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Atom counting theory can be used to study the role of thermal noise in quantum phase transitions
and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated
fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field, and
can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics
across the phase diagram in the presence of thermal fluctuations, and during its thermalization
when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is
reflected in the cumulants of the counting distribution. We find that the signatures of the crossover
remain visible at low temperature and are obscured with increasing thermal fluctuations. We find
that the same quantities may be used to scan the dynamics during the thermalization of the system.

I. INTRODUCTION

In the past decade it has become clear that the
most important challenges of the physics of ultracold
atoms overlap essentially with those of condensed matter
physics, and concern strongly correlated quantum states
of many body systems. In fact, ultracold fermionic and
bosonic atoms in optical lattices mimic strongly corre-
lated systems, that can be perfectly described by various
Hubbard or spin models with rich phase diagrams [1].

Amazingly, ultacold atomic physics may address ques-
tions concerning both static and dynamical properties of
such systems. In the context of statics, the goal is to
quantum engineer, i.e. to prepare, or reach interesting
quantum phases or states, and then to detect their prop-
erties. Many examples of such exotic phases pertaining
to quantum magnetism based on super-exchange inter-
actions are now within experimental reach [2, 3]. Also,
the signatures of itinerant ferromagnetism in the absence
of the lattice structure have been recently reported for a
system of spin 1/2 fermions [4].

Despite the progress of experimental techniques, the
preparation and detection of quantum magnetism is al-
ways obscured by the unavoidable noise and thermal ef-
fects. These are particularly important in low dimen-
sional systems, and especially in one dimension (1D)
where no long range order can exist at T > 0. It is there-
fore highly desirable to design detection methods that
allow the observation of the signatures of strong corre-
lations and quantum phase transitions (QFT) at T > 0.
The first goal of this paper is to demonstrate that atom
counting may be used to detect signatures of QFTs at
T > 0. To this aim we analyze a paradigmatic example
of a strongly correlated system: a system of fermions in
a 1D optical lattice.

Remarkably long time scales of ultracold atom exper-
iments allow monitoring the dynamics of the system di-

rectly. In the context of dynamics, one goal is to observe
the time evolution of the system under some perturba-
tion as the system approaches a stationary state. In this
context various fundamental questions can be addressed.
For instance, does the system, which can be very well re-
garded as closed, thermalize after an initial perturbation
(sudden quench) [5–10]? What is the difference between
thermal and non thermal dynamics? What kinds of in-
teresting dynamical processes involving a coupling to a
specially designed heat bath can be realized? Can one re-
alize state engineering using open system dynamics [11]?
The second goal of this paper is thus to study atom count-
ing during dynamic evolution. In particular, we compute
the atom counting distribution as a function of time when
the analyzed 1D system of fermions approaches the quan-
tum Boltzmann-Gibbs thermal equilibrium state at cer-
tain T > 0. We show how the thermalization process can
be monitored by observing the cumulants of the counting
distribution. In principle, the method allows to distin-
guish thermal dynamics from non-thermal ones.

Counting of particles is one of the most important tech-
niques for characterizing quantum mechanical states of
many body systems. Photon counting, for which the the-
ory was developed in the seminal works [12] allows for the
full characterization of quantum light sources. More re-
cently, the counting statistics of electrons has been used
to characterize mesoscopic devices [13–19]. In both men-
tioned cases, the particles considered are non-, or practi-
cally noninteracting. In this paper, in contrast, we con-
sider strongly correlated atomic systems [20]. Counting
statistics of atoms has been suggested as a technique to
detect and distinguish various quantum phases of spin
and fermionic systems [21–25]. Atom counting can be
realized in several manners (For early experiments, see
[26]). One method concerns metastable atoms, such as
Helium [27], where the atoms are released from the trap,
so counting is preceded by essentially ballistic expansion
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of the atomic wave functions. With the recent develop-
ment of high-resolution optical imaging systems, single
atoms can be detected with near-unit fidelity on indi-
vidual sites of an optical lattice [28, 29]. This makes
available the counting distributions of atoms in situ in
the lattice. On the other hand, spin counting techniques
[30] allow for the measurement of the average and fluc-
tuations of the spin number also in situ in cold atomic
samples. These techniques can be extended to account
for spatial resolution [31] and give access to the Fourier
components of the spin distribution [32]. With the help
of superlattice configurations, one may address the atoms
locally, probing e.g. every second site [31]. In this work
we focus on in situ methods, leaving the discussion of the
interplay of atomic cloud expansion and atom counting
to a separate publication.

Despite the fact that in experimental conditions noise
(thermal or non-thermal) is always present, so far atom
counting has been mainly considered at zero tempera-
ture and in the absence of non-thermal noise [21–25].
In particular, in Ref. [24], we have used atom counting
theory to study a system of fermions in a 1D optical lat-
tice. We have shown that the critical behavior of the sys-
tem, and in particular the formation of fermionic pairs,
is reflected in the cumulants of the counting distribution.
Here, we consider the counting distribution of the same
fermionic system, but we now take into account the effect
of thermal noise. We consider both the effect of temper-
ature when the system is at equilibrium and the ther-
malization when the system is coupled to a model heat
bath. Fermionic pair breaking induced by thermal noise
is clearly reflected in the counting distribution function.
We find also that the signatures of the crossover between
different phases remain visible at low temperature, and
we show how they fade out as the temperature increases.

The paper is organized as follows. In Sec. II, we pro-
vide a description of the fermion and spin system that
we consider. In section III we review the counting the-
ory for a fermionic system, and show how the counting
distribution can be obtained from a simple recursive for-
mula. Details of how to derive the counting distribution
in terms of a generating function are shown in the Ap-
pendix. In section IV, we study the counting statistics of
the system at thermal equilibrium at non-zero tempera-
ture. First, in subsection IV A, we present the counting
distribution at zero temperature for reference. Then, in
subsection IVB, we analyze how thermal noise affects
the atom number distribution, especially in the vicin-
ity of the quantum phase transition, or more accurately
cross-over. In Sec. V, we calculate the atom number dis-
tribution during a model thermalization process, in which
the system is coupled to a heat bath via the exchange of
collective quasiparticles. Such couplings, and the result-
ing open system dynamics are not strictly speaking lo-
cal. However, in Sec. VB we analyze the nature of these
couplings more closely, and show that they can be well
approximated by a physically reasonable model of local
exchange of atoms between the system and the reservoir.

We summarize our results in Sec. VI.

II. FERMI GAS IN A 1D OPTICAL LATTICE

Quantum degenerate fermionic atoms trapped in op-
tical lattices [33] may become superfluid if there are at-
tractive interactions between atoms trapped in two differ-
ent hyperfine states [34]. Attractive fermions form pairs
analogous to Cooper pairs in superconductors. A one
component system of fermions trapped in the same hy-
perfine state may also become superfluid though not in
an s-wave configuration. Such a system, in the 1D case,
can be described by the following Hamiltonian (~ = 1)

Ĥ = −J

N
∑

j=1

(ĉ†j ĉj+1 + γĉ†j ĉ
†
j+1 + h.c. − 2gĉ†j ĉj + g).

(1)

Here, ĉ†j denotes the creation of a fermion on site j, N
is the number of sites, J is the energy associated to
fermion tunneling to nearest-neighbor lattice sites, g is
proportional to the chemical potential of the system and
γ accounts for the formation of pairs between consecutive
sites. A Fourier transform shows that this corresponds
to the formation and destruction of pairs of opposite mo-
mentum (see [20, 35]). A Bogoliubov transformation di-
agonalizes the Hamiltonian in Eq. (1), which can be writ-
ten up to a zero energy shift in terms of the quasiparticle

excitations d̂k,

Ĥ =

N/2
∑

k=1

Ĥk =

N/2
∑

k=1

Ekn̂d
k, (2)

where

n̂d
k = d̂†kd̂k + d̂†−kd̂−k (3)

d̂k = ukĉk − ivk ĉ†−k, d†k = uk ĉ†k + ivk ĉ−k, (4)

ĉ†k = 1√
N

∑N
j=1 exp(ijΦk)ĉ†j , (5)

uk = cos θk

2 , vk = sin θk

2 , (6)

Ek = J
√

(cosΦk − g)2 + γ2 sin2 Φk, (7)

tan θk = γ sin Φk

cos Φk−g , (8)

and Φk = 2πk/N . In order to recover the Hamilto-
nian (1), for (cosΦk − g) < 0 the solution of Eq. (8)
is taken from the (π

2 , 3π
2 )-branch of the tangent, whereas

for (cos Φk − g) < 0 it is taken from the (−π
2 , π

2 )-branch.
In the non-interacting case, one can clearly see that

there are two different regimes. For γ = 0 the momentum

space representation of Eq. (1), Ĥk = 2[cos(Φk)−g]ĉ†kĉk,
is recovered up to a constant term. For small transverse
field g ≪ 1, the energy gap of the particles involved is
positive. For high transverse field g ≫ 1, it is negative
and it vanishes at the critical point g = 1. It can be seen
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from Eq. (6) that the Bogoliubov coefficients u2
k and v2

k
change their roles at the phase transition such that on
one side of the critical point, the number operator of the

quasiparticles d̂†kd̂k corresponds to ĉ†k ĉk, whereas on the

other side it corresponds to ĉkĉ†k. Finite interactions γ
between the fermions lead to the formation of fermionic
pairs between consecutive sites but the main character
of the phase transition at g = 1 remains essentially un-
changed.

Quantum phase transitions are only well defined at
zero temperature. Thermal fluctuations lead to an expo-
nential decay of the order parameter and only a crossover
between phases remains. For the system under considera-
tion, the critical point g = 1 at zero temperature extends
for finite T to a quantum critical crossover region where
the energy gap is smaller than the thermal fluctuations,
i.e. |J(1 − g)| < kBT [20].

The system considered here (Eq. (1)) is also interest-
ing because it is equivalent to the anisotropic quantum
XY spin model [35]. Using the Jordan-Wigner transfor-
mation [20, 36], one can transform it into

Hxy = −J

N
∑

j=1

[

(1 + γ)Sx
j Sx

j+1 + (1 − γ)Sy
j Sy

j+1 + gSz
j

]

,

(9)
where Sx

j , Sy
j and Sz

j are the spin 1/2 operators at site j,
J is the coupling strength, 0 < γ ≤ 1 is the anisotropy
parameter, and g is the transverse field. The case γ = 1
corresponds to the Ising model in a transverse field. For
γ = 0, the system corresponds to the isotropic XY-model
or XX-model. For this value, the Jordan-Wigner trans-
formation is ill-defined and one cannot map it to the
fermionic Hamiltonian in Eq. (1). We study the phase
transition with respect to the parameter g, where the ex-
treme cases g = 0 and g = ∞, correspond to systems
with no external field and with no interactions, respec-
tively. The phase transition between the states with dif-
ferent orientations of the magnetization takes place at
g = 1. For small transverse fields g ≪ 1, the ground
state has magnetic long-range order and the excitations
correspond to kinks in domain walls. For high transverse
fields g ≫ 1, the system is in a quantum paramagnetic
state.

III. FERMION COUNTING STATISTICS

Before presenting our calculations of the counting dis-
tribution for a system of fermions at finite temperature,
we would like to recall some basics of photon and atom
counting statistics. The theoretical analysis of the count-
ing process of photons registered on a photodetector was
first developed in [37]. In such a process, a photon is
annihilated and a photoelectron is emitted. This photoe-
mission triggers a further ionization process, leading to
a macroscopic current that is then measured. This theo-
retical framework can be extended for counting atoms di-

rectly using multichannel plates or in-situ counting tech-
niques, both for bosons and fermions [38]. In the detec-
tion process, the particles are absorbed by the detector.
The counting distribution can thus be derived from the
master equation that describes the interaction between
the system and the detector with efficiency ε (see the
Appendix). The probability p(m) of counting m parti-
cles is given by

p(m) =
(−1)m

m!

dm

dλm
Q

∣

∣

∣

λ=1
, (10)

where we have used the generating function

Q(λ) = Tr(ρ : e−λI :). (11)

Assuming that the counting process is much faster than
the dynamics of the system, the time-independent inten-

sity registered at the detector is I = κ
∑N

j=1 ĉ†j ĉj , where

κ = 1 − exp(−ετ) and τ denotes the detection exposure
time. Using the anticommutation relations for fermions
we obtain

Q(λ) = Tr(ρ

N/2
∏

k=1

(1 − λκĉ†k ĉk)(1 − λκĉ†−k ĉ−k)). (12)

The dynamics mix only k and −k fermionic excitations

d̂k, so that we can separate the density matrix ρ =
∏

k ρk

and neglect the terms which do not conserve the number
of excitations to obtain

Q(λ) =

N/2
∏

k=1

(

1 − λκAk + λ2κ2Bk

)

, (13)

where

Ak = Tr(ρk

[

u2
kn̂d

k + v2
k(d̂kd̂†k + d̂−kd̂†−k)

]

)

Bk = Tr(ρk

[

u2
kd̂†kd̂kd̂†−kd̂−k + v2

kd̂−kd̂†−kd̂kd̂†k

]

).(14)

We use Eq. (10) to calculate the counting distribution
from the generating function in Eq. (13) and obtain

p(m) =
(−1)m

m!

dm

dλm

[

N/2
∏

k=1

(

1 − λκAk + λ2κ2Bk

)

]

λ=1
.

(15)
Using the generalized Leibniz rule, we derive [24] a recur-
rence relation to calculate the counting distribution of a
system with M + 1 pairs of modes from that of a system
with M pairs

p(m, M + 1) =

2
∑

i=0

Pip(m − i, M). (16)

Here Pi denotes the probability of detecting i particles
in the two modes M + 1 and −(M + 1) that is given by

P0 = 1 − κAM+1 + κ2BM+1,

P1 = κAM+1 − 2κ2BM+1,

P2 = 1 − P0 − P1. (17)
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Using the recursive relation Eq. (16), the counting distri-
bution for an arbitrarily large system can be calculated
from that of a two mode system. We thus only need to
calculate the expressions Ak and Bk in Eq. (14) and use
Eqs. (16-17) to obtain the counting distribution of the
fermionic system in Eq.(1) with an arbitrary number of
sites.

As mentioned above, the fermionic operators are re-
lated to spin operators by the Jordan-Wigner transform.
The fermion counting distribution is therefore, up to a
constant, equivalent to the counting distribution of the
spins in z-direction in the transverse XY-model in Eq.
(9). We can thus use the above to calculate the counting
distributions of the anisotropic XY model in a transverse
field for a system of any size N . Experimentally, the spin
number distribution and its fluctuations can be inferred
from the expectation value and fluctuations of the polar-
ization of the light that has interacted with a cold atomic
sample [30].

IV. COUNTING STATISTICS IN THE

PRESENCE OF THERMAL NOISE

In real counting experiments, there are typically a va-
riety of noise sources that may affect the system. In this
section we study the influence of thermal noise on the
counting distributions of the 1D fermi system in Eq. (1).
We analyze the counting distributions along the crossover
between the different regions of the phase diagram. We
first review the results for the zero temperature case and
then turn our discussion to the case with thermal fluctu-
ations.

A. Counting statistics at zero temperature

At zero temperature, the ground state of the system

Hamiltonian Eq. (2) is the vacuum state of d̂k excita-
tions. The expressions Ak and Bk in Eq. (14) are thus
given by

Ak = 2κv2
k

Bk = κ2v2
k. (18)

Inserting these into the equations for the two-mode prob-
abilities Pi in Eq. (17), we obtain the probabilities of
finding 0, 1 or 2 particles in a system with one pair of
modes

p(0, 1) = 1 − 2κ(v2
1 + κ2v2

1)

p(1, 1) = 2κv2
1 − 2κ2v2

1

p(2, 1) = κ2v2
1 . (19)

The counting distribution can now be calculated for an
arbitrary number of modes using the recurrence relation
Eq. (16). In fig. 1 a, we plot the counting probability dis-
tribution for the Ising model (γ = 1) at zero temperature

450 500 550
0

0.02

0.04

0.06

a)

p(
m

)

m
0 1 2

0

0.5

1

b)

g

FIG. 1: (Color online) a) Counting probability distribution
p(m) of finding m particles for the fermionic system in Eq.(1)
with γ = κ=1 and g = 0, N = 1000 at T = 0. b) Mean m̄/N
(blue squares) and variance σ2/N (red circles) of the counting
distribution as a function of the transverse field g at T=0.

with no transverse field (g = 0) and perfect detection ef-
ficiency. We consider a system with zero excitations and
N = 1000 sites. The probability distribution is centered
around a mean value m̄ = 500 = N/2 particles and its
standard deviation is σ = 50, such that σ2 = N/4. As
was observed in [24], the pairing that is present in the
system hamiltonian Eq. (1) only allows for the detection
of pairs of particles and thus leads to a zero probability
of finding an odd number of particles. In [24], this split-
ting of the counting distribution between even and odd
values was shown to disappear for decreasing detection
efficiency κ. In Sec. IVB, we use this feature of the
counting distribution to study the influence of thermal
fluctuations on the stability of the fermion pairs.

In fig. 1 b, we plot the mean m̄/N and variance σ2/N
of the counting distribution for different values of the
transverse field g. The mean number of particles in-
creases with increasing transverse field g. The variance
is constant with g up to the critical point, and then de-
creases with increasing g. The phase transition at g = 1
is clearly visible both in the mean and in the variance. In
[24], we studied the behavior of the counting distribution
for different values of the anisotropy parameter γ and the
detection efficiency κ. We found that the characteristic
behavior of the mean and variance as shown in fig 1 b) is
similar when γ varies from 0 to 1. We further found that
the phase transition is visible in the means and variances
even for small detection efficiencies. In the following we
consider full detection efficiency (κ = 1), as the results
for smaller efficiencies are similar.

B. Counting statistics at non-zero temperature

We now turn our discussion to the case of non-zero
temperature. The effect of the thermal fluctuations in
the system we consider is two-folded. On the one hand,
thermal fluctuations induce the breaking of superfluid
fermionic pairs. On the other hand, the quantum phase
transition reduces to a crossover between different regions
of the phase diagram. We show that both effects are
visible in the counting distribution functions.

We consider the counting statistics at finite tempera-
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ture T using the canonical ensemble, ρ = 1
Z e−βĤ , where

β = 1
kBT , Ĥ is given by Eq. (2) and the partition function

Z = Tr
(

e−β
P

k
Ĥk

)

. The finite temperature T deter-

mines the average number of quasiparticle excitations d̂k.
In order to calculate the terms Ak and Bk defined in Eq.

(14), we write ρk = 1
Zk

e−βĤk where Zk = Tr
(

e−βĤk

)

and we take the trace in the basis {|00〉|01〉|10〉|11〉}. We
obtain

Ak =
2κ

Zk
(v2

k + e−βEk + e−2βEku2
k)

Bk =
κ2

Zk
(v2

k + e−2βEku2
k) (20)

Zk = 1 + 2e−βEk + e−2βEk (21)

For a given value of the transverse field g, we fix the

temperature and obtain the number Nd =
∑N/2

k=1 Nd
k of

fermionic excitations

Nd
k = Tr

(

ρkn̂d
k

)

. (22)

As explained above, we use Ak and Bk to obtain the
recursive formula for the counting distribution.

Thermal fluctuations induce the breaking of pairs.
For increasing temperature, the pairing of fermions
with binding energy proportional to γ in Eq. (1) is
suppressed. This is reflected in the counting distribution
in such a way that the counting probability for odd
numbers of particles becomes non-zero. To illustrate
this, we plot in fig. 2 the probability of counting the
exemplary odd value of m = 499 particles as a function
of temperature. As temperature increases, the pairs are
broken and we observe a transition from zero probability
to a finite value. We compare a system with small
interaction strength γ = 0.01 (fig. 2 a) to the case of
γ = 1 (fig. 2 b). In the insets, we compare the counting
distribution for each system at zero temperature and
at the indicated higher temperature. We observe that
the splitting between even and odd particle numbers
disappears as the temperature increases. Note that
here we consider a perfect detection process. For lower
detection efficiency, the splitting is not visible, as was
shown in Ref. [24]. For small interaction strength γ, the
counting distribution is narrower, while higher binding
energies γ imply broader atom number distribution
functions. Also, observing the scales of temperatures
when the counting of odd particles become non-zero,
one can infer that this temperature is proportional to
the binding energy of the pairs γ.

Let us now turn our discussion to the influence of tem-
perature on the criticality of the system. As was seen
above for the case of zero temperature, the phase transi-
tion is visible in the mean and variance of the distribu-
tion. This behavior is even more evident in the deriva-
tives of the mean and variance. In fig. 3, we plot the

FIG. 2: (Color online) Probability of counting an odd number
(m=499) of particles as a function of T for γ = 0.01 (fig. a)
and γ = 1 (fig. b). The insets show the counting distribution
for T = 0 and kBT/J = 0.01 in fig. a), and for T = 0 and
kBT/J = 0.2 in fig. b). Note that as T increases, the splitting
between even and odd particle numbers disappears.

derivative of the mean and variance with respect to g at
different temperatures T . One can see how the critical-
ity is blurred when the temperature is of the order of the
energies of the system, kBT ∼ Ek. At high temperature,
the mean and variance become independent of the trans-
verse field value g and take a constant value of 0.5N and
0.25N , respectively.

V. COUNTING STATISTICS DURING

THERMALIZATION OF A SYSTEM COUPLED

TO A HEAT BATH

The long decoherence times of experiments with ultra-
cold atoms allow studying the real time quantum dynam-
ics of these systems. The dynamics of an open system
coupled to a heat bath have recently aroused much in-
terest [11], as one can use dissipation for quantum state
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FIG. 3: (Color online) Derivative of the mean m̄/N (blue solid
line) and the variance σ2/N (red dashed line) of the counting
distribution of the fermionic system Eq.(1) with γ = 1 as a
function of the transverse field g. a) T = 0, Nd = 0 for all g;
b) kBT/J = 0.05 and Nd/N ≃ 0 at g = 0; c) kBT/J = 0.1
and Nd/N = 0.04 at g = 0; d) kBT/J = 1 and Nd/N = 0.27
at g = 0.

engineering. By tuning the properties of the reservoir,
thermalization can drive the system to a steady state
which has the desired properties and can e.g. be used
to encode quantum information. Here, we consider the
thermalization of the system hamiltonian Eq. (1), when
it is coupled to a heat bath. We start from the ground
state at T = 0 and let the system evolve to the thermal
Boltzmann-Gibbs equilibrium state. In this sense, we
analyze the counting statistics in a temperature quench.
The coupling to the heat bath is described by the quan-
tum master equation [39]

d

dt
ρ(t) =

γ0

∑

k

(
Nd

k

2
+ 1)

[

d̂kρ(t)d̂†k −
1

2
d̂†kd̂kρ(t) −

1

2
ρ(t)d̂†kd̂k

]

+γ0

∑

k

Nd
k

2

[

d̂†kρ(t)d̂k −
1

2
d̂kd̂†kρ(t) −

1

2
ρ(t)d̂kd̂†k

]

,(23)

where γ0 is the coupling strength and Nd
k , defined in

Eq. (22), accounts for the mean number of fermions in
the mode k at a certain temperature T . This open sys-
tem dynamics assure that the system approaches thermal
equilibrium towards the Boltzmann-Gibbs state.

At this point, we would like to clarify an important
point in relation to particle counting of a dynamical sys-
tem. The system is governed by two different dynamic
processes, one is the coupling to the heat bath described
by Eq. (23), the other one is the detection by particle

counting described by Eq. (32) in the Appendix. We
assume that the coupling of the system to the heat bath
occurs on a time scale much slower than the counting
process. The counting is thus performed in a time in-
terval in which the coupling to the bath does not affect
the system, so that it can be considered time indepen-
dent. Below we show how the counting statistics change
during the thermalization of the system with the heat
bath. However, each of the distributions is registered at
the detector in a time interval in which no change occurs.

A. Coupling to the excitations

In order to calculate the counting statistics of the sys-
tem coupled to a heat bath, we calculate the terms Ak

and Bk in Eq. (14), which now depend on time. From
the master equation (23), the time dependent mean ex-
citation number is

〈n̂d
k(t)〉 = e−γ0t〈n̂d

k(0)〉 + Nd
k (1 − e−γ0t). (24)

We start with the system initially in the vacuum state
and use

〈d̂†kd̂kd̂†−kd̂−k(t)〉 = 〈d̂†kd̂k〉t〈d̂
†
−kd̂−k〉t, (25)

to calculate the time dependent terms Ak(t) and Bk(t)
for a system in a heat bath

Ak(t)
κ = u2

kNd
k (1 − e−γ0t) + v2

k(2 − Nd
k (1 − e−γ0t)),

Bk(t)
κ2 = u2

k
(Nd

k (1−e−γ0t))2

4

+v2
k(1 − Nd

k (1 − e−γ0t) +
(Nd

k (1−e−γ0t))2

4 ). (26)

In fig. 4, we plot the derivatives of the mean and vari-
ance with respect to the transverse field g at different
times t at a fixed coupling rate γ0 = 1 and at fixed tem-
perature of the bath kBT/J = 0.1. At the initial time
t = 0, the mean and variance correspond to those of the
zero excitation state, ground state at zero temperature
(fig. 4 a). The phase transition is clearly visible in the
derivative both of the mean and the variance. Due to the
coupling of the system and the bath, already for interme-
diate times (see fig. 4 b), the characteristic behavior of
the mean and variance in the critical region washes out.
For long coupling times, the behavior is completely de-
termined by the bath. This can be seen by comparing fig.
4 c to the behavior of the system at thermal equilibrium
at kBT/J = 0.1 (see fig. 3 c).

In fig. 5, we plot the mean and variance as a function
of time t for a system coupled to a heat bath at very
high temperature kBT/J = 100. Here, the transverse
field g is fixed. For g = 0 (fig. 5 a), both the mean
and the variance are constant as the coupling increases.
At the critical point g = 1 (fig. 5 b), the variance is
constant and the mean decreases as the coupling time
increases. For high transverse field g = 2 (fig. 5 c), the
mean decreases until reaching the value of 0.5N and the
variance increases up to the value 0.25N .
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FIG. 4: (Color online) Thermalization: Derivative with re-
spect to the parameter g of the mean (blue solid line) and
variance (red dashed line) for γ = 1 for increasing coupling
time with γ0=1 and kBT/J = 0.1. Fig. a) shows the initial
time when the system is not coupled to the bath. Fig. b)
Jt = 1 and c)Jt = 10.

B. Local representation of the coupling

The master equation Eq. (23) that we use to describe
thermalization shows two aspects. On the one hand, it
is physically meaningful to describe the coupling to the

bath in terms of an exchange of quasiparticles d̂k, because
the Hamiltonian Eq.(1) conserves the number of quasi-
particle excitations. On the other hand, it may look non-
physical because the exchange between the system and
the bath is non-local. The aim of this section is to show
that the master equation can be rewritten in terms of lo-
cal fermions ĉl and in principle it could be realized using
reservoir designs [11].

In the limit of high temperature and in the absence of a
transverse field (g = 0) at any temperature, the number
of excitations Nd

k in the bath is constant with k. In these
two limits, the master equation (23) rewritten in terms
of the local operators ĉl reads

d

dt
ρ(t) =

γ0(
Nd

N
+ 1)

∑

l,m

[Fu(l − m)ĉlρĉ†m + Fv(l − m)ĉ†l ρĉm − Fuv(l − m)(ĉ†l ρĉ†m − ĉlρĉm)

−
1

2
(Fu(l − m)ĉ†l ĉmρ + Fv(l − m)ĉlĉ

†
mρ − Fuv(l − m)(ĉ†l ĉ

†
mρ − ĉlĉmρ))

−
1

2
(Fu(l − m)ρĉ†l ĉm + Fv(l − m)ρĉlĉ

†
m − Fuv(l − m)(ρĉ†l ĉ

†
m − ρĉlĉm))]

+γ0

∑

k

Nd

N

∑

l,m

[Fu(l − m)ĉ†l ρĉm + Fv(l − m)ĉlρĉ†m − Fuv(l − m)(ĉ†l ρĉ†m − ĉlρĉm)

−
1

2
(Fu(l − m)ĉlĉ

†
mρ + Fv(l − m)ĉ†l ĉmρ − Fuv(l − m)(ĉ†l ĉ

†
mρ − ĉlĉmρ))

−
1

2
(Fu(l − m)ρĉlĉ

†
m + Fv(l − m)ρĉ†l ĉm − Fuv(l − m)(ρĉ†l ĉ

†
m − ρĉlĉm))], (27)

where we define the functions

Fu(l − m) =
1

N

∑

k

u2
keiΦk(l−m) (28)

Fv(l − m) =
1

N

∑

k

v2
keiΦk(l−m) (29)

Fuv(l − m) =
i

N

∑

k

ukvkeiΦk(l−m), (30)

which depend on the distance l − m between two sites
l and m and are related to the correlation length of the
quasiparticles and the pairs. In fig. 6 and fig. 7, we
study the behavior of the functions Fu, Fv and Fuv as
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FIG. 5: (Color online) Thermalization: Mean (blue squares)
m̄/N and variance σ2/N (red circles) for increasing coupling
time t (γ = γ0 = 1). a) g = 0, b) g = 1 and c) g = 2.

the distance between the sites increases. We plot Fu,
Fv and 1

i Fuv for different values of g and γ/J and show
that the functions Fu, Fv have their maximum at zero
distance and decay rapidly as the distance increases. The
function Fuv, which corresponds to the pair correlations,
has its maximum at the nearest neighbor term |l−m| = |.
We observe that for a large transverse field g ≫ 1, and
γ/J → 0, the only non-zero term corresponds to Fv(0) =
1. In this case, the XY model behaves like a free fermi
gas and the master equation (23) reduces to

d

dt
ρ(t) =

γ0(Nd/N + 1)
∑

l

[ĉ†l ρĉl −
1

2
ĉlĉ

†
l ρ −

1

2
ρĉlĉ

†
l ]

+γ0Nd/N
∑

l

[ĉlρĉ†l −
1

2
ĉ†l ĉlρ −

1

2
ρĉ†l ĉl]. (31)

Note that for these parameters, the quasiparticles d̂k →

ĉ†k. Thus at high T and high transverse field g the bath
and the system exchange fermionic particles.

Another interesting limit occurs at any T when g → 0
and γ/J = 1. We see in figure 6 that in this case, the
functions Fu, Fv are of the order of 0.5 for the same site
and Fu, Fv and Fuv are of the order of ±0.25 for neigh-
boring sites. The master equation Eq. (27) has contri-
butions resulting from the exchange of on-site fermions
and an additional term that corresponds to neighboring

−5 0 5

0

0.2

0.4 a)

−5 0 5

0

0.5

1
b)

−5 0 5

−0.2

0

0.2 c)

FIG. 6: (Color online) Thermalization: a) Fu, b) Fv and c)
Fuv as a function of the distance between sites l and m for
γ = 1 and g = 0 (blue circles), g = 1 (green squares) and
g = 10 (red diamonds).
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−5 0 5

0

0.5

1
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−5 0 5

−2

0

2
x 10

−3

c)

FIG. 7: (Color online) Thermalization: a) Fu, b) Fv and c)
Fuv as a function of the distance between sites l and m for
γ = 0.01 and g = 0 (blue circles), g = 1 (green squares) and
g = 10 (red diamonds).
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particles. Also, there is an exchange not only of on-site
particles and holes but also of fermionic pairs. This is
expected, as in the regime g ≪ γ, J the pair creation
dominates in Hamiltonian Eq. (1).

For low temperatures and at g 6= 0, the number of
quasiparticles Nd

k is not constant with k and the master
equation cannot be written in the form Eq. (27). How-
ever, as Nd

k is small for low temperatures, the non-local
terms are negligible and the equation as a whole remains
local.

VI. CONCLUSIONS

We have studied the effects of temperature on the
counting distribution of a strongly correlated fermionic
system, which can be mapped to the quantum XY spin
model with a transverse field. Thermal fluctuations in-
duce pair breaking in the superfluid fermionic system.
We show that this is reflected in the particle number
distribution function, which becomes non-zero for odd
numbers of particles for a temperature proportional to
the pair formation strength. Also, thermal fluctuations
reduce the quantum phase transition into a crossover be-
tween different regions of the phase diagram. We have
found that at low temperatures, the mean and variance
of the counting distribution reflect the critical behavior
at the crossover between different phases. This effect is
obscured with increasing temperature and when the tem-
perature is comparable to the eigenergies of the system,
the cumulants of the counting distribution no longer re-
flect the critical behavior. At high temperatures, there
is no signature of the quantum critical region.

Furthermore, we have shown that the number distri-
bution functions can be used to monitor the quantum
dynamics of the system. We have studied the thermal-
ization of the system, initially at zero temperature, when
it is coupled to a heat bath at finite temperature. This
process is analogous to a temperature quench. The tem-
perature determines the number of delocalized excita-
tions in the system at equilibrium. For high tempera-
tures and high transverse fields, the exchange of excita-
tions between system and bath can be mapped into the
exchange of local fermions. For zero transverse field, we
have shown that the exchange of local excitations cor-
responds to the exchange of local particles and nearest
neighbor pairs. We have assumed that the counting pro-
cess occurs at a different time scale, much faster than the
exchange of excitations between the system and the bath.
We have shown that the mean and variance of the count-
ing distribution can be used to map the thermalization
process.

Appendix: Counting of constant fields

The counting formula in Eq. (10) has been derived in
different ways [12, 40–46]. Here, we review a derivation
(see e.g. [47]) by modeling the absorption of the particles

at the detector with the following master equation

ρ̇ = εâρâ† −
ε

2
â†âρ −

ε

2
ρâ†â, (32)

where a† and a are the creation and annihilation operator
of the particle to be counted. Performing a rotation of

the density matrix, ρ(t) = e−
ε
2
tâ†âρ̃(t)e−

ε
2

tâ†â, and using
the relation

eγABe−γA = B + γ[A, B] +
γ2

2!
[A, [A, B]] + ..., (33)

we obtain

˙̃ρ(t) = εâe
−ε
2

tρ̃â†e
−ε
2

t = εe−εtâρ̃â†. (34)

This equation can be solved using perturbation theory

ρ̃(t) = ρ̃(0) +

∫ t

0

εe−εt′ âρ̃(t′)â†.

(35)

Transforming back the rotation we obtain

ρ(t) = e−
ε
2

tâ†â(ρ̃(0) +

∫ t

0

εe−εt′ âρ̃(0)â† + ...)e−
ε
2
tâ†â.

(36)
Using the cyclic properties of the trace, the probability
pm(t) of counting m particles can be written as

pm(t) = Tr[ρ(0)a†m (
∫ t

0 dt′εe−εt′)m

m!
e−εta†aam]. (37)

This is equal to the normally ordered expression

pm(t) = 〈: (1 − e−εt)m (â†â)m

m!
e−(1−e−εt)â†â :〉, (38)

which holds because

: (â†â)me−(1−e−εt)â†â := â†m : e−(1−e−εt)â†â : âm

= â†me−εtâ†ââm. (39)

We can thus use the generating function formalism in
Eq.(12) with κ =

∫ τ

0 dt′εe−εt′ = 1 − exp (−ετ), where τ
is the aperture time of the detector.
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