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Abstract

We study the effect of coupling between molecular vibrational modes attendant the excitation

of Raman transitions using ultrafast chirped laser pulses. We model Raman active vibrational

modes by two-level systems (TLSs) with nondegenerate ground states and a predetermined initial

relative phase. Chirp of the pump and Stokes pulses is the same in magnitude and opposite in

sign for the whole pulse duration. To reveal the nonadiabatic effects induced by the coupling

between the vibrational modes, we compare the model of two uncoupled two-level systems with

the one of two, two-level systems coupled by the external fields. First model shows population

inversion. Within the second model, the coupling induces nonadiabatic effects leading to a mixed

population distribution. By introducing the time delay between the Stokes and the pump pulse,

nearly complete population transfer is realized in both, coupled TLSs.
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I. INTRODUCTION

Advances in laser technology hold treasure for optical, controlled excitations in atoms

and molecules. In a simplistic picture, any transitions in a molecule may be described by a

model of a multilevel system interacting with light, and often, by a two-level system (TLS)

[1]. In the resonantly driven TLS, it is possible to obtain the desired population transfer

by applying a driving pulse that provides a specific value of the pulse area. The population

inversion takes place when the pulse is in resonance with the TLS and satisfies the condition

for the pulse area to be equal to π. However, in real molecular systems, existence of multiple

transitions with various coupling strengths and frequencies makes it impossible to use the

pulse area solution to achieve a predetermined population transfer, for example, population

inversion. One is likely to find the inversion in one transition and a complete population

return in another transition, as well as arbitrary population distribution in other transitions.

Another drawback of the π−pulse method is that it requires precise control over the pulse

area. Besides, certain constraints have to be imposed on a system of interest, for example,

the orientation of the transition dipoles related to the impinging field. All of these restricts

the application of π−pulse approach to specific molecular systems only.

For a molecular system characterized by a vibrational spectrum composed of very close

transition frequencies the problem of robust population inversion is a big challenge. Various

quantum control techniques however demonstrated successful generating of ultrafast, ampli-

tude or phase modulated laser pulses that steer a molecular system to the desired quantum

yield. One of the most interesting features of these optically modulated pulses is the chirp.

Chirping the pulse causes the temporal variation of the carrier frequency. It has become

evident that positively and negatively chirped laser pulses are crucial for achieving popu-

lation inversion. Malinovsky et.al. [2] and Cao et.al. [3] suggested a population inversion

scheme based on positively chirped pulses in TLSs. Upon application of ultrafast chirped

laser pulses population inversion was demonstrated by Bergmann et.al. [4] in a three-level

system, and in the case of more complex multilevel system by Kobrak and Rice [5], and

also by Moon et.al. [6]. Using linearly chirped picosecond pulses, Amstrup and co-workers

[7] demonstrated the feasibility of adiabatic inversion in I2 vapor. Meanwhile, Ruhman and

Kosloff [8] showed that negatively chirped pulses are more efficient than their unchirped

counterparts. Following this study, Cerullo et.al. [9] observed strong chirp dependence for
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high power femtosecond pulse excitation of dye molecules in solution, and found that the

process is enhanced by the negatively chirped pulses and suppressed by the positively chirped

pulses.

Adiabatic passage is known to involve a dynamical variable (for example, the field ampli-

tude, or the field-state detuning) which changes sufficiently slowly compared to other time

dependent parameters of the light-matter system. The evolution of states in this case is

subject to an effective Hamiltonian. Adiabatic passage may be accomplished when an atom

or a molecule remains in a single eigenstate (the dressed state) of that effective Hamiltonian

at all times. It has been efficiently used to adiabatically invert population starting from

the pure initial state. This task is of key importance in experimental and theoretical work

addressing problems in quantum computing, atomic and molecular spectroscopy, etc.

In this paper, a semiclassical theory is developed to study the interaction of the Raman-

active vibrational modes, described by TLSs, with femtosecond chirped laser pulses. An

exact solution is obtained by numerically solving the time-dependent Schrödinger equation

using the Runge-Kutta method. The primary goal is to reveal the nonadiabatic effects in-

duced by the coupling between the vibrational modes. Two cases are considered, first, when

two Raman active vibrational modes are uncoupled while interacting with external fields,

and, second, when they are coupled via an external fields. The coupling leads to a nonzero

probability of population transfer from one TLS to another via the pump and Stokes pulses.

Further, the dressed state analysis is carried out to compare the adiabatic approximation

with the exact solution obtained from the Schrödinger equation and to reveal the strength

of the nonadiabatic effects induced by the coupling. Finally, the time delay between the

pump and Stokes pulses is introduced as a tool to compensate for the nonadiabatic effects

and to achieve a complete population transfer in both, coupled vibrational modes.

II. THEORY

A semiclassical theory is developed that describes the interaction of femtosecond chirped

laser pulses with two, two-level systems (TLSs) representing two Raman-active vibrational

modes in a molecule. Relaxation or collisional dephasing effects are not taken into account.

Two TLSs have non-degenerate energies of the ground states as shown in Fig.1. The energy

levels of each TLS are chosen in accordance with the solution for one-dimensional harmonic
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oscillator. Here the |1〉 − |2〉 TLS has transitional frequency ω21 and the |3〉 − |4〉 TLS

has transitional frequency ω43, such that ω43 − ω21 = δ. Our prime interest is learn what

impact does the coupling between TLSs make on the population dynamics and is it possible

to achieve a population inversion in both the |1〉 − |2〉 and |3〉 − |4〉 TLSs when they are

coupled through the fields.

The femtosecond pump and Stokes laser pulses have Gaussian envelope and are linearly

chirped. They have carrier frequencies ωp and ωs respectively, and are defined as

Ep(t) = Ep0(t)cos(ωpt −
αt2

2
), Es(t) = Es0(t)cos(ωst −

βt2

2
), (1)

Ep0(t) = Ep0e
−

t2

2τ2 , Es0(t) = Es0e
−

t2

2τ2 ,

where Ep0(t) and Es0(t) are the time-dependent pump and Stokes field envelopes,Ep0 =

E0

(1+ α′2

τ4
0

)1/4
is the peak value of the pump pulse, Es0 = E0

(1+ β′2

τ4
0

)1/4
is the peak value of the

Stokes pulse, α, β and α′, β ′ are the linear temporal and respective spectral chirps of the

pump and Stokes pulse, τ = τ0

√

1 + α′2/τ 4
0 is the chirp-dependent pulse duration assumed

to be the same for the pump and Stokes pulses, since |α′| = |β ′|, (pulse chirping known to

elongate the pulse duration). Let us look first at the case when two TLSs interact with the

pump and Stokes fields without interacting with each other, means, the TLSs are uncoupled.

Within the field-interaction representation, a semiclassical Hamiltonian, that describes the

interaction of each of two uncoupled TLSs with ultrafast chirped laser pulses reads

H =







−δ/2 − αd(t)/2 − Ωd(t) −Ω3(t)

−Ω3(t) δ/2 + αd(t)/2 + Ωd(t)





 (2)

It is obtained by adiabatic elimination of the virtual, electronic excited state |b〉 and in

the rotating wave approximation (RWA). Here, the two-photon detuning δ is zero for the

resonant TLS. When the coupling between the resonant and detuned TLS is switched on,

the Hamiltonian for the coupled TLSs, obtained in the field-interaction representation and

the RWA after adiabatic elimination of the virtual state |b〉 reads

H =





















−αd(t) − Ωd(t) −Ω3(t) −Ω1(t) −Ω3(t)

−Ω3(t) αd(t) + Ωd(t) −Ω3(t) −Ω2(t)

−Ω1(t) −Ω3(t) δ/2 − αd(t) − Ωd(t) −Ω3(t)

−Ω3(t) −Ω2(t) −Ω3(t) 3δ/2 + αd(t) + Ωd(t)





















(3)
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Here Ωd(t)=(Ω1(t) − Ω2(t))/2, αd(t)=(β − α)(t − tc), Ω1(t) = µ2

4h̄2∆
E2

p0e
−

(t−tc)2

τ2 , Ω2(t) =

µ2

4h̄2∆
E2

s0e
−

(t−tc)2

τ2 are the ac Stark shifts originated from the two-photon transition, tc is the

central time, when the pump and Stokes pulse amplitude comes to the peak value, µ is the

dipole moment, for simplicity we considered all the dipole moments to be equal to 1 Debye,

µij=µ, ∆ is the detuning from the electronic excited state |b〉, Ω3(t) = µ2

4h̄2∆
Ep0Es0e

−
(t−tc)2

τ2 is

the effective Rabi frequency. The diagonal elements of the Hamiltonian describe bare state

energies in the field interaction representation, they depend on the chirp parameters α and

β and also on detuning δ. The off-diagonal elements represent coupling of the bare states

through the effective Rabi frequency Ω3(t) and also through the ac Stark shifts.

III. NUMERICAL RESULTS FOR THE MODEL OF TWO UNCOUPLED TWO-

LEVEL SYSTEMS

The Hamiltonian in Eq.(2) is used in the Schrödinger equation to solve for the evolution

of the probability amplitudes a1(t) and a2(t) for the resonant TLS and for the probability

amplitudes a3(t) and a4(t) for the detuned TLS, see Fig.1. The numerical solution was

obtained using the Runge Kutta method [10] and performed under the initial condition

that only the ground state of the resonant TLS and the detuned TLS is populated. This

is likely to be the case for population distribution in molecules at room temperature. The

population is chosen to be 0.5, giving the total population in two TLSs equal to unity. If

two TLSs are uncoupled, a single state population can reach the maximum value of 0.5,

however, if two TLSs are coupled (for details see the next section) a single state population

can range from zero to 1. The parameters of the fields and the systems used in numerical

calculations correlate with experimental conditions discussed in [11, 12] and also used in

[13]. We addressed two Raman active vibrational modes ω21=84.9 THz (2840cm−1), the

symmetric stretch, and ω43=87.6 THz (2930cm−1), the asymmetric stretch, in methanol.

(They are an equally good fit for vibrational modes of CHn molecular species, found in

abundance in biological samples [14].) The intensity of the laser fields is 2 · 1012W/cm2, and

the transform-limited pulse duration is τ0=176 fs. The magnitude of the spectral chirp used

in calculations is fixed and is |α′| = |β ′|=3 · 10−4/cm−2, giving the chirped pulse duration

equal to τ = 1.8ps. Under the condition of the same magnitude of the chirp for both, the

pump and Stokes pulses, the chirp rate is positive for the pump pulse (α > 0), and negative
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for the Stokes pulse, (β < 0). Besides, at the instant tc, when the pump and Stokes pulse

amplitudes reach their peak value, the frequency difference (ωp − ωs) comes into resonance

with the transitional frequency ω21. The resonance with the ω43 transitional frequency is

achieved somewhat later, at t = tc + δ/(2α), (where α is the positive chirp parameter of the

pump pulse). The detuning δ, that features the |3〉−|4〉 TLS, is much less than the transition

frequency of the resonant TLS, i.e., δ << ω21, and is equal to 2.7 THz in our calculations.

Fig.2 shows the population dynamics in the resonant TLS. The population is being smoothly

transferred from the ground state to the excited state, the even population distribution is

achieved at the central time and the inversion occurs at the end of the pulse duration.

In Fig.3, the population dynamics in the detuned TLS is shown. In this case, the even

population distribution is achieved at the time t = tc + δ/(2α) and the population inversion

takes place at the end of the pulse. Simultaneously applied the negatively chirped Stokes

pulse and the positively chirped pump pulse compose the field having the beat frequency

continuously changing from lower to higher value. Since frequency difference of the detuned

TLS is ω21 + δ, the field beat frequency comes into the resonance with this TLS afterwards

the central time and, thus, inversion in |3〉−|4〉 TLS occurs later than in the |1〉−|2〉 TLS. To

gain an insight into the adiabaticity of the population transfer, the dressed state analysis was

carried out. We numerically diagonalized the Hamiltonian in Eq.(2) and obtained the time-

dependent energy of the dressed states and their respective eigenvectors. Fig.4 shows the

dressed state energies (solid lines) and the bare states energies (dashed lines) as a function

of time for the resonant TLS. Dressed state I is populated initially, because it coincides with

the bare state |1〉, which is the ground state of the resonant TLS. Thus, dressed state I is

the state within which the adiabatic dynamics takes place. As the pulses evolve in time and

the intensity of the fields increases, this dressed state becomes a superposition of two bare

states with the same probability amplitude. Asymptotically, the energy of dressed state I

coincides with the energy of bare state |2〉, manifesting the population inversion. The plots

for the dressed state energies of the detuned TLS are shown in Fig.5, they are labeled as III

and IV. Note, that here the crossing of the bare states occurs after the central time, which

is owing to the detuning in the system. At the end of the pulse duration, almost complete

population inversion is observed in this TLS as well.

Fig.6 shows the population distribution among the bare states obtained from the eigen-

vectors related to the dressed states I, II, III and IV. The population of the bare states
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within the dressed state I shows an adiabatic transfer of all the population from state |1〉 to

state |2〉. While the reverse is observed for the dressed state II’s population dynamics. For

the dressed state III, plots depict an inversion from bare state |3〉 to bare state |4〉, and for

the dressed state IV, the population dynamics is reverse compared to the dressed state III.

The crossings of the bare state populations are in consistency with Fig.4 and 5, and occur

after the central time for the detuned TLS and at the central time for the resonant TLS.

Thus, we have demonstrated that an adiabatic control leading to the population inversion

is possible in a resonant or slightly detuned TLS by implementing the same in magnitude

and opposite in sign chirp to the pump and Stokes fields.

IV. NONADIABATIC EFFECTS INDUCED BY THE COUPLING BETWEEN

TWO-LEVEL SYSTEMS

Naturally, the Raman active vibrational modes get coupled via external fields when pulses

strike the molecules. When modeled, the coupling is fulfilled by the effective Rabi frequency

Ω3, the strength of which is determined, particularly, by the excitation fields [15]. Studying

the effects of coupling may play an important role in interpreting the results observed in

laboratory. Most of time, constraints are imposed on the coupling, implying weak dipole

transition moments between specific states. But in our studies, we have taken the most

general approach, where all the transitions are allowed, i.e, all the four states are coupled

to each other through the fields. Fig.7 shows the exact solution obtained by solving the

Schrödinger equation with the Hamiltonian in Eq.3 for the two, coupled TLSs using the

Runge-Kutta method [10]. The final population of the excited state of the detuned TLS

is nearly 60% and that of excited state of the resonant TLS is nearly 20%. It can be

implied from the comparison with the previous results that the coupling between the modes

has induced nonadiabatic effects in the system and has resulted in the mixed population

distribution among the TLSs.

To gain more insight into the physics behind the evolution of the systems and the nonadi-

baticity induced by the coupling, we performed the dressed state analysis. By diagonaliza-

tion of the Hamiltonian in Eq.3, we obtained dressed state energies, presented in Fig.8. We

observe two avoiding crossings between different dressed states. They are placed very close

and are relatively narrow providing population flow from one dressed state to another. Ini-
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tially, dressed states I and III are populated due to their coincidence with the energy of the

bare states |1〉 and |3〉. As both the pump and Stokes pulses evolve in time, the energy of

dressed states II and III approach one avoiding crossing that is followed by another avoid-

ing crossing for states II and IV. These two avoiding crossings are not really separated in

time, they cannot be considered independently. Such a complex picture results in essentially

nonadiabatic population transfer between all the dressed states. It implies that by including

the coupling in the system, we loose control over Raman transitions, and are unable to

obtain a population inversion in the modes. Population dynamics between the bare states

within each of four dressed states is shown in Fig.9. For the dressed states I and III, the

population inversion is observed in the resonant and detuned TLSs respectively. However,

in the Schrödinger picture, owing to the nonadiabatic nature of light-matter interaction, all

the dressed states are mixed and the population inversion is not reachable, as it is seen in

Fig.7. So, the coupling between the modes leads to nonadiabaticity. However, a possibility

of an efficient population transfer may exist if to apply suitably delayed pulses as it was

first fulfilled by Oreg, Hioe, and Eberly [16]. Their method was realized experimentally by

Gaubatz et.al. [17], and many others. In this approach, controlling the pulse delay between

the pump and Stokes pulses leads to the desired population inversion in both TLSs. In-

troducing the time delay between the pulses separates the dynamics in the coupled TLSs.

It was shown by Gaubatz, that the lowest losses from nonadiabatic coupling between the

states are achieved when the delay is equal to the pulse bandwidth.

Following this approach, we introduced the 100fs time delay between the Stokes pulse

and the pump pulse, the Stokes pulse runs first. This pulse sequence resembles the STIRAP

scheme. We have seen earlier that the crossing between the bare state populations in the

detuned TLS occurs after the central time. Now, that we have introduced the time delay,

the crossing will occur further away from the central time associated with Stokes pulse.

Control over the population dynamics is achieved by the two frequency components arising

in the continuously changing beating frequency of the chirped pump and Stokes pulses. The

lower frequency component leads the higher frequency component. This inverts the resonant

TLS first since the transition frequency of this TLS is lower than that of the detuned TLS.

After 100fs time delay, the detuned TLS gets inverted. At this time the lower frequency

vibrational mode is already inverted and there will be no transition possible. Thus we

observe a population inversion in both TLSs in the presence of the coupling between them.
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Fig.10 shows the exact solution of population dynamics in the two, coupled TLSs.

V. CONCLUSION

We have discussed a theory of the chirped pump and Stokes laser pulses interaction with

vibrational modes with the goal to reveal the effect of the coupling between modes via

external fields on the population dynamics and explore a possibility for population inversion

under these conditions. We have examined the effects of coupling by studying two cases,

first, when the coupling between the modes is zero and then, when the coupling is switched

on. The uncoupled two, TLSs give a robust population inversion in the resonant and detuned

TLSs. While in two coupled TLSs, a mixed distribution of population is observed owing

to nonadiabatic nature of the pump and Stokes pulse interaction with molecules. The

performed dressed state analysis revealed a possibility for strong nonadiabatic effects in this

case. Upon exploring the coherent control mechanisms of light-matter interaction, we found

that by adding the time delay between the pump and Stokes pulse one can achieve the

desired population inversion in both coupled vibrational modes. The exact solution with

the time delayed pump pulse by 100fs shows nearly complete population inversion in both,

coupled TLSs.
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FIG. 1: (Color online) Schematic of two, TLSs having frequencies ω21 and ω43. Ground states

are equally populated initially. The vibrational modes interact with the pump and Stokes pulses

having frequencies ωp and ωs respectively, and ∆ is the one-photon detuning from the excited state

|b〉.
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FIG. 2: (Color online) The population dynamics in the resonant TLS as a function of time for

parameters α′/τ2
0 =10 and the peak pulse intensity 2 · 1012W/cm2. The black (solid) and red

(dot-dashed) curve shows the exact solution for population in |1〉 and |2〉 states respectively.
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FIG. 3: (Color online) The population dynamics in the detuned TLS as a function of time for

parameters α′/τ2
0 =10 and the peak pulse intensity 2 · 1012W/cm2. The green (dotted) and blue

(dashed) curve shows the exact solution for population in |3〉 and |4〉 states respectively.
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FIG. 4: (Color online) Time-dependent picture of the energies of the dressed states I and II (solid

lines) and the energies of the bare states (dashed lines) for the resonant TLS as a function of time

for parameters α′/τ2
0 =10, and the peak pulse intensity 2 · 1012W/cm2.
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FIG. 5: (Color online) Time-dependent picture of the energies of the dressed states III and IV

(solid lines) and the energies of the bare states (dashed lines) for the detuned TLS as a function

of time for parameters α′/τ2
0 =10, and the peak pulse intensity 2 · 1012W/cm2.
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FIG. 6: (Color online) The population dynamics of the bare states within the four different dressed

states is shown in four inserts for parameters α′/τ2
0 =10, and the peak pulse intensity 2·1012W/cm2.

Black (solid), red (dot dashed), green (dotted) and blue (dashed) curve shows population of the

bare state |1〉, |2〉, |3〉 and |4〉 respectively.
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FIG. 7: (Color online) The population dynamics for two, coupled TLSs as a function of time

for parameters α′/τ2
0 =10, and the peak pulse intensity 2 · 1012W/cm2. Black (solid), red (dot

dashed), green (dotted) and blue (dashed) curve represents population of |1〉, |2〉, |3〉 and |4〉 states

respectively.
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FIG. 8: (Color online) Time-dependent picture of the energies of the dressed states I, II, III and

IV for coupled two, TLSs, and the energies of the bare states (dashed lines) as a function of time

for parameters α′/τ2
0 =10, and the peak pulse intensity 2 · 1012W/cm2.
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0 =10, and the peak pulse intensity 2·1012W/cm2.

Black (solid), red (dot dashed), green (dotted) and blue (dashed) curves shows the time evolution

of population of bare state |1〉, |2〉, |3〉 and |4〉 respectively.
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FIG. 10: (Color online) Population dynamics in two coupled TLSs as a function of time for pa-

rameters α′/τ2
0 =10, time delay between the Stokes and the pump pulses 100fs and the peak pulse

intensity 2 · 1012W/cm2. The black (solid), red (dot dashed), green (dotted) and blue (dashed)

curve represents population of the bare state |1〉, |2〉, |3〉 and |4〉 respectively.
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