei3ΛqL =

M1/2
∏

α=1

e2 (Λq − Λα) e4 (Λq − Λα) , (A9)

which is the 3-component fermion form of Eq. (7).
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