This is the accepted manuscript made available via CHORUS. The article has been published as:

Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in $\mathrm{Ca}{ }^{\wedge}\{+\}$
M. S. Safronova and U. I. Safronova

Phys. Rev. A 83, 012503 - Published 7 January 2011
DOI: 10.1103/PhysRevA.83.012503

Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca^{+}

M. S. Safronova ${ }^{1}$ and U. I. Safronova ${ }^{2,3}$
${ }^{1}$ Department of Physics and Astronomy, 217 Sharp Lab, University of Delaware, Newark, Delaware 19716
${ }^{2}$ Physics Department, University of Nevada, Reno, Nevada 89557,
${ }^{3}$ Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow, Russia

Abstract

A systematic study of Ca^{+}atomic properties is carried out using high-precision relativistic allorder method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to $n=7$. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole scalar polarizabilities for the $5 s, 6 s, 7 s, 8 s, 4 p_{j}, 5 p_{j}, 3 d_{j}$, and $4 d_{j}$ states and tensor polarizabilities for the $4 p_{3 / 2}, 5 p_{3 / 2}, 3 d_{j}$, and $4 d_{j}$ states in Ca^{+}are calculated. Methods are developed to accurately treat the contributions from highly-excited states, resulting in significant (factor of 3) improvement in accuracy of the $3 d_{5 / 2}$ static polarizability value, 31.8(3) a_{0}^{3}, in comparison with the previous calculation [Arora et al., Phys. Rev. A 76, 064501 (2007)]. The blackbody radiation (BBR) shift of the $4 s-3 d_{5 / 2}$ clock transition in Ca^{+}is calculated to be $0.381(4) \mathrm{Hz}$ at room temperature, $T=300 \mathrm{~K}$. Electric-quadrupole $4 s-n d$ and electric-octupole $4 s-n f$ matrix elements are calculated to obtain the ground state multipole E2 and E3 static polarizabilities. Excitation energies of the ns, $n p, n d, n f$, and $n g$ states with $n \leq 7$ in are evaluated and compared with experiment. Recommended values are provided for the $7 p_{1 / 2}, 7 p_{3 / 2}, 8 p_{1 / 2}$, and $8 p_{3 / 2}$ removal energies for which experimental measurements are not available. The hyperfine constants A are determined for the low-lying levels up to $n=7$. The quadratic Stark effect on hyperfine structure levels of ${ }^{43} \mathrm{Ca}^{+}$ground state is investigated. These calculations provide recommended values critically evaluated for their accuracy for a number of Ca^{+}atomic properties for use in planning and analysis of various experiments as well as theoretical modeling.

PACS numbers: 31.15.ac, 06.30.Ft, 31.15.ap, 31.15.ag

I. INTRODUCTION

This work presents a systematic study of atomic properties of Ca^{+}ion motivated by its importance for the development of optical frequency standards and quantum information processing.

The current definition of a second in the International System of Units (SI) is based on the microwave transition between the two hyperfine levels of the ground state of ${ }^{133} \mathrm{Cs}$. The present relative standard uncertainty of Cs microwave frequency standard is around 4×10^{-16} [1]. More precise frequency standards will open ways to more sensitive quantum-based standards for applications such as measurements of the fundamental constants and testing of physics postulates, inertial navigation, magnetometry, gravity gradiometry, and tracking of deepspace probes. Optical frequency standards may achieve even smaller relative uncertainties owing to superior resonance line quality factors, allowing shorter averaging times and higher stability. Significant recent progress in optical spectroscopy and measurement techniques has led to the achievement of relative standard uncertainties in
optical frequency standards that are comparable to the Cs microwave benchmark. With extremely low systematic perturbations and better stability and accuracy, such optical frequency standards can reach a systematic fractional uncertainty of the order of $10^{-18}[2,3]$.

Prospects of optical frequency standard based on the metastable $4 s-3 d_{5 / 2}$ transition in Ca^{+}ion have been studied in [4-6]. In 2009, the first absolute transition frequency measurement at the 10^{-15} level with a single, lasercooled ${ }^{40} \mathrm{Ca}^{+}$ion in a linear Paul trap has been reported [7]. The development of an ion clock based on Ca^{+}has the technological advantage that all necessary wavelengths for laser cooling and state manipulation including lasers for photoionization can be generated by commercially available and easy-to-handle solid state lasers $[5,7]$. The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. Recent experimental work [5] notes that uncertainty due to BBR shift is particularly difficult to improve by experimental means. This uncertainty results both from the uncertainty in the stability and accuracy of trap temperature measurement as well as the uncertainty in the evaluation of the BBR shift coefficient (i.e. BBR shift at 300 K). In the present paper, we improve the accuracy of the BBR shift value at 300 K by a factor of 3 .
Ca^{+}ions have been used for a number of quantum information processing experiments (see Refs. [8, 9] and references therein). Most of the elementary building blocks
for quantum information processing such as state initialization, long quantum information storage times, universal set of quantum logic gates, and readout have been realized with high fidelity with trapped ion systems such as $\mathrm{Ca}^{+}[10-15]$. Recently, the merits of a high-fidelity entangling operation on an optical transition (optical qubit) were combined with the long coherence times of two clock states in the hyperfine ground state (hyperfine qubit) by mapping between these two qubits [9]. Precise understanding of the ion qubit and gate operation decoherence properties is aided by precise knowledge of atomic properties of this system.

Properties of Ca^{+}are also of interest to astrophysics as the absorption spectrum of the Ca^{+}ion is used to explore the structure and properties of interstellar dust clouds $[16,17]$. Below, we briefly review previous studies of Ca^{+}atomic properties.

The lifetime of the metastable $3 d_{3 / 2}$ and $3 d_{5 / 2}$ levels in Ca^{+}was a subject of many theoretical and experimental studies owing to importance of these states for the optical frequency standards and quantum information applications. Early theoretical calculations and measurements of the $3 d_{3 / 2}$ and $3 d_{5 / 2}$ lifetimes in Ca^{+}were reviewed in Ref. [18]. Both high precision measurements and calculations of the $3 d_{j}$ lifetimes were presented by Kreuter et al. in Ref. [18]. A measurement technique was based on high-efficiency quantum state detection after coherent excitation to the $3 d_{5 / 2}$ state or incoherent shelving in the $3 d_{3 / 2}$ state, and subsequent free, unperturbed spontaneous decay. The calculation of the $3 d_{j}-4 s$ electricquadrupole matrix elements was carried out using an $a b$ initio relativistic all-order method which sums infinite sets of many-body perturbation theory terms. These matrix elements were used to evaluate the $3 d$ radiative lifetimes and their ratio [18]. In Refs. [19, 20], the relativistic coupled-cluster theory was used to perform the calculations of these lowest excited $3 d_{3 / 2}$ and $3 d_{5 / 2}$ state lifetimes.

The blackbody radiation (BBR) shift of the $4 s-3 d_{5 / 2}$ clock transition, accurate to 3%, and the $3 d_{5 / 2}$ tensor polarizability were presented by Arora et al. in Ref. [21]. The calculations were based on the relativistic all-order single-double method where all single and double excitations of the Dirac-Fock wave function are included to all orders of perturbation theory. The largest contribution to the uncertainty of the BBR shift originated from the contribution of the highly-excited $n f_{7 / 2}$ states to the $3 d_{5 / 2}$ static polarizability.

Relativistic coupled-cluster studies of ionization potentials, lifetimes, and polarizabilities in singly ionized calcium was recently presented by Sahoo et al. in Ref. [22]. Numerical results were given for the $4 p_{j}$ lifetime and the $4 s$ and $3 d_{j}$ polarizabilities. The polarizabilities of the $4 s$, $5 s, 4 p, 5 p, 3 \mathrm{~d}, 4 d$ of the Ca^{+}ions were recently evaluated by Mitroy and Zhang [23] using the non-relativistic configuration interaction with semi-empirical core potential (CICP) method .

The first measurement of the $4 p_{3 / 2}$ lifetime in Ca^{+}was
presented by Smith and Gallagher [24] using Hanle-effect method with optical excitation from the $4 s$ ground state. The same technique was used by Gallagher [25] to measure the branching ratio of the $4 p_{3 / 2}$ decay [17.6(2.0)]. The beam-foil technique was used by Andersen et al. [26] to measure the oscillator strengths for the $4 s-4 p$, $4 p-5 s, 4 p-4 d$, and $4 p-5 d$ transitions. The same technique was used by Emmoth et al. [27]. Additionally, the effects of cascades were analyzed and corrected for lifetime measurements. The first pulsed laser excitation measurements of the $4 p_{1 / 2}$ and $4 p_{3 / 2}$ level lifetime ($6.96 \pm 0.35 \mathrm{~ns}$ and $6.71 \pm 0.25 \mathrm{~ns}$, respectively) were reported by Ansbacher et al. [28]. Gosselin et al. presented precision $4 p_{1 / 2}$ and $4 p_{3 / 2}$ lifetime measurements in Refs. [29, 30]. Two sets of results $(6.95 \pm 0.18 \mathrm{~ns}$ and $6.87 \pm 0.17 \mathrm{~ns}[29])$ and ($7.07 \pm 0.07 \mathrm{~ns}$ and $6.87 \pm 0.06 \mathrm{~ns}$ [30]) agree within their uncertainties. The mean lifetimes of the $4 p_{1 / 2}$ and $4 p_{3 / 2}$ levels in Ca^{+}were measured by Jin and Church $[31,32]$ to 0.3% precision using a variant of the collinear laser-beam-ion-beam spectroscopy technique $(7.098 \pm 0.020 \mathrm{~ns}$ and $6.924 \pm 0.019 \mathrm{~ns}$, respectively). Lifetime of the $4 p_{3 / 2}$ level ($6.94 \pm 0.18 \mathrm{~ns}$) was measured by Rosner et al. [33] using the cascade-photoncoincidence technique with a sputtered-atom source. We note that recent linearized coupled-cluster calculation [21] disagrees with $0.3 \% \mathrm{Jin}$ and Church measurement by 3%. The accuracy of the calculations should be better than 1% owing to excellent agreement of similar calculations for all alkali-metal atoms from Li to Fr [34], $\mathrm{Mg}^{+}[35], \mathrm{Sr}^{+}[36]$, and $\mathrm{Ba}^{+}[37]$ with all recent experimental values.

Precision measurement of the branching ratios of the $4 p_{3 / 2}$ decay of Ca^{+}was performed recently by Gerritsma et al. in Ref. [38]. High precision was achieved by a novel technique based on monitoring the population transfer when repeatedly pumping the ion between different internal states. Authors underlined that forty-fold improvement was achieved for the $A\left(4 p_{3 / 2}-4 s\right) / \sum_{J} A\left(4 p_{3 / 2}-\right.$ $\left.n d_{j}\right)=14.31(5)$ branching ratio in comparison with the best previous measurement [38].

Warner reported [39] oscillator strengths for the $n s-$ $n^{\prime} p, n p-n^{\prime} d$, and $n d-n^{\prime} f$ transitions with $n s=4 s-9 s$, $n p=4 p-9 p, n d=3 d-7 d$, and $n f=4 f-7 f$. The radial wave functions were calculated using scaled Thomas-Fermi-Dirac wave functions with including spin-orbit interaction [39]. The relativistic pseudopotential approach was applied by Hafner and Schwarzt [40] to the calculation of the $n s-n^{\prime} p$ electric-dipole transition probabilities for $n=4-7$ and $n^{\prime}=4-6$. Semiemerical wave functions were used by Theodosiou [41] to evaluate oscillator strengths and lifetimes of the $5 s, 6 s, 7 s, 4 p, 5 p, 6 p, 4 d, 5 d$, and $4 f$ levels. Relativistic many-body theory was applied by Guet and Johnson [42] to determine amplitudes for the $4 p-4 s$ and $4 p-3 d$ transitions and the $4 p$ lifetime. Multiconfiguration Hartree-Fock wave functions were used by Vaeck et al. [43] to evaluate oscillator strengths for the $4 p-4 s$ and $4 p-3 d$ transitions and the $4 p$ lifetime in Ca^{+}. Liaw [44] performed ab initio calculations based on
the Brueckner approximation for the amplitudes of the $4 p-4 s$ and $4 p-3 d$ transitions and the $4 p$ lifetime in Ca^{+}. The lifetimes of the $5 s, 6 s, 4 p, 5 p, 6 p, 4 d, 5 d$, and $4 f$ levels in Ca^{+}were evaluated by Meléndez et al. [45] using the Thomas-Fermi-Dirac central potential method in the frozen core approximation and including the polarization interaction between the valence electron and the core using a model potential. Recently, non-relativistic CICP method was used by Mitroy et al. [46] to evaluate the $4 s-n p, 4 p-n s, 3 d-n p$ oscillator strengths with $n=4,5$.

The hyperfine structure of the $4 s, 4 p$, and $3 d$ states was evaluated by Mårtensson-Pendrill and Salomonson [47] using many-body perturbation theory. Numerical values were given for the $A(4 s), A(4 p)$, and $A(3 d)$ magnetic-dipole hyperfine constants and for the $B\left(4 p_{3 / 2}\right)$ and $B(3 d)$ electric-quadrupole hyperfine constants [47]. First measurements published several years later [48] confirmed theoretical predictions [47]. The experimental and theoretical results for the $A\left(4 s_{1 / 2}\right)$ and $A\left(4 p_{j}\right)$ hyperfine constants agreed at the 3% level [48]. Additional correlation contributions were added to the method used in [47] by Mårtensson-Pendrill et al. [49] to recalculate all of the above magnetic-dipole hyperfine constants. The hyperfine structure splittings of the $4 s, 4 p_{1 / 2}$, and $4 p_{3 / 2}$ levels in ${ }^{43} \mathrm{Ca}$ II were measured by fast ion beam collinear laser spectroscopy in [50]. Precise determination of the $4 s$ ground state hyperfine structure splitting of ${ }^{43} \mathrm{Ca}^{+}(3225.6082864(3) \mathrm{MHz})$ was reported by Arbes et al. [51]. The Doppler-free and potentially very narrow resonances were used in Ref. [52] to determine the magnetic dipole hyperfine interaction constant A for the $4 p_{1 / 2}$ and $3 d_{3 / 2}$ states of ${ }^{43} \mathrm{Ca}^{+}$. Hyperfine structure in the three $3 d_{3 / 2,5 / 2} \Rightarrow 4 p_{1 / 2,3 / 2}$ transitions were studied by fast ion beam collinear laser spectroscopy for all stable Ca isotopes in [53]. Hyperfine structure parameters $A(4 p), A(3 d), B\left(4 p_{3 / 2}\right)$, and $B\left(3 d_{j}\right)$ for the odd isotope ${ }^{43} \mathrm{Ca}^{+}$, as evaluated from the splittings observed, agreed well with theoretical predictions from relativistic manybody perturbation theory [47, 49]. Recently, relativistic many-body calculations were performed to calculate the magnetic-dipole hyperfine constants $A(4 s), A(4 p)$, and $A(3 d)$ and the electric quadrupole constants $B\left(4 p_{3 / 2}\right)$ and $B(3 d)$ in ${ }^{43} \mathrm{Ca}$ II $[54,55]$. The relativistic coupled cluster theory was employed by Sahoo et al. [54] to calculate the hyperfine A constants of the low-lying states.

Despite many previous studies, no reliable recommended values exist for a number of properties of lowlying states of Ca^{+}. In many cases, only semi-empirical calculations are available. In this work, we carry out a systematic study of Ca^{+}energies, E1, E2, E3 matrix elements, transition rates, lifetimes, A and B hyperfine constants, E2 and E3 ground state polarizabilities, scalar E1 polarizabilities of the $5 s, 6 s, 7 s, 8 s, 4 p_{j}, 5 p_{j}$, $3 d_{j}, 4 d_{j}$ states, and tensor polarizabilities of the $4 p_{3 / 2}$, $5 p_{3 / 2}, 3 d_{j}$, and $4 d_{j}$ states using a high-precision all-order approach [57] in several different approximations. We evaluate the uncertainties of our calculations for most of
the values listed in this work. We also re-evaluated the blackbody-radiation shift in a Ca^{+}ion optical frequency standard and improved its accuracy by a factor of 3 . The quadratic Stark effect on the hyperfine structure levels of ${ }^{43} \mathrm{Ca}^{+}$ground state is investigated. The methodologies for evaluating the uncertainties of theoretical values calculated in the framework of the all-order approach are developed. The calculation of uncertainties involved estimation of missing high-order effects and $a b$ initio calculations in different approximations to establish the size of the higher-order corrections and approximate missing contributions. We evaluated the uncertainties of the recommended values for the transition matrix elements, oscillator strengths, transition rates, lifetimes, polarizabilities, BBR shift, and the Stark shift coefficient.

The main motivation for this work is to provide recommended values critically evaluated for their accuracy for a number of atomic properties via a systematic highprecision study for use in planning and analysis of various experiments as well as theoretical modeling.

II. ENERGY LEVELS

Energies of the $n l_{j}$ states in Ca II are evaluated for $n \leq 7$ and $l \leq 3$ using both third-order relativistic many-body perturbation theory (RMBPT) and the single-double (SD) all-order method. The all-order (linearized coupled-cluster) method and its applications are discussed in detail in review [57] and references therein. Therefore, we do no repeat the method description in this work, with the exception of the details needed to discuss the evaluation of uncertainties in the transition matrix elements carried out in the next section. The comparison of the calculated energy levels with the experimental values gives an excellent indication of the accuracy of the approach and identifies state with particularly large correlation corrections. Moreover, a number of highlyexcited energy levels that we need for the polarizability calculations appear to be not known and are missing from the NIST database [56]. Results of our energy calculations are summarized in Table I. Columns $2-7$ of Table I give the lowest-order DF energies $E^{(0)}$, secondorder and third-order Coulomb correlation energies $E^{(2)}$ and $E^{(3)}$, first-order and second-order Breit corrections $B^{(1)}$ and $B^{(2)}$, and an estimated Lamb shift contribution, $E^{(\mathrm{LS})}$. The Lamb shift $E^{(\mathrm{LS})}$ is calculated as the sum of the one-electron self energy and the first-order vacuum-polarization energy. The vacuum-polarization contribution is calculated from the Uehling potential using the results of Fullerton and Rinker [58]. The selfenergy contribution is estimated for the $s, p_{1 / 2}$ and $p_{3 / 2}$ orbitals by interpolating among the values obtained by Mohr [59, 60, 61] using Coulomb wave functions. For this purpose, an effective nuclear charge $Z_{\text {eff }}$ is obtained by finding the value of $Z_{\text {eff }}$ required to give a Coulomb orbital with the same average $\langle r\rangle$ as the DF orbital. We find that the values of $E^{(\mathrm{LS})}$ are very small. For states

TABLE I: Zeroth-order (DF), second-, and third-order Coulomb correlation energies $E^{(n)}$, single-double Coulomb energies E^{SD}, $E_{\text {extra }}^{(3)}$, first-order Breit and second-order Coulomb-Breit corrections $B^{(n)}$ to the energies of Ca II. The total energies $\left(E_{\mathrm{tot}}^{(3)}=E^{(0)}+E^{(2)}+E^{(3)}+B^{(1)}+B^{(2)}+E^{(\mathrm{LS})}, E_{\mathrm{tot}}^{\mathrm{SD}}=E^{(0)}+E^{\mathrm{SD}}+E_{\text {extra }}^{(3)}+B^{(1)}+B^{(2)}+E^{(\mathrm{LS})}\right)$ of Ca II are compared with experimental energies $E_{\text {NIST }}[56], \delta E=E_{\text {tot }}-E_{\text {NIST }}$. Units: cm ${ }^{-1}$. ${ }^{a}$ Recommended values.

$n l j$	$E^{(0)}$	$E^{(2)}$	$E^{(3)}$	$B^{(1)}$	$B^{(2)}$	$E^{\text {(LS) }}$	$E_{\text {tot }}^{(3)}$	$E^{\text {SD }}$	$E_{\text {extra }}^{(3)}$	$E_{\text {tot }}^{\text {SD }}$	$E_{\text {NIST }}$	$\delta E^{(3)}$	$\delta E^{\text {SD }}$
$4 s_{1 / 2}$	-91440	-4786.3	857.6	23.8	-23.2	3.5	-95364	-4697.6	520.2	-95600	-95752	387	139
$4 p_{1 / 2}$	-68037	-2675.3	411.7	19.7	-12.3	0.0	-70293	-2752.7	271.8	-70506	-70560	267	50
$4 p_{3 / 2}$	-67837	-2642.5	406.0	14.2	-13.3	0.0	-70073	-2719.4	268.2	-70283	-70337	265	50
$3 d_{3 / 2}$	-72617	-10333.3	1989.7	34.1	-99.8	0.0	-81027	-10578.5	1010.7	-82206	-82102	1075	-149
$3 d_{5 / 2}$	-72593	-10277.7	1978.0	21.0	-97.8	0.0	-80970	-10520.6	1003.4	-82142	-82041	1071	-146
$4 d_{3 / 2}$	-37034	-2209.5	395.1	8.0	-21.7	0.0	-38862	-1938.7	216.3	-38761	-38913	51	143
$4 d_{5 / 2}$	-37018	-2200.9	393.5	5.0	-21.4	0.0	-38841	-1932.8	215.1	-38743	-38893	52	142
$4 f_{5 / 2}$	-27473	-224.8	22.2	0.0	-0.1	0.0	-27676	-237.6	22.8	-27688	-27695	19	7
$4 f_{7 / 2}$	-27473	-224.7	22.2	0.0	-0.1	0.0	-27676	-237.6	22.8	-27688	-27695	19	7
$5 s_{1 / 2}$	-42428	-1314.5	242.8	7.4	-7.0	0.5	-43499	-1246.8	145.2	-43525	-43585	86	56
$5 p_{1 / 2}$	-34406	-877.1	140.2	7.3	-4.5	0.0	-35140	-868.4	90.0	-35180	-35219	79	37
$5 p_{3 / 2}$	-34333	-868.4	138.6	5.3	-4.9	0.0	-35062	-860.1	89.0	-35102	-35141	78	37
$5 d_{3 / 2}$	-22244	-910.4	156.6	3.3	-8.8	0.0	-23003	-809.7	89.2	-22967	-23030	26	60
$5 d_{5 / 2}$	-22236	-907.7	156.1	2.1	-8.7	0.0	-22994	-807.8	88.8	-22958	-23021	27	59
$5 f_{5 / 2}$	-17589	-129.7	13.4	0.0	-0.1	0.0	-17706	-137.2	13.1	-17713	-17717	12	4
$5 f_{7 / 2}$	-17589	-129.6	13.3	0.0	-0.1	0.0	-17706	-137.2	13.0	-17713	-17717	12	4
$6 s_{1 / 2}$	-24589	-556.3	103.9	3.3	-3.1	0.1	-25041	-521.3	61.7	-25046	-25074	34	26
$6 p_{1 / 2}$	-20894	-405.0	65.4	3.5	-2.2	0.0	-21232	-401.5	41.7	-21252	-21267	35	15
$6 p_{3 / 2}$	-20859	-401.4	64.8	2.5	-2.3	0.0	-21195	-398.0	41.3	-21215	-21230	35	15
$6 d_{3 / 2}$	-14820	-472.5	79.6	1.7	-4.5	0.0	-15215	-423.2	46.3	-15198	-15230	15	31
$6 d_{5 / 2}$	-14815	-471.2	79.4	1.1	-4.5	0.0	-15211	-422.4	46.1	-15193	-15226	15	31
$6 f_{5 / 2}$	-12215	-79.6	8.3	0.0	0.0	0.0	-12286	-84.2	8.0	-12291	-12294	7	2
$6 f_{7 / 2}$	-12215	-79.6	8.3	0.0	0.0	0.0	-12286	-84.2	8.0	-12291	-12294	7	2
$7 s_{1 / 2}$	-16053	-288.7	54.1	1.7	-1.6	0.0	-16287	-268.8	32.1	-16289	-16304	16	14
$7 p_{1 / 2}$	-14051	-221.0	35.8	1.9	-1.2	0.0	-14236	-218.3	22.8	$\begin{gathered} -14246 \\ -14253^{a} \end{gathered}$			
$7 p_{3 / 2}$	-14032	-219.2	35.5	1.4	-1.3	0.0	-14215	-216.6	22.6	$\begin{gathered} -14225 \\ -14232^{a} \end{gathered}$			
$7 d_{3 / 2}$	-10576	-278.3	46.3	1.0	-2.6	0.0	-10809	-250.2	27.3	-10799	-10818	9	18
$7 d_{5 / 2}$	-10573	-277.6	46.2	0.6	-2.6	0.0	-10806	-249.7	27.2	-10796	-10815	9	18
$7 f_{5 / 2}$	-8974	-51.8	5.5	0.0	0.0	0.0	-9020	-54.9	5.2	-9023	-9025	5	2
$7 f_{7 / 2}$	-8974	-51.8	5.5	0.0	0.0	0.0	-9020	-54.8	5.2	-9023	-9025	5	1

with $l>0$, the Lamb-shift is estimated to be smaller than $0.1 \mathrm{~cm}^{-1}$ using scaled Coulomb values and is negligible at the present level of accuracy. We list the all-order SD energies in the column labeled E^{SD} and the part of the third-order energies missing from E^{SD} in the column labeled $E_{\text {extra }}^{(3)}$. The sum of the seven terms $E^{(0)}, E^{\mathrm{SD}}$, $E_{\text {extra }}^{(3)}, B^{(1)}, B^{(2)}$, and $E^{(\mathrm{LS})}$ gives our final all-order result $E_{\mathrm{tot}}^{\mathrm{SD}}$, listed in the eleventh column of Table I. Recommended energies from the National Institute of Standards and Technology (NIST) database [56] are given in the column labeled $E_{\text {NIST }}$. Differences between our thirdorder and all-order calculations and experimental data, $\delta E^{(3)}=E_{\mathrm{tot}}^{(3)}-E_{\mathrm{NIST}}$ and $\delta E^{\mathrm{SD}}=E_{\mathrm{tot}}^{\mathrm{SD}}-E_{\mathrm{NIST}}$, are given in the two final columns of Table I, respectively.

As expected, the largest correlation contribution to the valence energy comes from the second-order term $E^{(2)}$. Therefore, we calculate $E^{(2)}$ with higher numerical accuracy. The second-order energy includes partial waves up to $l_{\max }=8$ and is extrapolated to account for con-
tributions from higher partial waves (see, for example, Refs. [62, 63] for details of the extrapolation procedure). As an example of the convergence of $E^{(2)}$ with the number of partial waves l, consider the ground $4 s$ state. Calculations of $E^{(2)}$ with $l_{\max }=6$ and 8 yield $E^{(2)}(4 s)=$ -4726.2 and $-4743.7 \mathrm{~cm}^{-1}$, respectively. Extrapolation of these calculations yields -4786.3 and $-4786.9 \mathrm{~cm}^{-1}$, respectively. Therefore, the numerical uncertainty in the second-order value $E^{(2)}(4 s)$ is $0.6 \mathrm{~cm}^{-1}$. It should be noted that the $17.5 \mathrm{~cm}^{-1}$ contribution from partial waves with $l>6$ for the $4 s$ state is the largest among all states considered in Table I; smaller (about $4-6 \mathrm{~cm}^{-1}$) contributions are obtained for the $3 d, 4 p$, and $4 d$ states and much smaller contributions ($0.5-1.5 \mathrm{~cm}^{-1}$) are obtained for the $n=6$ states.

Owing to complexity of the all-order calculations, we restrict $l \leq l_{\text {max }}=6$ in the E^{SD} calculation. The secondorder contribution dominates E^{SD}; therefore, we can use the extrapolated value of the $E^{(2)}$ described above to account for the contributions of the higher partial waves.

The partial waves $l \leq 6$ are also used in the calculation of $E^{(3)}$. Since the asymptotic l-dependence of the secondand third-order energies are similar (both fall off as l^{-4}), we use the second-order remainder as a guide to estimate the remainder in the third-order contribution. The term $E_{\text {extra }}^{(3)}$ in Table I, which accounts for the part of the thirdorder MBPT energy missing from the SD expression for the energy, is smaller than $E^{(3)}$ by an order of magnitude for the states considered here.

The column labeled δE^{SD} in Table I gives differences between our $a b$ initio results and the experimental values [56]. The SD results agree significantly better with measured values than do the third-order MBPT results (the ratio of $\delta E^{(3)} / \delta E^{\mathrm{SD}}$ is about 10 for some of cases), illustrating the importance of fourth and higher-order correlation corrections.

We provide recommended values for the $7 p_{1 / 2}$ and $7 p_{3 / 2}$ energies in Table I in the separate rows. We estimate these values to be accurate to about $3 \mathrm{~cm}^{-1}$. Our recommended values for the $8 p_{1 / 2}$ and $8 p_{3 / 2}$ energies are $-10221 \mathrm{~cm}^{-1}$ and $-10209 \mathrm{~cm}^{-1}$, respectively.

III. ELECTRIC-DIPOLE MATRIX ELEMENTS, OSCILLATOR STRENGTHS, TRANSITION RATES, AND LIFETIMES IN CA II

A. Electric-dipole matrix elements

In Table II, we list our recommended values for 58 E 1 $n s-n^{\prime} p$ and $n d-n^{\prime} p$ transitions. We note that we have calculated over 500 E1 matrix elements to evaluate polarizabilities and BBR shift presented in this work. We refer to these values as "best set" of the matrix elements. We list only the matrix elements that give significant contributions to the atomic properties calculated in the other sections. To evaluate the uncertainties of these values, we carried out several calculations in different approximations. To demonstrate the size of the second, third, and higher-order correlation corrections, we list the lowestorder Dirac-Fock (DF) Z^{DF}, second-order $Z^{(\mathrm{DF}+2)}$, and third-order $Z^{(\mathrm{DF}+2+3)}$ values in the first three numerical columns of Table II. The absolute values in atomic units $\left(a_{0} e\right)$ are given in all cases. The many-body perturbation theory (MBPT) calculations are carried out following the method described in Ref. [64]. The values $Z^{(\mathrm{DF}+2)}$ are obtained as the sum of the second-order correlation correction $Z^{(2)}$ and the DF matrix elements Z^{DF}. The second-order Breit corrections $B^{(2)}$ are very small in comparison with the second-order Coulomb corrections $Z^{(2)}$ (the ratio of $B^{(2)}$ to $Z^{(2)}$ are about $1 \%-2 \%$). The third-order matrix elements $Z^{(\mathrm{DF}+2+3)}$ include the DF values, the second-order $Z^{(2)}$ results, and the thirdorder $Z^{(3)}$ correlation correction. $Z^{(3)}$ includes random-phase-approximation terms (RPA) iterated to all orders, Brueckner orbital (BO) corrections, the structural radiation, and normalization terms (see [64] for definition of these terms).

Next four columns contain four different all-order calculations. Ab initio electric-dipole matrix elements evaluated in the all-order SD (single-double) and SDpT approximations (single-double all-order method including partial triple excitations [34]) are given in columns labeled Z^{SD} and Z^{SDpT} of Table II. The SD and SDpT matrix elements Z^{SD} include $Z^{(3)}$ completely, along with important fourth- and higher-order corrections. The fourthorder corrections omitted from the SD matrix elements were discussed by Derevianko and Emmons [65]. Difference between the Z^{SD} and Z^{SDpT} values is about 0.5% - 2.0 \%.

We have developed some general criteria to establish the final values for all transitions and evaluate uncertainties owing to the need to analyze a very large number of transitions. To evaluate the uncertainties of our matrix element values and to provide recommended values, we carried out semi-empirical evaluation of the missing correlation corrections using the scaling procedure described below.

The matrix elements of any one-body operator $Z=$ $\sum_{i j} z_{i j} a_{i}^{\dagger} a_{j}$ are obtained within the framework of the SD all-order method as

$$
\begin{equation*}
Z_{w v}=\frac{\left\langle\Psi_{w}\right| Z\left|\Psi_{v}\right\rangle}{\sqrt{\left\langle\Psi_{v} \mid \Psi_{v}\right\rangle\left\langle\Psi_{w} \mid \Psi_{w}\right\rangle}} \tag{1}
\end{equation*}
$$

where $\left|\Psi_{v}\right\rangle$ and $\left|\Psi_{w}\right\rangle$ are given by the expansion

$$
\begin{align*}
& \left|\Psi_{v}\right\rangle=\left[1+\sum_{m a} \rho_{m a} a_{m}^{\dagger} a_{a}+\frac{1}{2} \sum_{m n a b} \rho_{m n a b} a_{m}^{\dagger} a_{n}^{\dagger} a_{b} a_{a}\right. \\
& \left.+\sum_{m \neq v} \rho_{m v} a_{m}^{\dagger} a_{v}+\sum_{m n a} \rho_{m n v a} a_{m}^{\dagger} a_{n}^{\dagger} a_{a} a_{v}\right]\left|\Psi_{v}^{(0)}\right\rangle \tag{2}
\end{align*}
$$

and $\left|\Psi_{v}^{(0)}\right\rangle$ is the lowest-order atomic state vector. In Eq. (2), the indices m and n range over all possible virtual states while indices a and b range over all occupied core states. The quantities $\rho_{m a}, \rho_{m v}$ are single-excitation coefficients for core and valence electrons and $\rho_{\text {mnab }}$ and $\rho_{m n v a}$ are double-excitation coefficients for core and valence electrons, respectively. In the SD approximation, the resulting expression for the numerator of Eq. (1) consists of the sum of the DF matrix element $z_{w v}$ and 20 other terms that are linear or quadratic functions of the excitation coefficients. The all-order method yielded results for the properties of alkali-metal atoms and many other monovalent systems [34-37, 57] in excellent agreement with experiment. For example, the SD results for the primary $n s-n p_{j}$ E1 matrix elements of alkali-metal atoms agree with experiment to $0.1 \%-0.5 \%$ [34]. However, triple corrections are important for many of the $n d-n^{\prime} p$ matrix elements and have to be included. Our $a b$ initio SDpT values include corrections to the equations for the valence excitation coefficients $\rho_{m v}$ and valence energy. These corrections arise from the addition of the valence triple excitations to the wave function given by Eq. (2).

TABLE II: Recommended values of the reduced electric-dipole matrix elements in atomic units. The first-order, second-order, third-order MBPT, and all-order SD and SDpT values are listed; the label "sc" indicates the scaled values. Final recommended values and their uncertainties are given in the $Z^{\text {final }}$ column. The last column gives relative uncertainties of the final values in \%. Absolute values are given.

Transition		$Z^{\text {DF }}$	$Z^{(\mathrm{DF}+2)}$	$Z^{(\mathrm{DF}+2+3)}$	$Z^{\text {SD }}$	$Z_{\mathrm{sc}}^{(\mathrm{SD})}$	$Z^{\text {SDpT }}$	$Z_{\text {sc }}^{\text {SDpT }}$	$Z^{\text {final }}$	Unc. (\%)
$\overline{4 s_{1 / 2}}$	$4 p_{1 / 2}$	3.2012	3.0045	2.8826	2.8978	2.9071	2.9131	2.9071	2.898(13)	0.45
$4 s_{1 / 2}$	$4 p_{3 / 2}$	4.5269	4.2499	4.0773	4.0989	4.1119	4.1204	4.1119	4.099(18)	0.45
$5 s_{1 / 2}$	$4 p_{1 / 2}$	2.1084	2.1458	2.0799	2.0660	2.0735	2.0706	2.0717	2.073(11)	0.51
$5 s_{1 / 2}$	$4 p_{3 / 2}$	3.0142	3.0653	2.9752	2.9551	2.9647	2.9614	2.9622	2.965(14)	0.46
$5 s_{1 / 2}$	$5 p_{1 / 2}$	6.4426	6.3777	6.1965	6.2195	6.2297	6.2392	6.2287	6.23(1)	0.16
$5 s_{1 / 2}$	$5 p_{3 / 2}$	9.1006	9.0095	8.7523	8.7850	8.7999	8.8130	8.7984	8.80(1)	0.17
$6 s_{1 / 2}$	$4 p_{1 / 2}$	0.5798	0.6002	0.5837	0.5817	0.5820	0.5825	0.5827	0.582(1)	0.18
$6 s_{1 / 2}$	$4 p_{3 / 2}$	0.8239	0.8522	0.8291	0.8264	0.8267	0.8276	0.8278	0.826(2)	0.18
$6 s_{1 / 2}$	$5 p_{1 / 2}$	4.4346	4.4565	4.3672	4.3504	4.3606	4.3529	4.3529	4.361(8)	0.18
$6 s_{1 / 2}$	$5 p_{3 / 2}$	6.3311	6.3601	6.2388	6.2144	6.2267	6.2177	6.2159	6.23(1)	0.17
$6 s_{1 / 2}$	$6 p_{1 / 2}$	10.7169	10.6885	10.4530	10.4853	10.4977	10.5108	10.4952	10.50(1)	0.12
$6 s_{1 / 2}$	$6 p_{3 / 2}$	15.1300	15.0906	14.7554	14.8016	14.8201	14.8379	14.8166	14.82(2)	0.12
$7 s_{1 / 2}$	$4 p_{1 / 2}$	0.3140	0.3276	0.3193	0.3183	0.3182	0.3186	0.3187	0.3183(6)	0.20
$7 s_{1 / 2}$	$4 p_{3 / 2}$	0.4456	0.4644	0.4530	0.4515	0.4514	0.4520	0.4520	0.4515(9)	0.20
$7 s_{1 / 2}$	$5 p_{1 / 2}$	1.1176	1.1301	1.1057	1.1056	1.1061	1.1075	1.1073	1.106(1)	0.12
$7 s_{1 / 2}$	$5 p_{3 / 2}$	1.5845	1.6020	1.5676	1.5675	1.5681	1.5702	1.5699	1.568(2)	0.13
$7 s_{1 / 2}$	$6 p_{1 / 2}$	7.4782	7.4912	7.3825	7.3492	7.3629	7.3587	7.3582	7.363(5)	0.06
$7 s_{1 / 2}$	$6 p_{3 / 2}$	10.6693	10.6877	10.5391	10.4913	10.5071	10.5040	10.5009	10.507(6)	0.06
$7 s_{1 / 2}$	$7 p_{1 / 2}$	16.0333	16.0184	15.7262	15.7723	15.7894	15.8043	15.7856	15.79(1)	0.09
$7 s_{1 / 2}$	$7 p_{3 / 2}$	22.6281	22.6084	22.1909	22.2570	22.2812	22.3027	22.2758	22.28(2)	0.10
$8 s_{1 / 2}$	$5 p_{1 / 2}$	0.5862	0.5941	0.5827	0.5829	0.5830	0.5840	0.5839	0.583(1)	0.17
$8 s_{1 / 2}$	$5 p_{3 / 2}$	0.8299	0.8411	0.8248	0.8252	0.8253	0.8267	0.8265	0.825(1)	0.17
$8 s_{1 / 2}$	$6 p_{1 / 2}$	1.7969	1.8017	1.7732	1.7738	1.7743	1.7770	1.7767	1.774 (3)	0.15
$8 s_{1 / 2}$	$6 p_{3 / 2}$	2.5448	2.5547	2.5112	2.5123	2.5129	2.5167	2.5163	2.513(4)	0.15
$8 s_{1 / 2}$	$7 p_{1 / 2}$	11.2499	11.2611	11.1339	11.0842	11.0946	11.0951	11.0879	11.095(7)	0.06
$8 s_{1 / 2}$	$7 p_{3 / 2}$	16.0443	16.0563	15.8877	15.8166	15.8313	15.8309	15.8219	15.831(9)	0.06
$8 s_{1 / 2}$	$8 p_{1 / 2}$	22.3941	22.3854	22.0348	22.0969		22.1359		22.14(4)	0.18
$8 s_{1 / 2}$	$8 p_{3 / 2}$	31.5981	31.5878	31.0854	31.1745		31.2302		31.23(6)	0.18
$3 d_{3 / 2}$	$4 p_{1 / 2}$	3.0825	2.9296	2.2998	2.4173	2.4636	2.4677	2.4503	2.464(13)	0.54
$3 d_{3 / 2}$	$4 p_{3 / 2}$	1.3764	1.3088	1.0260	1.0788	1.0996	1.1014	1.0937	1.100(6)	0.54
$3 d_{3 / 2}$	$4 f_{5 / 2}$	2.6059	2.5228	1.6763	1.8660	1.9265	1.9265	1.9051	1.927(21)	1.11
$3 d_{3 / 2}$	$5 f_{5 / 2}$	1.5216	1.4530	1.1073	1.1655	1.1917	1.1937	1.1846	1.192(7)	0.59
$3 d_{5 / 2}$	$4 p_{3 / 2}$	4.1348	3.9311	3.0882	3.2452	3.3063	3.3127	3.2884	3.306(18)	0.54
$3 d_{5 / 2}$	$4 f_{5 / 2}$	0.6976	0.6751	0.4502	0.5005	0.5163	0.5166	0.5106	0.516(6)	1.10
$3 d_{5 / 2}$	$4 f_{7 / 2}$	3.1201	3.0192	2.0134	2.2382	2.3090	2.3102	2.2835	2.309 (25)	1.10
$3 d_{5 / 2}$	$5 f_{5 / 2}$	0.4072	0.3888	0.2970	0.3124	0.3192	0.3199	0.3174	0.319(2)	0.59
$3 d_{5 / 2}$	$5 f_{7 / 2}$	1.8214	1.7388	1.3284	1.3972	1.4278	1.4308	1.4193	$1.428(8)$	0.59
$4 d_{3 / 2}$	$4 p_{1 / 2}$	4.2159	4.1495	4.4121	4.2636	4.2818	4.2565	4.2821	4.28(3)	0.59
$4 d_{3 / 2}$	$4 p_{3 / 2}$	1.8990	1.8686	1.9867	1.9203	1.9280	1.9171	1.9281	1.93(1)	0.57
$4 d_{3 / 2}$	$4 f_{5 / 2}$	11.9755	11.8972	11.3300	11.3461	11.3552	11.4033	11.3479	11.36(5)	0.42
$4 d_{3 / 2}$	$5 p_{1 / 2}$	8.0685	8.0369	7.2981	7.4342	7.4325	7.4916	7.4704	7.43(6)	0.79
$4 d_{3 / 2}$	$5 p_{3 / 2}$	3.6014	3.5878	3.2554	3.3168	3.3162	3.3426	3.3320	3.32(3)	0.79
$4 d_{5 / 2}$	$4 p_{3 / 2}$	5.6913	5.6015	5.9527	5.7547	5.7786	5.7451	5.7791	5.78(3)	0.58
$4 d_{5 / 2}$	$5 p_{3 / 2}$	10.8150	10.7724	9.7806	9.9632	9.9600	10.0403	10.0091	9.96(8)	0.81
$4 d_{5 / 2}$	$4 f_{5 / 2}$	3.2020	3.1809	3.0300	3.0342	3.0364	3.0494	3.0345	3.04(1)	0.43
$4 d_{5 / 2}$	$4 f_{7 / 2}$	14.3198	14.2254	13.5508	13.5696	13.5793	13.6376	13.5707	13.58(6)	0.43
$5 d_{3 / 2}$	$5 p_{1 / 2}$	7.1941	7.1786	7.6248	7.4598	7.4916	7.4316	7.4808	7.49(6)	0.80
$5 d_{3 / 2}$	$5 p_{3 / 2}$	3.2436	3.2357	3.4371	3.3630	3.3763	3.3503	3.3715	3.38(3)	0.77
$5 d_{3 / 2}$	$4 f_{5 / 2}$	7.9026	7.9162	8.7463	8.5477	8.5564	8.4871	8.5512	8.56(7)	0.81
$5 d_{5 / 2}$	$5 p_{3 / 2}$	9.7176	9.6962	10.2951	10.0746	10.1162	10.0367	10.1018	10.12(8)	0.79
$5 d_{5 / 2}$	$4 f_{5 / 2}$	2.1094	2.1135	2.3342	2.2815	2.2841	2.2653	2.2828	2.28(2)	0.82
$5 d_{5 / 2}$	$4 f_{7 / 2}$	9.4333	9.4515	10.4388	10.2029	10.2149	10.1307	10.2088	10.21(8)	0.82
$5 d_{3 / 2}$	$5 f_{5 / 2}$	20.4001	20.3664	19.0555	19.1963	19.2049	19.3158	19.1938	19.2(1)	0.58
$5 d_{5 / 2}$	$5 f_{5 / 2}$	5.4558	5.4462	5.0977	5.1350	5.1367	5.1668	5.1337	5.14(3)	0.59
$5 d_{5 / 2}$	$5 f_{7 / 2}$	24.3991	24.3564	22.7979	22.9645	22.9721	23.1067	22.9588	23.0(1)	0.59
$6 d_{3 / 2}$	$5 p_{1 / 2}$	2.3088	2.2923	2.2439	2.2293	2.2284	2.2369	2.2368	2.228(9)	0.39
$6 d_{3 / 2}$	$5 p_{3 / 2}$	1.0338	1.0263	1.0032	0.9969	0.9965	1.0005	1.0004	0.996(4)	0.40
$6 d_{5 / 2}$	$5 p_{3 / 2}$	3.1018	3.0793	3.0112	2.9922	2.9908	3.0027	3.0025	2.99(1)	0.40

TABLE III: Comparison of the present values of E1 dipole matrix elements with RCC calculations of Ref. [22]. The uncertainties in our values represent our best estimate of all possible sources of uncertainties, i.e. they give estimated boundary values of these recommended results. The uncertainties in Ref. [22] values are numerical uncertainties resulting from the use of incomplete basis sets. Absolute values in atomic units are given.

Transition	Present	Ref. $[22]$ STOs GTOs		
$4 p_{1 / 2}-4 s$	$2.898(13)$	2.86	2.90	$2.88(1)$
$4 p_{3 / 2}-4 s$	$4.099(18)$	4.02	4.09	$4.03(1)$
$4 p_{1 / 2}-3 d_{3 / 2}$	$2.464(13)$	2.50	2.41	$2.40(2)$
$4 p_{3 / 2}-3 d_{3 / 2}$	$1.100(6)$	1.12	1.09	$1.09(1)$
$4 p_{3 / 2}-3 d_{5 / 2}$	$3.306(18)$	3.36	3.28	$3.22(4)$

We find that only two terms give dominant contributions for all matrix elements considered in this work:

$$
\begin{equation*}
Z^{(a)}=\sum_{m a}\left(z_{a m} \tilde{\rho}_{w m v a}+z_{m a} \tilde{\rho}_{v m w a}^{*}\right) \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
Z^{(c)}=\sum_{m}\left(z_{w m} \rho_{m v}+z_{m v} \rho_{m w}^{*}\right) \tag{4}
\end{equation*}
$$

where $\tilde{\rho}_{m n a b}=\rho_{m n a b}-\rho_{n m a b}$ and $z_{w v}$ are lowest-order matrix elements of the electric-dipole operator. For most of the transitions considered in this work, term $Z^{(c)}$ is the dominant term. In many cases, it is overwhelmingly dominant (by a factor of 3 or more). To evaluate missing corrections to this term, we need to improve the values of the valence single-excitation coefficients $\rho_{m v}$ [66]. These excitation coefficients are closely related to the correlation energy δE_{v}. If we introduce the self-energy operator $\Sigma_{m v}$ (also referred to as correlation potential in some works) as

$$
\begin{equation*}
\Sigma_{m v}=\left(\widetilde{\epsilon}_{v}-\epsilon_{m}\right) \rho_{m v} \tag{5}
\end{equation*}
$$

then the correlation energy would correspond to the diagonal term $\Sigma_{v v}[67]$. Therefore, the omitted correlation correction can be estimated by adjusting the singleexcitation coefficients $\rho_{m v}$ to the experimentally known value of the valence correlation energy, and then recalculating the matrix elements using Eq. (1) with the modified coefficients [66]

$$
\begin{equation*}
\rho_{m v}^{\prime}=\rho_{m v} \frac{\delta E_{v}^{\text {expt }}}{\delta E_{v}^{\text {theory }}} \tag{6}
\end{equation*}
$$

The $\delta E_{v}^{\text {expt }}$ is defined as the experimental energy [56] minus the lowest order DF energy ϵ_{v}. We note that it is a rather complicated procedure that involves complete recalculation of the matrix elements with new values of the valence excitation coefficients. The scaling factors depend on the correlation energy given by the particular calculation. Therefore, the scaling factors are different
for the SD and SDpT calculations, and these values have to be scaled separately. Generally, scaled SD and SDpT values are close together, as expected. The corresponding results are listed in Table II with subscript "sc".

The term $Z^{(a)}$ is not corrected by the scaling procedure. However, it is dominant for very few transitions that give significant contributions to the atomic properties considered in this work. Essentially, the only large matrix elements where term $Z^{(c)}$ is not dominant are $4 s-4 p$ and $5 s-5 p$. In both of these cases, term $Z^{(c)}$ is still of the same order magnitude as the term $Z^{(a)}$. Therefore, we can establish the recommended set of values and their uncertainties based on the ratio $R=Z^{(c)} / Z^{(a)}$. We take the final value to be SD scaled if $R>1$. Otherwise, we use SD as the final value. If $0.5<R<1.5$, we evaluate the uncertainty in term $Z^{(c)}$ as the maximum difference of the final value and the other three all-order values from the SD, SDpT, SDsc, and SDpTsc set. Then, we assume that the uncertainty of all the other terms does not exceed this value and add two uncertainties in quadrature. If $1.5<R<3$, we evaluate the final uncertainty as the $\max (S D s c-S D$, SDscSDpT , SDsc-SDpTsc). If the term $Z^{(c)}$ strongly dominates and $R>3$, we evaluate the final uncertainty as $\max (\mathrm{SDsc}-\mathrm{SDpT}$, SDsc-SDpTsc). We note that we have conducted numerous comparisons of all available data on various properties of many different monovalent systems with different types of experiments in many other works (see $[18,21,34-37,57,66,68-75]$ and references therein) and found that such procedures do not underestimate the uncertainties. If fact, they may somewhat overestimate the uncertainties in some cases.

The last column of Table II gives relative uncertainties of the final values $Z^{\text {final }}$ in $\%$. We find that the uncertainties are $0.2-0.5 \%$ for most of the transitions. Larger uncertainties (0.8%) occur for some of the transitions such as $5 d_{j}-4 f_{j^{\prime}}$. Our final results and their uncertainties are used to calculate the recommended values of the transition rates, oscillator strengths, lifetimes, and polarizabilities as well as evaluate the uncertainties of these results.

Two most recent calculations of the E1 matrix elements between the low-lying states were carried out by Sahoo et al. [22] using the relativistic coupled-cluster method (RCC) and by Mitroy and Zhang [23] using non-relativistic configuration interaction with a semiempirical core potential (CICP) approach. Ref. [22] includes comparison with earlier MBPT calculations [42, 44]. Since [42, 44] only include low-order MBPT corrections, these calculations are substantially less complete than all-order coupled-cluster method used in our work and Ref. [22]. Therefore, we focus our discussion on the comparison of the present results with those of [22]. Since Ref. [23] presents non-relativistic calculations and lists oscillator strengths rather than matrix elements, we compare their results with our j-averaged oscillator strengths in the next section. We note that we use the same method as [21] and our results for the transitions listed in [21] are the same. Therefore, we do not include

TABLE IV: Comparison of the ratios $R=d_{1}^{2} / d_{2}^{2}$ of the squares of the E1 matrix elements calculated in the present work in several approximations with results of Ref. [22].

d_{1}	d_{2}	Present work							Ref. [22]		
		DF	MBPT2	MBPT3	SD	SDsc	SDpT	SDpTsc	STOs	GTOs	Final
$4 s-4 p_{3 / 2}$	$4 s-4 p_{1 / 2}$	2.000	2.001	2.001	2.001	2.001	2.001	2.001	1.976	1.989	1.958(17)
$4 p_{1 / 2}-3 d_{3 / 2}$	$4 p_{3 / 2}-3 d_{3 / 2}$	5.02	5.01	5.02	5.02	5.02	5.02	5.02	4.98	4.89	4.85(12)
$4 p_{3 / 2}-3 d_{5 / 2}$	$4 p_{3 / 2}-3 d_{3 / 2}$	9.02	9.02	9.06	9.05	9.04	9.05	9.04	9.00	9.06	8.73(27)

separate comparison with that work.
Our final values are compared with RCC calculations of Sahoo et al. [22] in Table III. We discuss this comparison in significant detail since both calculations are carried out using the couple-cluster method but differ significantly in its implementation. All E1 transitions listed in [22] are included. The results of [22] listed in columns labeled "STOs" and "GTOs" are obtained by two different calculations, one with Slater-type orbitals and another with Gaussian-type orbitals, respectively. In both cases, the number of partial waves was restricted to $l_{\max }=4$, i.e. only s, p, d, f, and g orbitals were included. Table III illustrates significant basis set dependence in the results of Sahoo et al. [22], 1.4-1.7\% for the $4 s-4 p$ transitions and $2.4-3.8 \%$ for the $3 d-4 p$ transitions. Moreover, different fine-stricture components have different basis set dependencies. It is not clear how that may be possible unless some additional basis set optimization was carried out in different way for all transitions. The final results from [22] include corrections from higher symmetry orbitals carried out using $\operatorname{MBPT}(2)$; the changes between the GTOs/STOs values and final recommended results range from 0.7% to 4.3%. Unfortunately, the Ref. [22] does not explicitly state what terms are accounted for by $\operatorname{MBPT}(2)$. In the standard formulation of the perturbation theory [64], second-order perturbation theory contains only random-phase approximation terms which are relatively small for the $3 d-4 p$ transitions. The main contribution of the higher partial waves only appears starting from the third order and comes from so-called Brueckner-orbital terms [64]. Therefore, using the $\operatorname{MBPT}(2)$ to evaluate higher symmetry contributions should severely underestimate these terms. The uncertainties of the final values from [22] are numerical uncertainties that are estimated from higher symmetry orbital corrections and consistency of results carried out with different basis sets. They range from 0.2% to 1.4%. We note that these are only numerical uncertainties and do not include estimates of missing theory (such as other triple and higher-excitation contributions). The uncertainties in our values represent our best estimate of all possible sources of uncertainties, i.e. they give estimated boundary values of the recommended results. We refer the reader to recent review [76] for further discussion of the differences between numerical and complete uncertainties.

The same very large basis is used in all calculations carried out in this work. We use 70 basis set functions for
all partial waves with $l_{\max } \leq 6$. Use of such a large basis set results in negligible numerical errors in our values. The contribution of the $l>6$ partial waves to the $4 s-4 p$ transitions is expected to be at the 0.05% level. The contribution of the $l>6$ partial waves to the $3 d-4 p$ transitions is accounted for by the scaling procedure. The correction is small since the entire scaling of the ab initio SDpT values (that also accounts for the corrections due to higher-order and non-linear excitations) is 0.7%.

The other major differences between the present work and Ref. [22] include treatment of non-linear contributions, triple excitations, and higher-excitation terms. The Breit correction calculated in [22] is negligible for the E1 matrix elements. Ref. [22] include non-liner terms at the SD level. While we have not explicitly included non-linear terms in this work, they were estimated by adjustment of the correlation potential described above along with contributions from higher excitations. We have demonstrated in Ref. [66] that correcting correlation potential staring from either linearized single-double coupled-cluster (LCCSD) or CCSD approximation leads to the same results within the expected accuracy of the calculations. Our $a b$ initio inclusion of the valence triple excitation (SDpT) is more complete than that of [22] since we included triple corrections to both δE_{v} and $\rho_{m v}$ equations while only δE_{v} was corrected in [22]. We also estimated other higher-excitation corrections as describe above while no such estimates were done in Ref. [22].

Our values are in agreement with results of [22] for the $4 p_{1 / 2}-4 s$ and $4 p_{3 / 2}-3 d_{3 / 2}$ transitions but disagree well beyond the uncertainties for the $4 p_{3 / 2}-4 s, 4 p_{1 / 2}-$ $3 d_{3 / 2}$, and $4 p_{3 / 2}-3 d_{5 / 2}$ transitions. We find this to be rather irregular since the correlation corrections are known to contribute nearly the same relative amount for the different fine-structure transitions for such light ions as Ca^{+}.

To clarify this issue, we calculated the ratios $R=d_{1}^{2} / d_{2}^{2}$ of the squares of all three relevant pairs of matrix elements in the lowest-, second-, and third-order of MBPT, and all all-order approximations used in this work. The values of the matrix elements used in calculating the ratios are listed in Table II. The comparison of all values is given in Table IV. As we expected, all ratios of our values calculated in all approximations, including the lowest-order DF values, are nearly identical to the nonrelativistic values (2,5 , and 9 , respectively) which are simply the ratios of the corresponding angular factors. The effect of the entire correlation correction to the ra-

TABLE V: Wavelengths $\lambda(\AA)$, transition rates $A\left(\mathrm{~s}^{-1}\right)$ and oscillator strengths (f) for transitions in Ca II calculated using our recommended values of reduced electric-dipole matrix elements $Z^{\text {final }}$ and their uncertainties. The relative uncertainties in the values of transition rates and oscillator strengths are the same. They are listed in column "Unc." in \%. Numbers in brackets represent powers of 10 .

Transition		λ	A	f	Unc.	Transition		λ	A	f	Unc.
$\overline{4 s_{1 / 2}}$	$4 p_{1 / 2}$	3969.6	1.360[8]	3.213[-1]	0.90	$4 d_{3 / 2}$	$4 f_{5 / 2}$	8914.5	6.146[7]	1.098[0]	0.84
$4 s_{1 / 2}$	$4 p_{3 / 2}$	3934.8	1.397[8]	$6.485[-1]$	0.90	$4 d_{5 / 2}$	$4 f_{5 / 2}$	8929.8	$4.372[6]$	5.227[-2]	0.86
$5 s_{1 / 2}$	$5 p_{1 / 2}$	11953.0	2.302[7]	$4.931[-1]$	0.32	$4 d_{5 / 2}$	$4 f_{7 / 2}$	8929.8	$6.559[7]$	1.045[0]	0.86
$5 s_{1 / 2}$	$5 p_{3 / 2}$	11842.2	2.362[7]	9.932[-1]	0.34	$5 d_{3 / 2}$	$5 f_{5 / 2}$	18824.7	1.867[7]	1.488[0]	1.16
$6 s_{1 / 2}$	$6 p_{1 / 2}$	26265.3	6.161[6]	$6.372[-1]$	0.24	$5 d_{5 / 2}$	$5 f_{5 / 2}$	18855.6	1.329[6]	7.084[-2]	1.18
$6 s_{1 / 2}$	$6 p_{3 / 2}$	26013.7	$6.320[6]$	1.282[0]	0.24	$5 d_{5 / 2}$	$5 f_{7 / 2}$	18855.6	1.994[7]	1.417[0]	1.18
$4 p_{1 / 2}$	$5 s_{1 / 2}$	3707.1	8.550[7]	$1.761[-1]$	1.02	$4 p_{1 / 2}$	$4 d_{3 / 2}$	3159.8	$2.944[8]$	8.812[-1]	1.18
$4 p_{3 / 2}$	$5 s_{1 / 2}$	3738.0	$1.705[8]$	1.786[-1]	0.92	$4 p_{3 / 2}$	$4 d_{3 / 2}$	3182.2	5.843[7]	8.871[-2]	1.14
$4 p_{1 / 2}$	$6 s_{1 / 2}$	2198.5	$3.226[7]$	$2.338[-2]$	0.36	$4 p_{3 / 2}$	$4 d_{5 / 2}$	3180.3	$3.506[8]$	7.973[-1]	1.16
$4 p_{3 / 2}$	$6 s_{1 / 2}$	2209.3	6.416[7]	$2.347[-2]$	0.36	$4 p_{1 / 2}$	$5 d_{3 / 2}$	2103.9	8.102[7]	$1.075[-1]$	2.58
$4 p_{1 / 2}$	$7 s_{1 / 2}$	1843.1	$1.639[7]$	$8.349[-3]$	0.40	$4 p_{3 / 2}$	$5 d_{3 / 2}$	2113.8	$1.592[7]$	$1.067[-2]$	2.62
$4 p_{3 / 2}$	$7 s_{1 / 2}$	1850.7	$3.258[7]$	8.365[-3]	0.40	$4 p_{3 / 2}$	$5 d_{5 / 2}$	2113.4	9.580[7]	9.623[-2]	2.62
$4 p_{1 / 2}$	$8 s_{1 / 2}$	1691.8	9.528[6]	4.088[-3]	0.42	$5 p_{1 / 2}$	$5 d_{3 / 2}$	8204.0	5.149[7]	1.039[0]	1.60
$4 p_{3 / 2}$	$8 s_{1 / 2}$	1698.2	1.893[7]	4.092[-3]	0.42	$5 p_{3 / 2}$	$5 d_{3 / 2}$	8257.0	1.026[7]	$1.048[-1]$	1.54
$5 p_{1 / 2}$	$6 s_{1 / 2}$	9857.5	2.011[7]	2.930[-1]	0.36	$5 p_{3 / 2}$	$5 d_{5 / 2}$	8251.1	6.152[7]	9.419[-1]	1.58
$5 p_{3 / 2}$	$6 s_{1 / 2}$	9934.1	4.007[7]	2.964[-1]	0.34	$5 p_{1 / 2}$	$6 d_{3 / 2}$	5002.9	$2.009[7]$	1.508[-1]	0.78
$5 p_{1 / 2}$	$7 s_{1 / 2}$	5286.7	8.388[6]	$3.515[-2]$	0.24	$5 p_{3 / 2}$	$6 d_{3 / 2}$	5022.5	$3.970[6]$	1.501[-2]	0.80
$5 p_{3 / 2}$	$7 s_{1 / 2}$	5308.7	$1.665[7]$	$3.517[-2]$	0.26	$5 p_{3 / 2}$	$6 d_{5 / 2}$	5021.4	$2.386[7]$	$1.353[-1]$	0.80
$5 p_{1 / 2}$	$8 s_{1 / 2}$	4207.4	4.623[6]	1.227[-2]	0.34						
$5 p_{3 / 2}$	$8 s_{1 / 2}$	4221.3	9.173[6]	$1.225[-2]$	0.34	$3 d_{3 / 2}$	$4 p_{1 / 2}$	8664.5	$9.452[6]$	$5.319[-2]$	1.08
$5 p_{1 / 2}$	$9 s_{1 / 2}$	3740.4	$2.859[6]$	5.997[-3]	0.38	$3 d_{3 / 2}$	$4 p_{3 / 2}$	8500.4	9.972[5]	$1.080[-2]$	1.08
$5 p_{3 / 2}$	$9 s_{1 / 2}$	3751.4	$5.670[6]$	$5.982[-3]$	0.38	$3 d_{5 / 2}$	$4 p_{3 / 2}$	8544.4	$8.876[6]$	$6.477[-2]$	1.08
$5 p_{1 / 2}$	$10 s_{1 / 2}$	3486.6	$1.899[6]$	$3.462[-3]$	0.54	$4 d_{3 / 2}$	$5 p_{1 / 2}$	27072.6	2.820 [6]	$1.550[-1]$	1.58
$5 p_{3 / 2}$	$10 s_{1 / 2}$	3496.2	$3.768[6]$	3.453[-3]	0.54	$4 d_{3 / 2}$	$5 p_{3 / 2}$	26510.9	$2.990[5]$	$3.150[-2]$	1.58
$6 p_{1 / 2}$	$7 s_{1 / 2}$	20147.6	$6.715[6]$	$4.087[-1]$	0.12	$4 d_{5 / 2}$	$5 p_{3 / 2}$	26646.6	$2.656[6]$	$1.885[-1]$	1.60
$6 p_{3 / 2}$	$7 s_{1 / 2}$	20298.3	1.337[7]	4.130[-1]	0.12						
$6 p_{1 / 2}$	$8 s_{1 / 2}$	10187.5	$3.016[6]$	4.693[-2]	0.30	$4 f_{5 / 2}$	$5 d_{3 / 2}$	21434.8	$3.766[6]$	1.729[-1]	1.62
$6 p_{3 / 2}$	$8 s_{1 / 2}$	10225.8	5.983[6]	4.689[-2]	0.30	$4 f_{5 / 2}$	$5 d_{5 / 2}$	21394.9	1.799[5]	$1.235[-2]$	1.64
						$4 f_{7 / 2}$	$5 d_{5 / 2}$	21394.9	3.598[6]	$1.852[-1]$	1.64

tio is negligible. We see no feasible explanation of the anomalous ratios in [22] and significant changes between their GTO's/STO's and final value ratios. In the case of the $4 s-4 p$ transitions, ratio of the final values from [22] is 3σ away from the NR value. The values of the other ratios are only slightly outside of the numerical error but it is not clear what could cause such changes in ratios from initial values to the final ones. The contributions from the higher symmetry orbitals can not change these ratios when the same basis set is used for the $n l$ states with different j.

In summary, we expect our results for all of the properties listed in this work to be more accurate than that of Ref. [22] based on the detailed analysis above.

B. Transition rates and oscillator strengths

We combine recommended NIST energies [56] and our final values of the matrix elements listed in Table II to calculate transition rates A and oscillator strengths f.

The transition rates are calculated using

$$
\begin{equation*}
A_{a b}=\frac{2.02613 \times 10^{18}}{\lambda^{3}} \frac{S}{2 j_{a}+1} \mathrm{~s}^{-1} \tag{7}
\end{equation*}
$$

where the wavelength λ is in \AA and the line strength $S=d^{2}$ is in atomic units.

Transition rates $A\left(\mathrm{~s}^{-1}\right)$ and oscillator strengths (f) for the $55 n p-n^{\prime} s, n p-n^{\prime} d$, and $n d-n^{\prime} f$ transitions in Ca II are summarized in Table V. Vacuum wavelengths obtained from NIST energies are also listed for reference. The relative uncertainties of the transition rates and oscillator strengths are twice of the corresponding matrix element uncertainties since these properties are proportional to the squares of the matrix elements. The uncertainties in per cent are listed in the column labeled "Unc.".

The values of the j-averaged oscillator strengths obtained using our final values of the matrix elements and NIST energies are compared with theoretical results from Refs. [23, 41] in Table VI. The values of the Ref. [41] are obtained with semi-empirical approach that uses experimental energy levels and experimental or theoretical core polarizabilities as an input and approximates the

TABLE VI: Comparison of the j-averaged oscillator strengths with theoretical results from Refs. [23, 41]

Transitions	Present	Ref. [41]	Ref. [23]
$4 s-4 p$	$0.970(9)$	0.9523	0.9606
$4 s-5 p$	$1.25[-3]$	$3.3[-4]$	$1.72[-3]$
$5 s-5 p$	$1.486(5)$	1.4736	
$4 p-5 s$	$0.178(2)$	0.168	
$4 p-4 d$	$0.884(10)$	0.8741	0.8685
$4 p-5 d$	$0.107(3)$	0.1076	
$3 d-4 p$	$0.0645(7)$	0.0572	0.0660
$3 d-5 p$	$5.1(1.8)[-4]$	$6.9[-4]$	$3.8[-4]$
$4 d-5 p$	$0.188(3)$	0.1865	
$3 d-4 f$	$0.154(3)$		0.1599
$4 d-4 f$	$1.098(9)$		

core potential by the Hartree-Slater method. In recent work, Mitroy and Zhang [23] used non-relativistic configuration interaction with a semi-empirical core potential (CICP) approach. The CICP values are in good agreement with our results taking into account the accuracy of both calculations. Earlier and significantly less sophisticated semi-empirical calculations of [41] appear to be less accurate as expected.

C. Lifetimes and branching ratios

We calculated lifetimes of the $5 s, 6 s, 7 s, 4 p_{j}, 5 p_{j}, 6 p_{j}$, $4 d_{j}, 5 d_{j}$, and $4 f_{j}$ states in Ca^{+}using out final values of the dipole matrix elements and NIST energies [56]. The uncertainties in the lifetime values are obtained from the uncertainties in the matrix elements listed in Table II. The present values are compared with available experimental $[26,27,31,32]$ and theoretical $[22,41]$ results in Table VII.

The value of branching ratio of the $4 p_{3 / 2}$ decay of Ca^{+}calculated from transition rates given in Table $\mathrm{V} A\left(4 p_{3 / 2}-4 s\right) / \sum_{j} A\left(4 p_{3 / 2}-3 d_{j}\right)=14.15(20)$ agrees with 2008 measurement, 14.31(5), reported in Ref. [38] within our uncertainty. As we noted above, our values for the $4 s-4 p$ and $4 p-3 d_{3 / 2}$ matrix elements are the same as in Ref. [21] since the same method is used. Therefore, the agreement of our values for the three branching fractions measured in [38] remains the same as listed in the experimental work [38]: $R\left(4 p_{3 / 2}-4 s\right)=0.9347(3)^{\operatorname{expt}}$ vs. $0.9340^{\mathrm{th}}, R\left(4 p_{3 / 2}-\right.$ $\left.3 d_{3 / 2}\right)=0.00661(4)^{\operatorname{expt}}$ vs. $0.00667^{\text {th }}, R\left(4 p_{3 / 2}-3 d_{3 / 2}\right)=$ $0.00587(2)^{\text {expt }}$ vs. $0.00593^{\text {th }}$. The uncertainties in our values of the transition rates are about 1% for all three transitions. Therefore, the agreement of our central values with experiment is significantly better than expected from our uncertainty estimates (the uncertainty in the ratio is about twice that of the uncertainties in the individual transition rates). In fact, the $4 s-4 p_{3 / 2}$ branching fraction agrees with experiment to 0.07% making substantial (3% !) disagreement of our $4 p$ lifetime values with

TABLE VII: Comparison of the lifetimes (in nsec) of $n l_{j}$ states with other theory and experiment. Uncertainties are given in parenthesis. References are given in square brackets.

Level	Present	Expt.	Theory
$5 s_{1 / 2}$	$3.91(4)$	$4.3(4)[26]$	$4.153[41]$
$6 s_{1 / 2}$	$6.39(2)$		$6.766[41]$
$7 s_{1 / 2}$	$10.63(3)$		$11.262[41]$
$4 p_{1 / 2}$	$6.88(6)$	$7.098(20)[31]$	$6.978(56)[22]$
$4 p_{3 / 2}$	$6.69(6)$	$6.924(19)[31]$	$6.926(36)[22]$
$5 p_{1 / 2}$	$35.4(7)$		$36.200[41]$
$5 p_{3 / 2}$	$34.8(7)$		$35.249[41]$
$6 p_{1 / 2}$	$89(2)$		$100.254[41]$
$6 p_{3 / 2}$	$90(2)$		$99.675[41]$
$4 d_{3 / 2}$	$2.83(3)$	$2.9(3)[27]$	$2.868[41]$
$4 d_{5 / 2}$	$2.85(3)$	$3.1(2)[26]$	$2.886[41]$
$5 d_{3 / 2}$	$6.16(13)$	$4.3(2)[26]$	$6.148[41]$
$5 d_{5 / 2}$	$6.21(14)$		$6.199[41]$
$4 f_{5 / 2}$	$3.55(7)$		$3.895[41]$
$4 f_{7 / 2}$	$3.54(7)$		$3.897[41]$

1993 experiment that lists 0.3% accuracy even more puzzling. Our calculation of the $4 p$ lifetimes in K [34] agrees with experimental values [77] to 0.13%. Moreover, our primary $n p_{j}$ lifetime values agree with recent experiments for all other alkali [34], Sr^{+}[36], and Ba^{+}[37]. Our values for the ground state polarizabilities that are completely dominated by the primary $n s-n p$ matrix element contributions, agree with all recent experiments in Li, Na, Cs $[76], \mathrm{Mg}^{+}[35], \mathrm{Si}^{3+}$, and $\mathrm{Ba}^{+}[37]$. This issue already have been discussed in detail in both [21] and [38]. It would be very interesting to see new measurement of the $4 p_{j}$ lifetimes, $4 s-4 p_{j}$ transition rates, ground state polarizability, or other properties that allow to infer $4 s-4 p_{j}$ matrix elements in Ca^{+}.

All other experimental values listed in Table VII are much older (1970-1975) measurements with low precision. The values of the metastable $3 d_{j}$ state lifetimes calculated with our approach agree within the uncertainties with the recent experimental values [18]. This calculation and comparison with experiment was already discussed in detail in [18], and we do not repeat it here. We note that $1 \% \mathrm{RCC}$ theoretical value for the $3 d_{5 / 2}$ lifetime, $1.110(9) \mathrm{s}$ [20], calculated by the same group as work [22] that we discussed at length in the matrix element section disagrees with both our value and experiment by 6%. Nevertheless, their $3 d_{3 / 2}$ lifetime is in agrement with both our theoretical and experimental values. This demonstrates another significant inconsistency of the approach used in $[20,22]$ in calculations of properties of the levels from the same fine-structure multiplet. The ratio of these lifetimes is affected very weakly by the correlation as discussed in detail in[18]. Our value of this ratio is 1.0259 (9) [20], while the ratio between Ref. [20] $3 d$ lifetimes is 1.068 . We note that lowest-order DF ratio of these lifetimes is 1.0245 . Therefore, no difference in the treatment on the correlation correction can explain
such anomalous ratio of these lifetimes.

IV. STATIC GROUND-STATE MULTIPOLE POLARIZABILITIES OF CA II

The static multipole polarizability $\alpha^{E k}$ of Ca^{+}in its $4 s$ ground state can be separated to a valence polarizability and a polarizability of an ionic core. For the $4 s$ state, the dominant valence contribution is calculated using the sum-over-state approach

$$
\begin{equation*}
\alpha_{v}^{E k}=\frac{1}{2 k+1} \sum_{n l j} \frac{\left|\left\langle n l_{j}\left\|r^{k} C_{k q}\right\| 4 s\right\rangle\right|^{2}}{E_{n l_{j}}-E_{4 s}} \tag{8}
\end{equation*}
$$

where $C_{k q}(\hat{r})$ is a normalized spherical harmonic and $n l_{j}$ is $n p_{j}, n d_{j}$, and $n f_{j}$ for $k=1,2$, and 3, respectively [35]. The E2 and E3 matrix elements and their uncertainties are calculated following the same approach that we used in calculating electric-dipole matrix elements (see Section III A).

Contributions to the ground-state state dipole, quadrupole, and octupole polarizabilities are presented in Table VIII. Dominant contributions are listed separately. The remainders of the sums are listed together. For example, row labeled " $n d_{3 / 2}$ " gives the combined contribution of all $n d_{3 / 2}$ terms with $n>7$. The first terms ($4 p$, $3 d$, and $4 f$, respectively) in the sum-over-states for $\alpha^{E 1}$, $\alpha^{E 2}$, and $\alpha^{E 3}$ contribute $99.7 \%, 59 \%$, and 79%, respectively, of the total valence polarizabilities. The rapid convergence of the sum over states for $\alpha^{E 1}$ has been emphasized in many publications (for example, Refs. [34, 78]). The sums in Eq. (8) converge much slower for the $E 2$ and E3 polarizabilities. Therefore, accurate evaluation of a large number of terms in the sums (8) is needed for these states. We use NIST energies from [56] and our final recommended values of the matrix elements to evaluate terms with $n \leq 13$. We use theoretical SD energies and matrix elements to evaluate terms with $13 \leq n \leq 26$. The remaining contributions to $\alpha^{E k}$ from basis functions with $27 \leq n \leq 70$ are evaluated in the DF approximation. These remainders are very small. Even in the case of the E3 polarizability, which is the slowest one to converge, the tail remainder with $n>26$ contributes only 13 a.u. which is 0.14% of the total valence polarizability.

The electric-dipole core polarizability is taken to be $3.26(3)$ a.u. based on the comparison of the coupledcluster and experimental values listed in the review [76]. This value is essentially the same as the random-phase approximation result of 3.25 a.u. Since this value is the polarizability of the ionic Ca^{2+} core, we need to account for the presence of the valence electron by adding a term $\alpha_{v c}$ which in this case is equal to half of the core polarizability contribution from the excitation to the valence $4 s$ shell. In the cases of the E2 and E3 polarizabilities, we evaluate core contributions in the random-phase approximation [79]. The core polarizabilities are small in comparison with the valence ones and their uncertainties

TABLE VIII: Contributions to dipole, $\alpha^{E 1}$, quadrupole, $\alpha^{E 2}$, and octupole, $\alpha^{E 3}$, polarizabilities (a.u.) of the Ca^{+}ground states. All values are in atomic units. The uncertainties are given in parenthesis.

$\alpha^{E 1}$		$\alpha^{E 2}$		$\alpha^{E 3}$	
$4 p_{1 / 2}$	$24.4(2)$	$3 d_{3 / 2}$	$203(2)$	$4 f_{5 / 2}$	$3017(31)$
$4 p_{3 / 2}$	$48.4(4)$	$4 d_{3 / 2}$	$125(1)$	$5 f_{5 / 2}$	$469(4)$
$n p_{1 / 2}$	$0.08(2)$	$5 d_{3 / 2}$	$10.6(2)$	$6 f_{5 / 2}$	$141(1)$
$n p_{3 / 2}$	$0.14(3)$	$6 d_{3 / 2}$	$2.7(1)$	$7 f_{5 / 2}$	$59.5(4)$
Core	$3.26(3)$	$7 d_{3 / 2}$	$1.1(0)$	$8 f_{5 / 2}$	$30.7(1)$
$\alpha_{\text {vc }}$	$-0.12(1)$	$n d_{3 / 2}$	$4.0(2)$	$n f_{5 / 2}$	$131(19)$
Total	$76.1(5)$	$3 d_{5 / 2}$	$304(3)$	$4 f_{7 / 2}$	$4023(41)$
		$4 d_{5 / 2}$	$187(2)$	$5 f_{7 / 2}$	$625(5)$
		$5 d_{5 / 2}$	$15.9(2)$	$6 f_{7 / 2}$	$188(1)$
		$6 d_{5 / 2}$	$4.1(1)$	$7 f_{7 / 2}$	$79.3(5)$
		$7 d_{5 / 2}$	$1.6(0)$	$8 f_{7 / 2}$	$41.0(1)$
		$n d_{5 / 2}$	$5.0(3)$	$n f_{7 / 2}$	$175(24)$
		Core	$6.9(3)$	Core	$34(4)$
		Total	$871(4)$	Total	$9012(60)$
		75.49	Ref. $[23]$	875.1	Ref. [23]
Ref. [23]					8990
Ref. [22]	$73.0(1.5)$				

are negligible. We note that $\alpha_{v c}$ terms are zero for the E2 and E3 polarizabilities since Ca^{+}core contains no $n d$ or $n f$ states.

Our final results for the ground-state multipole polarizabilities are compared with other theoretical values [22, 23] in Table VIII. The CICP values of Ref. [23] are in remarkably good agreement with our results in all three cases. Interestingly, we differ by 3% in the main $4 s-3 d_{j}$ contribution to the E2 polarizabilities (which is 523 a.u. in [23]), but agree in the final value. The difference between the present and Ref. [22] E1 polarizability value results from the differences in the $4 s-4 p_{j}$ matrix elements which we already discussed in detail in Section III A.

V. SCALAR AND TENSOR EXCITED STATE POLARIZABILITIES

The valence scalar $\alpha_{0}(v)$ and tensor α_{2} polarizabilities of Ca^{+}in an excited state v are given by

$$
\begin{gather*}
\alpha_{0}(v)=\frac{2}{3\left(2 j_{v}+1\right)} \sum_{n l j} \frac{|\langle v\|d\| n l j\rangle|^{2}}{E_{n l j}-E_{v}}, \tag{9}\\
\alpha_{2}=(-1)^{j_{v}} \sqrt{\frac{40 j_{v}\left(2 j_{v}-1\right)}{3\left(j_{v}+1\right)\left(2 j_{v}+1\right)\left(2 j_{v}+3\right)}} \\
\times \sum_{n l j}(-1)^{j}\left\{\begin{array}{lll}
j_{v} & 1 & j \\
1 & j_{v} & 2
\end{array}\right\} \frac{|\langle v\|d\| \mid n l j\rangle|^{2}}{E_{n l j}-E_{v}} . \tag{10}
\end{gather*}
$$

The ionic core polarizability discussed in the previous section has to be added to the valence term given by

TABLE IX: Contributions to the $5 s, 6 s, 7 s, 8 s, 4 p_{j}, 5 p_{j}, 3 d_{j}$, and $4 d_{j}$ scalar polarizabilities of Ca II in a_{0}^{3}. Uncertainties are given in parenthesis. The final results are compared with other theory [22, 23].

Contribution	α_{0}	Contribu	α_{0}	Contribution	α_{0}	Contribution	α_{0}
$5 s$		$6 s$		$7 s$		$8 s$	
$4 p_{1 / 2}$	-11.7(1)	$5 p_{1 / 2}$	-137.1(5)	$6 p_{1 / 2}$	-799(1)	$7 p_{1 / 2}$	-3214(4)
$4 p_{3 / 2}$	-24.0(2)	$5 p_{3 / 2}$	-282(1)	$6 p_{3 / 2}$	-1639(2)	$7 p_{3 / 2}$	-6593(8)
$5 p_{1 / 2}$	339(1)	$6 p_{1 / 2}$	2118(5)	$7 p_{1 / 2}$	8894(21)	$8 p_{1 / 2}$	29153(125)
$5 p_{3 / 2}$	671(2)	$6 p_{3 / 2}$	4180(10)	$7 p_{3 / 2}$	17532(42)	$8 p_{3 / 2}$	57432(248)
Other	3.6	Other	3.8	Other	5	Other	-22
Total	978(3)	Total	5882(11)	Total	23990(50)	Total	76760(280)
Ref. [23]	983.5						
$4 p_{1 / 2}$		$5 p_{1 / 2}$		$4 d_{3 / 2}$		$4 d_{5 / 2}$	
$4 s$	-24.39(22)	$5 s$	-339(1)	$4 p_{1 / 2}$	-21.2(3)	$4 p_{3 / 2}$	-25.9(3)
$5 s$	11.66(12)	$6 s$	137	$5 p_{1 / 2}$	547(9)	$5 p_{3 / 2}$	645(10)
$6 s$	0.54	$7 s$	5	$4 p_{3 / 2}$	-4.3	$n p_{3 / 2}$	0
$n s$	0.46(1)	$n s$	3	$5 p_{3 / 2}$	107(2)	$4 f_{5 / 2}$	20.1(2)
$3 d_{3 / 2}$	-38.47(41)	$4 d_{3 / 2}$	-1094(17)	$n p$	0	$n f_{5 / 2}$	0.1
$4 d_{3 / 2}$	42.38(50)	$5 d_{3 / 2}$	337(5)	$4 f_{5 / 2}$	421(4)	$4 f_{7 / 2}$	402(3)
$5 d_{3 / 2}$	2.29(6)	$6 d_{3 / 2}$	18	$5 f_{5 / 2}$	0.1	$5 f_{7 / 2}$	0.1
$n d_{3 / 2}$	1.51(8)	$n d_{3 / 2}$	11(1)	$n f_{5 / 2}$	2.3(1)	$n f_{7 / 2}$	2.2(1)
Core	3.26(3)	Core	3	Core	3.3	Core	3.3
Total	-0.75(70)	Total	-920(18)	Total	1054(10)	Total	1046(11)
Ref. [23]	-2.032	Ref. [23]	-1135	Ref. [23]	1209	Ref. [23]	1209
$4 p_{3 / 2}$		$5 p_{3 / 2}$		$3 d_{3 / 2}$		$3 d_{5 / 2}$	
$4 s$	-24.18(22)	$5 s$	-335(1)	$4 p_{1 / 2}$	19.24(21)	$4 p_{3 / 2}$	22.78(25)
$5 s$	12.02(11)	$6 s$	141	$n p_{1 / 2}$	0.02	$n p_{3 / 2}$	0.03
$6 s$	0.55	$7 s$	5	$4 p_{3 / 2}$	3.76(4)	$4 f_{5 / 2}$	0.12
ns	0.46(1)	$n s$	3	$n p_{3 / 2}$	0.01	$n f_{5 / 2}$	0.17
$3 d_{3 / 2}$	-3.76(4)	$4 d_{3 / 2}$	-107(2)	$4 f_{5 / 2}$	2.50(6)	$4 f_{7 / 2}$	2.39(5)
$4 d_{3 / 2}$	4.33(5)	$5 d_{3 / 2}$	34(1)	$5 f_{5 / 2}$	0.81(1)	$5 f_{7 / 2}$	0.77(1)
$5 d_{3 / 2}$	0.23(1)	$6 d_{3 / 2}$	2	$6 f_{5 / 2}$	0.37(1)	$6 f_{7 / 2}$	0.35(1)
$n d_{3 / 2}$	0.15(1)	$n d_{3 / 2}$	1	$7 f_{5 / 2}$	0.20(1)	$7 f_{7 / 2}$	0.19(1)
$3 d_{5 / 2}$	-34.17(37)	$4 d_{5 / 2}$	-967(16)	$(8-12) f_{5 / 2}$	0.33(1)	$(8-12) f_{7 / 2}$	0.31(1)
$4 d_{5 / 2}$	38.85(45)	$5 d_{5 / 2}$	309(5)	$(13-26) f_{5 / 2}$	1.42(4)	$(13-26) f_{7 / 2}$	1.39(4)
$5 d_{5 / 2}$	2.07 (5)	$6 d_{5 / 2}$	16	$n f_{5 / 2}$	0.32(19)	$n f_{7 / 2}$	0.27(15)
$n d_{5 / 2}$	1.22(6)	$n d_{5 / 2}$	9	Core	3.26(3)	Core	3.26(3)
Core	3.26(3)	Core	3	$\alpha_{v c}$	-0.23(1)	$\alpha_{v c}$	-0.23(1)
Total	1.02(64)	Total	-886(16)	Total	32.0(3)	Total	31.8(3)
Ref. [23]	-2.032	Ref. [23]	-1135	Ref. [23]	32.73	Ref. [23]	32.73
				Ref. [22]	28.5(1.0)	Ref. [22]	29.5(1.0)

Eq. (9) and corrected for the presence of the respective valence electron (term $\alpha_{v c}$). This core correction $\alpha_{v c}$ term is negligible for all excited states that we considered with the exception of the $3 d_{3 / 2}$ and $3 d_{5 / 2}$ states. It is calculated in the RPA.

The dipole polarizability calculations are carried out in the same way as the calculations of the multipole polarizabilities discussed in the previous section. We list the contributions to the $5 s, 6 s, 7 s, 8 s, 4 p_{j}, 5 p_{j}, 3 d_{j}$, and $4 d_{j}$ scalar polarizabilities of Ca^{+}in Table IX. The dominant contributions are listed separately. The remaining contributions are grouped together. For example, " $n d_{3 / 2}$ " contribution includes all of the $n d_{3 / 2}$ terms excluding only the terms that were already listed separately.

The Table IX illustrates very fast convergence of the $n s$ level polarizabilities which are dominated by the cor-
responding $n p$ contributions. The $(n-1) p$ term contributions are significant, while all of the other contributions are very small owing to fast convergence of the sums. We use our recommended values for the $7 p$, and $8 p$ energy levels, for which we did not find the experimental values. The uncertainties in these recommended energy values are included when the polarizability uncertainties are calculated. The uncertainties of the final polarizability values are obtained by adding the uncertainties of the individual terms in quadarture.

When calculating polarizabilities of the $n p$ and $n d$ states, we calculated the terms with $n \leq 26$ using the all-order approach. The terms with $n>10$ are calculated using our calculated recommended values of the E1 matrix elements and the experimental energies [56]. The terms with $10<n<27$ are calculated using SD energies

TABLE X: Contributions to the $4 p_{3 / 2}, 5 p_{3 / 2}, 3 d_{j}$, and $4 d_{j}$ tensor polarizabilities of Ca II in a_{0}^{3}. Uncertainties are given in parenthesis. The final results are compared with other theory [22, 23].

Contribu	α_{2}	Contribu	α_{2}
$4 p_{3 / 2}$		$5 p_{3 / 2}$	
$4 s$	24.18(22)	$5 s$	335(1)
$5 s$	-12.02(11)	$6 s$	-141
$6 s$	-0.55	$7 s$	-5
$n s$	-0.46(1)	$n s$	-3
$3 d_{3 / 2}$	-3.01(3)	$4 d_{3 / 2}$	-85(1)
$4 d_{3 / 2}$	3.46(4)	$5 d_{3 / 2}$	28
$5 d_{3 / 2}$	0.18	$6 d_{3 / 2}$	1
$n d_{3 / 2}$	0.12	$n d_{3 / 2}$	1
$3 d_{5 / 2}$	6.83(7)	$4 d_{5 / 2}$	193(3)
$4 d_{5 / 2}$	-7.77(9)	$5 d_{5 / 2}$	-62(1)
$5 d_{5 / 2}$	-0.41(1)	$6 d_{5 / 2}$	-3
$n d_{5 / 2}$	-0.24(1)	$n d_{5 / 2}$	-2
Total	10.31(28)	Total	258(4)
Ref. [23]	10.47	Ref. [23]	286.2
$3 d_{3 / 2}$		$3 d_{5 / 2}$	
$4 p_{1 / 2}$	-19.24(21)	$4 p_{3 / 2}$	-22.78(25)
$n p_{1 / 2}$	-0.01	$n p_{3 / 2}$	-0.02
$4 p_{3 / 2}$	3.01(3)	$4 f_{5 / 2}$	0.18
$n p_{3 / 2}$	0.00	$n f_{5 / 2}$	0.15
$4 f_{5 / 2}$	-0.50(1)	$4 f_{7 / 2}$	-0.85(2)
$5 f_{5 / 2}$	-0.16	$5 f_{7 / 2}$	-0.28
$6 f_{5 / 2}$	-0.07	$6 f_{7 / 2}$	-0.12
$n f_{5 / 2}$	-0.46(2)	$n f_{7 / 2}$	-0.79(4)
Total	-17.43(23)	Total	-24.51(29)
Ref. [22]	-15.8(7)	Ref. [22]	-22.45(5)
Ref. [23]	-17.64	Ref. [23]	-25.20
$4 d_{3 / 2}$		$4 d_{5 / 2}$	
$4 p_{1 / 2}$	21.2(3)	$4 p_{3 / 2}$	25.9(3)
$5 p_{1 / 2}$	-547(9)	$5 p_{3 / 2}$	-645(10)
$4 p_{3 / 2}$	-3.46(4)	$n p_{3 / 2}$	-0.02
$5 p_{3 / 2}$	85(1)	$4 f_{5 / 2}$	23.0(2)
$n p$	-0.01	$n f_{5 / 2}$	0.13
$4 f_{5 / 2}$	-84.1(7)	$4 f_{7 / 2}$	-143(1)
$5 f_{5 / 2}$	-0.03(1)	$5 f_{7 / 2}$	-0.05(2)
$n f_{5 / 2}$	-0.46	$n f_{7 / 2}$	-0.79
Total	-529(9)	Total	-740(10)
Ref. [23]	-615.9	Ref. [23]	-879.8

and matrix elements. The remainders are evaluated in the DF or RPA approximations. The remainders in the $3 d-n f$ sums are treated more accurately as described below.

We find that the scalar polarizabilities of the $4 p_{3 / 2}$ and $4 p_{1 / 2}$ states are anomalously small owing to a very precise cancelations of the various contributions. This fact was already pointed out by Mitroy and Zhang [23]. Our uncertainties of these polarizability values are very large because of these severe cancelations. Such cancelations are not observed for the $5 p$ polarizabilities, where $5 p-4 d$ contributions strongly dominate.

The case of the $3 d_{5 / 2}$ polarizability is particularly interesting owing to its importance for the calculation of
the blackbody radiation shift in the optical frequency standard with Ca^{+}ion. Ref. [21] points out that the sum over the $n f_{7 / 2}$ states converges very slowly making accurate calculation of these contributions difficult. In this work, we have explored several different approaches to the accurate calculation of this sum and obtained consistent results in all cases.

First, we calculated terms with $n \leq 26$ in the allorder approximation, and determined that these terms contribute $5.41(16)$ a.u. We find that even with so many terms included, the remainder is still 0.43 a.u. in DF approximation and 0.32 a.u. in the RPA, which is a significant fraction of the total $n f_{7 / 2}$ contribution. Therefore, we estimate the accuracy of the DF approximation by calculating the main terms with $n \leq 26$ in the DF approximation as well. We find that DF approximation overestimates the polarizability contributions from highly-exited state by about 38% and adjust the DF value accordingly. The entire adjustment is taken to be the uncertainly of the $n>26$ remainder. Therefore, our final value for $n>26 n f_{7 / 2}$ terms is $0.27(15)$, and the total $n f_{7 / 2}$ sum is equal to $5.67(22)$ a.u.

Second, we carry out the calculation of the highlyexcited states by a different approach to verify that the all-order calculation of such highly-excited states does not introduce unexpected errors. We compare the contributions with $6<n<13$ calculated in DF, RPA, and all-order approximations. The wave functions of all these states fit inside of our 220 a.u. cavity, and the all-order method is definitely reliable for these states. We establish that DF overestimates the results by $40-44 \%$ and RPA overestimates the results by $37-41 \%$. Then, we use these percentages to adjust the contributions for the $n>12$ states calculated in the DF and RPA approximations. Adding these adjusted remainders to the all-order terms with $n<13$ gives 5.63 a.u. (DF) and 5.53 a.u. (RPA) for the total $n f_{7 / 2}$ sum. These values are consistent with our result $5.67(22)$ obtained above. Such accurate evaluation of this sum allows us to reduce the uncertainty of the $3 d_{5 / 2}$ polarizability by a factor of 3 in comparison with the previous calculation of this quantity using the all-order sum-over-states approach [21]. The calculation of the $n f_{5 / 2}$ contribution to the $3 d_{3 / 2}$ polarizability is carried out using the same method. In all the other cases, the contributions of the terms with $n>26$ are very small in comparison with the other terms and DF approximation is sufficiently accurate.

We compare our values of the scalar polarizabilities for the $3 d_{3 / 2}$ and $3 d_{5 / 2}$ with RCC [22] and CICP [23] theoretical calculations in Table IX. Ref. [22] estimates their numerical (basis set truncation) uncertainty to be 3.5%. This estimate does not account for the uncertainty owing to the missing correlation correction. Our $3 d_{j}$ polarizabilities differ from values of [22] by 7% and 11%. It is well known (see [76] and references therein) that the polarizabilities are very sensitive to the problems with the basis set completeness in the coupled-cluster calculations such as RCC calculation of Ref. [22]. We note that

Ref. [22] STO values (31.6 and 32.5) are very close to our results.

Since the CICP calculation [23] is non-relativistic, we list their values for both fine-structure states. Our $5 s$ and $3 d$ results are in good agreement with CICP calculation. The agreement is rather poor for the $4 p, 4 d$, and $5 p$ states. It is expected for the $4 p$ states owing to severe cancelations discussed above but somewhat surprising for the other two states.

We list the contributions to the tensor polarizabilities of the Ca^{+}in $4 p_{3 / 2}, 5 p_{3 / 2}, 3 d_{j}$, and $4 d_{j}$ states in Table X. Tensor polarizability calculations are carried our in the same way as the scalar polarizability ones. The same designations are used in Table X as in the scalar polarizability Table IX. The final values are compared with RCC [22] and CICP [23] theoretical calculations. We multiply the $3 d$ and $4 d$ non-relativistic values of [23] by $7 / 10$ to compare these values to our $3 d_{3 / 2}$ and $4 d_{3 / 2}$ tensor polarizabilities (see [76] for explanation of this conversion factor). The differences between the present and $[22,23]$ theoretical tensor polarizability values are similar to those for the scalar polarizabilities for these states.

VI. BLACKBODY RADIATION SHIFT IN CA ${ }^{+}$ OPTICAL FREQUENCY STANDARD

The electrical field E radiated by a blackbody at temperature T, as given by Planck's law,

$$
\begin{equation*}
E^{2}(\omega) d \omega=\frac{8 \alpha^{3}}{\pi} \frac{\omega^{3} d \omega}{\exp \left(\omega / k_{B} T\right)-1} \tag{11}
\end{equation*}
$$

induces a nonresonant perturbation of the optical transition at room temperature [80]. The frequency shift of an atomic state due to such an electrical field is related to the static electric-dipole polarizability α_{0} by (see Ref. [81])

$$
\begin{equation*}
\Delta \nu=-\frac{1}{2}(831.9 \mathrm{~V} / \mathrm{m})^{2}\left(\frac{T(K)}{300}\right)^{4} \alpha_{0}(1+\eta) \tag{12}
\end{equation*}
$$

where η is a small dynamic correction due to the frequency distribution. Only the electric-dipole transition part of the contribution is considered in the formula above because the contributions from M1 and E2 transitions are suppressed by a factor of α^{2} [81]. The overall BBR shift of the $\mathrm{Ca}^{+} 4 s-3 d_{5 / 2}$ clock transition frequency is then calculated as the difference between the BBR shifts of the individual levels involved in the transition:

$$
\begin{align*}
\Delta_{\mathrm{BBR}}\left(4 s-3 d_{5 / 2}\right) & =-\frac{1}{2}\left[\alpha_{0}\left(3 d_{5 / 2}\right)-\alpha_{0}\left(4 s_{1 / 2}\right)\right] \\
& \times(831.9 \mathrm{~V} / \mathrm{m})^{2}\left(\frac{T(K)}{300}\right)^{4} \tag{13}
\end{align*}
$$

The tensor part of polarizability is averaged out due to the isotropic nature of the electric field radiated

TABLE XI: Hyperfine constants A (in MHz) in ${ }^{43} \mathrm{Ca}^{+}(I=$ $7 / 2, \mu=-1.31727)$. The SD and SDpT all-order results are compared with theoretical [55] and experimental [51, 53] values.

Level	$A^{\text {DF }}$	$A^{\text {SD }}$	$A^{\text {SDpT }}$	Th. [55]	Expt. [51, 53]
$4 s$	-587.39	-818.82	-801.28	-805.348	-806.402072
$5 s$	-183.99	-239.19	-236.30		
$6 s$	-81.25	-103.29	-102.33		
$7 s$	-42.91	-53.96	-53.53		
$4 p_{1 / 2}$	-101.48	-148.26	-144.96	-143.068	$-145.4(1)$
$5 p_{1 / 2}$	-37.43	-51.28	-50.71		
$6 p_{1 / 2}$	-17.91	-24.14	-23.81		
$7 p_{1 / 2}$	-9.94	-13.25	-13.08		
$4 p_{3 / 2}$	-19.64	-31.04	-30.34	-30.498	$-31.0(2)$
$5 p_{3 / 2}$	-7.25	-10.69	-10.58		
$6 p_{3 / 2}$	-3.47	-5.04	-4.97		
$7 p_{3 / 2}$	-1.93	-2.76	-2.73		
$3 d_{3 / 2}$	-33.20	-48.83	-47.63	-47.824	$-47.3(2)$
$4 d_{3 / 2}$	-8.01	-9.32	-9.35		
$5 d_{3 / 2}$	-3.36	-3.86	-3.88		
$6 d_{3 / 2}$	-1.75	-1.99			
$7 d_{3 / 2}$	-1.03	-1.17			
$3 d_{5 / 2}$	-14.14	-4.71	-4.24	-3.553	$-3.8(6)$
$4 d_{5 / 2}$	-3.41	-3.12	-3.06		
$5 d_{5 / 2}$	-1.43	-1.51	-1.49		
$6 d_{5 / 2}$	-0.748	-0.831			
$7 d_{5 / 2}$	-0.441	-0.502			
$4 f_{5 / 2}$	-0.151	-0.165	-0.163		
$5 f_{5 / 2}$	-0.079	-0.089			
$6 f_{5 / 2}$	-0.046	-0.053			
$7 f_{5 / 2}$	-0.029	-0.034			
$4 f_{7 / 2}$	-0.084	-0.044	-0.044		
$5 f_{7 / 2}$	-0.044	-0.011			
$6 f_{7 / 2}$	-0.026	-0.002			
$7 f_{7 / 2}$	-0.016	0.000			

by the blackbody. Substituting out values for the $4 s$ and $3 d_{5 / 2}$ static polarizabilities into Eq. (13), we obtain $0.3815(44) \mathrm{Hz}$ for the BBR shift. We note that atomic units for α are converted to SI units via $\alpha / h\left[\mathrm{~Hz} /(V / m)^{2}\right]=2.48832 \times 10^{-8} \alpha[$ a.u.], where the conversion coefficient is $4 \pi \epsilon_{0} a_{0}^{3} / h$ and Planck constant h is factored out.

We estimate the dynamic corrections to be $\eta=0.0012$ and $\eta=0.0044$ for the $4 s$ and $3 d_{3 / 2}$ states, respectively, following Ref. [81]. The resulting dynamic correction to the BBR shift is -0.0004 Hz and our final value is

$$
\Delta_{\mathrm{BBR}}\left(4 s-3 d_{5 / 2}\right)=0.3811(44) \mathrm{Hz}
$$

The value is the same for different Ca^{+}isotopes within its accuracy. The third-order F-dependent polarizability of the ground state is evaluated in the last section of this paper. Its contribution is several orders of magnitudes smaller than the second-order value and can be omitted in evaluating BBR shift in the optical standard.

The present value is consistent with other calculations,

TABLE XII: Hyperfine constants B (in MHz) in ${ }^{43} \mathrm{Ca}^{+}$. Nuclear quadrupole moment Q is taken to be equal to $-0.044(9)$ barns $\left(1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}\right)$ [55]. The SD and SDpT values are compared with theory [55] and experiment [53].

Level	$\frac{B^{\mathrm{DF}}}{Q}$	$\frac{B^{\mathrm{SD}}}{Q}$	$\frac{B^{\mathrm{SDpT}}}{Q}$	$B^{\text {DF }}$	$B^{\text {SD }}$	$B^{\text {SDpT }}$	$\frac{B^{\mathrm{th}}}{Q}[55]$	$B^{\text {expt }}[53]$
$4 p_{3 / 2}$	96.69	153.99	150.81	-4.25	-6.78	-6.64	-151.798	$-6.9(1.7)$
$5 p_{3 / 2}$	35.58	52.40	51.82	-1.57	-2.31	-2.28		
$6 p_{3 / 2}$	16.93	24.37	24.06	-0.75	-1.07	-1.06		
$3 d_{3 / 2}$	54.24	67.01	65.24	-2.39	-2.95	-2.87	-68.067	$-3.7(1.9)$
$4 d_{3 / 2}$	12.93	17.37	17.24	-0.57	-0.76	-0.76		
$5 d_{3 / 2}$	5.31	7.28	7.24	-0.23	-0.32	-0.32		$-3.9(6.0)$
$3 d_{5 / 2}$	76.86	95.19	92.69	-3.38	-4.19	-4.08	-100.208	-3.8
$4 d_{5 / 2}$	18.33	24.70	24.51	-0.81	-1.09	-1.08		
$5 d_{5 / 2}$	7.54	10.35	10.30	-0.33	-0.46	-0.45		

$0.380(14) \mathrm{Hz}[21], 0.37(1) \mathrm{Hz}$ [22], and 0.368 Hz [23], but is three times more accurate.

VII. HYPERFINE CONSTANTS FOR ${ }^{43} \mathbf{C A}^{+}$

Calculations of hyperfine constants are carried out using the SD and SDpT all-order methods described in Section III A. A number of terms other than terms $Z^{(a)}$ and $Z^{(c)}$ give significant contributions to the hyperfine constants. Therefore, scaling procedure described in Section III A is not expected to produce more accurate values and is not carried out for the hyperfine constants. In Table XI, we list hyperfine constants A for ${ }^{43} \mathrm{Ca}^{+}$and compare our values with available theoretical [55] and experimental data $[48,53]$.

In this table, we present the lowest-order A^{DF}, allorder A^{SD}, and A^{SDpT} values for the $n s, n p, n d$, and $n f$ levels up to $n=7$. The magnetic moment of ${ }^{43} \mathrm{Ca}^{+}$used here $(I=7 / 2, \mu=-1.31727)$ is taken from [82]. Our SDpT results are in very good agreement with experimental results for the $n s$ and $n p_{1 / 2}$ states when experimental uncertainties are taken into account. The contributions from valence triple excitations are large for the hyperfine constants and have to be included for an accurate calculation.

Hyperfine constants B (in MHz) in ${ }^{43} \mathrm{Ca}^{+}$are given in Table XII. Nuclear quadrupole moment Q is taken to be equal to $-0.044(9)$ barns ($1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2}$) [55]. The SD and SDpT values are compared with theory [55] and experiment [53].

VIII. HYPERFINE-INDUCED TRANSITION POLARIZABILITY OF THE ${ }^{43} \mathbf{C A}^{+}$GROUND STATE

We now turn to the calculation of the quadratic Stark shift of the ground-state hyperfine interval ($F=4-$ $F=3)$ in ${ }^{43} \mathrm{Ca}^{+}$. The quadratic Stark shift is closely related to the blackbody radiation shift in the microwave frequency standards discussed, for example, in Refs. [8385]. Our calculation follows the methodology outlined in
those works.
The dominant second-order contribution to the polarizability cancels for the transition between the two hyperfine components of the $4 s$ state. Therefore, the Stark shift of the hyperfine interval is governed by the the thirdorder F-dependent polarizability $\alpha_{F}^{(3)}(0)$. The expression for the $\alpha_{F}^{(3)}(0)$ is [83]:

$$
\begin{align*}
\alpha_{F}^{(3)}(0)= & \frac{1}{3} \sqrt{(2 I)(2 I+1)(2 I+2)}\left\{\begin{array}{lll}
j_{v} & I & F \\
I & j_{v} & 1
\end{array}\right\} \times \\
& g_{I} \mu_{n}(-1)^{F+I+j_{v}}(2 T+C+R), \tag{14}
\end{align*}
$$

where g_{I} is the nuclear gyromagnetic ratio, μ_{n} is the nuclear magneton equal to 0.3924658 in ${ }^{43} \mathrm{Ca}^{+}, I=7 / 2$ is the nuclear spin, and $j_{v}=1 / 2$ is the total angular momentum of the atomic ground state. The formulas for the F-independent terms T, C, and R are given in Ref. [83]. These terms are similar to the polarizability sum-over-state expression but are more complicated.

First, we calculate these values in the DF approximation (in atomic units):

$$
\begin{align*}
2 T^{\mathrm{DF}} & =2.0018 \times 10^{-4}, \quad C^{\mathrm{DF}}=3.9507 \times 10^{-7} \\
R^{\mathrm{DF}} & =3.8838 \times 10^{-4} \tag{15}
\end{align*}
$$

Since the value of C^{DF} is smaller than the T^{DF} and R^{DF} by three orders of magnitude, we do not recalculate the C term using the all-order method.

The expression for R is similar to that for $\alpha^{E 1}$ but contains diagonal hyperfine matrix element:

$$
\langle 4 s\|\mathcal{T}\| 4 s\rangle^{\mathrm{SDpT}}=3.9629 \times 10^{-7} \text { a.u. }
$$

We use our all-order recommended values for the reduced electric-dipole matrix elements described in Section III A and their uncertainties to calculate the main terms in the T and R sums. We refer to these values as the "best set" values. Available recommended NIST energies [56] are used for $n l=4 s-10 s, 4 p-6 p$, and SD energies are used for the other states up to $n=26$. The sum of R terms with $n \leq 26$ is equal to $R=3.772(34) \times 10^{-4}$. The remainder of the R sum is evaluated in the DF approximation, $R_{n>26}=3.0 \times 10^{-8}$, and is less than 0.01%.

TABLE XIII: Contributions to the $m p$ sums of term $2 T, m=$ $4-26$. The main contribution $\sum_{n=5}^{26}$ calculated in the DF approximation is given in the column labeled "Main ${ }^{\text {DF " in }}$ 10^{4} a.u. The final values of the main contributions to the $m p$ sums are given in the column labeled "Main final" in 10^{4} a.u. Accumulated values are given for both DF and final results. The ratio of the final and DF values for the main terms is given in the fourth column in \%. The relative tail contribution $\sum_{n=27}^{70}$ calculated in the DF approximation is given in the last column.

$m p$	Main $^{\text {DF }}$	Main $^{\text {final }}$	Dif.(\%)	Tail (\%)
$4 p$	1.965	$2.060(12)$	4.6	1.8
$5 p$	1.965	$2.079(12)$	5.5	1.8
$6 p$	1.969	$2.089(12)$	5.7	1.6
$7 p$	1.971	$2.094(12)$	5.9	1.5
$8 p$	1.972	$2.097(12)$	5.9	1.5
$9 p p$	1.973	$2.098(11)$	6.0	1.4
$10 p$	1.974	$2.100(12)$	6.0	1.4
$11 p$	1.974	$2.101(12)$	6.0	1.4
$12 p$	1.974	$2.102(13)$	6.1	1.4
$13 p$	1.975	$2.102(13)$	6.1	1.4
$14 p$	1.975	$2.102(13)$	6.1	1.4
$15 p$	1.975	$2.102(13)$	6.1	1.4
$16 p$	1.975	$2.102(13)$	6.1	1.4
$17 p$	1.975	$2.103(13)$	6.1	1.3
$18 p$	1.976	$2.104(13)$	6.1	1.3
$19 p$	1.976	$2.104(13)$	6.1	1.3
$20 p$	1.976	$2.104(13)$	6.1	1.3
$21 p$	1.979	$2.109(13)$	6.2	1.2
$22 p$	1.979	$2.109(13)$	6.2	1.2
$23 p$	1.983	$2.118(13)$	6.4	0.9
$24 p$	1.986	$2.124(13)$	6.5	0.8
$25 p$	1.988	$2.129(13)$	6.6	0.7
$26 p$	1.990	$2.129(13)$	6.5	0.6

Term T contains two sums, over $n s$ and over $m p_{j}$. We evaluate main contributions, that include $n \leq 26$ and $m \leq 26$ using all-order matrix elements and NIST or all-order energies as described above. We find that the remaining contributions with $n>26$ and $m>26$, are very small. Table XIII illustrates the size of the remainders and accuracy of the DF approximation. We break down each $m p$ term as

$$
\sum_{m p}\left(\sum_{5 s}^{26 s}[\ldots]+\sum_{27 s}^{70 s}[\ldots]\right)
$$

and list contributions to the $m p$ sums of term $\mathrm{T}, m=$ $4-26$ in Table XIII. Each $m p$ term is given by

$$
\begin{equation*}
\sum_{n=5}^{26} A_{T} \frac{\left\langle 4 s\|D\| m p_{j}\right\rangle\left\langle m p_{j}\|D\| n s\right\rangle\langle n s\|\mathcal{T}\| 4 s\rangle}{\left(E_{m p}-E_{4 s}\right)\left(E_{n s}-E_{4 s}\right)} \tag{16}
\end{equation*}
$$

where A_{T} is an angular factor. The main contribution $\sum_{n=5}^{26}[\ldots]$ calculated in the DF approximation is given in the column labeled "Main DF" in 10^{4} a.u. The final values of the main contributions to the $m p$ sums are given in the column labeled "Main final" in 10^{4} a.u. Accumulated
values are given for both DF and final results to illustrate the convergence of the $m p$ sum. The ratio of the final and DF values for the main terms is given in the fourth column in \%. The relative tail contribution $\sum_{n=27}^{70}[\ldots]$ calculated in the DF approximation is given in the last column. The remainder is 0.6% of the main term and is equal to 0.013×10^{-4} a.u. Our final value for this term is $2 T^{\text {final }}=2.142(13) \times 10^{-4}$. Combining these contributions, we obtain

$$
\begin{equation*}
2 T^{\mathrm{final}}+C^{\mathrm{DF}}+R^{\text {final }}=5.918(36) \times 10^{-4} \text { a.u. } \tag{17}
\end{equation*}
$$

The F-dependent factor in Eq. (14) is equal to 0.4609 for $F=3$ and -0.3585 for $F=4$. Using these values and the result from Eq. (17), we obtain
$\alpha_{\mathrm{hf}}(4 s)=\alpha_{F=4}^{(3)}(0)-\alpha_{F=3}^{(3)}(0)=-4.850(29) \times 10^{-4}$ a.u.
The Stark shift coefficient k defined as $\Delta \nu=k E^{2}$ is $k=-\frac{1}{2}\left[\alpha_{F=4}^{(3)}(0)-\alpha_{F=3}^{(3)}(0)\right]$. Converting from atomic units, we obtain
$k=-2.425(15) \times 10^{-4}$ a.u $=6.03(4) \times 10^{-12} \mathrm{~Hz} /(\mathrm{V} / \mathrm{m})^{2}$.
We note that the lowest-order DF value is $k^{(\mathrm{DF})}=$ $6.00 \times 10^{-12} \mathrm{~Hz} /(\mathrm{V} / \mathrm{m})^{2}$. While values of both R and T terms change with the inclusion of the correlation correction, it essentially cancels when these terms are added.

The relative blackbody radiative shift β is defined as

$$
\begin{equation*}
\beta=-\frac{2}{15} \frac{1}{\nu_{\mathrm{hf}}}(\alpha \pi)^{3} T^{4} \alpha_{\mathrm{hf}}\left(4 s_{1 / 2}\right) \tag{18}
\end{equation*}
$$

where ν_{hf} is the ${ }^{43} \mathrm{Ca}^{+}$hyperfine $(F=3-F=4)$ splitting equal to $3225.6082864(3) \mathrm{MHz}$ [51] and T is temperature taken to be 300 K . Using those factors and our value of $\alpha_{\mathrm{hf}}(4 s)$, we obtain

$$
\beta=-2.6696 \times 10^{-12} \alpha_{\mathrm{hf}}(4 s)=1.29(1) \times 10^{-15}
$$

IX. CONCLUSION

A systematic study of Ca^{+}atomic properties is carried out using high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave function are included to all orders of perturbation theory. Energies, E1, E2, E3, matrix elements, transition rates, lifetimes, A and B hyperfine constants, E1, E2, and E3 ground state polarizabilities, scalar E1 polarizabilities of the $5 s, 6 s, 7 s, 8 s, 4 p_{j}, 5 p_{j}$, $3 d_{j}, 4 d_{j}$ states, and tensor polarizabilities of the $4 p_{3 / 2}$, $5 p_{3 / 2}, 3 d_{j}$, and $4 d_{j}$ states are calculated. We evaluate the uncertainties of our calculations for most of the values listed in this work. The blackbody radiation (BBR) shift of the $4 s-3 d_{5 / 2}$ clock transition in Ca^{+} is calculated to be $0.381(4) \mathrm{Hz}$ at room temperature, $T=300 \mathrm{~K}$ improving its accuracy by a factor of 3 . The quadratic Stark effect on hyperfine structure levels of
${ }^{43} \mathrm{Ca}^{+}$ground state is investigated. These calculations provide recommended values critically evaluated for their accuracy for a number of Ca^{+}atomic properties useful for a variety of applications.

Acknowledgments

The work of M.S.S. was supported in part by National Science Foundation Grant No. PHY-07-58088.
[1] M. Lombardi, T. Heavner, and S. Jefferts, Measure: The Journal of Measurement Science 2, 74 (2007).
[2] H. S. Margolis, G. Barwood, G. Huang, H. A. Klein, S. N. Lea, K. Szymaniec, and P. Gill, Science 306, 19 (2004).
[3] S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, et al., Science 293, 825 (2001).
[4] C. Champenois, M. Houssin, C. Lisowski, M. Knoop, G. Hagel, M. Vedel, and F. Vedel, Phys. Lett. A 331, 298 (2004).
[5] M. Kajita, Y. Li, K. Matsubara, K. Hayasaka, and M. Hosokawa, Phys. Rev. A 72, 043404 (2005).
[6] C. Champenois, G. Hagel, M. Houssin, M. Knoop, M. Vedel, C. Zumsteg, and F. Vedel, Ann. de Phys. 32, 020000 (2007).
[7] M. Chwalla, J. Benhelm, K. Kim, G. Kirchmair, T. Monz, M. Riebe, P. Schindler, A. S. Villar, W. Hänsel, C. F. Roos, et al., Phys. Rev. Lett. 102, 023002 (2009).
[8] J. Benhelm, G. Kirchmair, R. Gerritsma, F. Zähringer, T. Monz, P. Schindler, M. Chwalla, W. Hänsel, M. Hennrich, C. F. Roos, et al., Phys. Scr. T 137, 014008 (2009).
[9] G. Kirchmair, J. Benhelm, F. Zähringer, R. Gerritsma, C. F. Roos, and R. Blatt, Phys. Rev. A 79, 020304 (2009).
[10] D. Leibfried et al., Nature (London) 422, 412 (2003).
[11] C. Langer et al., Phys. Rev. Lett. 95, 060502 (2005).
[12] S. Olmschenkn, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76, 052314 (2007).
[13] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Nat. Phys. 4, 463 (2008).
[14] A. H. Myerson et al., Phys. Rev. Lett. 100, 200502 (2008).
[15] E. Knill et al., Phys. Rev. A 77, 012307 (2008).
[16] L. M. Hobbs, D. E. Welty, A. M. Lagrange-Henri, R. Ferlet, and A. Vidal-Madja, Astrophys. J. 334, L41 (1988).
[17] D. E. Welty, D. C. Morton, and L. M. Hobbs, Astrophys. J. 106, 533 (1996).
[18] A. Kreuter, C. Becher, G. P. T. Lancaster, A. B. Mundt, C. Russo, H. Häffner, C. Roos, W. Hänsel, F. SchmidtKaler, R. Blatt, et al., Phys. Rev. A 71, 032504 (2005).
[19] Chiranjib Sur, K.V. P. Latha, Bijaya K. Sahoo, Rajat K. Chaudhuri, B. P. Das, and D. Mukherjee, Phys. Rev. Lett. 96, 193001 (2006).
[20] B. K. Sahoo, Md. R. Islam, B. P. Das, R. K. Chaudhuri, and D. Mukherjee, Phys. Rev. A 74, 062504 (2006).
[21] Bindiya Arora, M. S. Safronova, and C. W. Clark, Phys. Rev. A 76, 064501 (2007).
[22] B. K. Sahoo, B. P. Das, and D. Mukherjee, Phys. Rev. A 79, 052511 (2009).
[23] J. Mitroy and Y. Z. J, Eur. Phys. J. D 46, 415 (2008).
[24] W. W. Smith and A. Gallagher, Phys. Rev. 145, 26 (1966).
[25] A. Gallagher, Phys. Rev. 157, 24 (1967).
[26] T. Andersen, J. Desesquelles, K. A. Jessen, and G. Sørensen, J. Quant. Spectrosc. Radiat. Transfer 10, 1143 (1970).
[27] B. Emmoth, M. Braun, J. Bromander, and I. Martinson, Phys. Scr. 12, 75 (1975).
[28] W. Ansbacher, A. S. Inamdar, and E. H. Pinnington, Phys. Lett. A 110, 383 (1985).
[29] R. N. Gosselin, E. H. Pinnington, and W. Ansbacher, Nucl. Instrum. Methods Phys. Res. B 31, 305 (1988).
[30] R. N. Gosselin, E. H. Pinnington, and W. Ansbacher, Phys. Rev. A 38, 4887 (1988).
[31] J. Jin and D. A. Church, Phys. Rev. Lett. 70, 3213 (1993).
[32] J. Jin and D. A. Church, Phys. Rev. A 49, 3463 (1994).
[33] S. D. Rosner, R. A. Holt, and T. J. Scholl, Phys. Rev. A 55, 3469 (1997).
[34] M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys. Rev. A 60, 4476 (1999).
[35] J. Mitroy and M. S. Safronova, Phys. Rev. A 79, 012513 (2009).
[36] D. Jiang, B. Arora, M. S. Safronova, and C. W. Clark, J. Phys. B 42, 154020 (2009).
[37] E. Iskrenova-Tchoukova and M. S. Safronova, Phys. Rev. A 78, 012508 (2008).
[38] R. Gerritsma, G. Kirchmair, F. Zähringer, J. Benhelm, R. Blatt, and C. Roos, Eur. Phys. J. D 50, 13 (2008).
[39] B. Warner, Mon. Not. R. astr. Soc. 139, 115 (1968).
[40] P. Hafner and W. H. Schwarz, J. Phys. B 11, 2975 (1975).
[41] C. E. Theodosiou, Phys. Rev. A 39, 4880 (1989).
[42] C. Guet and W. R. Johnson, Phys. Rev. A 44, 1531 (1991).
[43] N. Vaeck, M. Godefroid, and C. Froese Fischer, Phys. Rev. A 46, 3704 (1992).
[44] S.-S. Liaw, Phys. Rev. A 51, p. R1723 (1995).
[45] M. Meléndez, M. A. Bautista, and N. R. Badnell, Astron. Astrophys. 469, 1203 (2007).
[46] J. Mitroy, D. C. Griffin, D. W. Norcross, and M. S. Pindzola, Phys. Rev. A 38, 3339 (1988).
[47] Ann-Marie Mårtensson-Pendrill and S. Salomonson, Phys. Rev. A 30, 712 (1984).
[48] A. T. Goble and S. Maleki, Phys. Rev. A 42, 649 (1990).
[49] A.-M. Mårtensson, A. Ynnerman, H. Warston, L. Vermeeren, R. E. Silverans, A. Klein, R. Neugart, C. Schulz, and P. Lievens, Phys. Rev. A 45, 4675 (1992).
[50] R. E. Silverans, L. Vermeeren, R. Neugart, and P. Lievens, Z. Phys. D 18, 352 (1991).
[51] F. Arbes, M. Benzing, Th. Gudjons, F. Kurth, and G. Werth, Z. Phys. D 31, 27 (1994).
[52] F. Kurth, T. Gudjons, B. Hiblert, T. Reisinger, G. Werth, and A.-M. Martensson, Z. Phys. D 34, 227 (1995).
[53] W. Nörtershäuser, K. Blaum, K. Icker, P. Müller, A. Schmitt, K. Wendt, and B. Wiche, Eur. Phys. J. D 2, 33 (1998).
[54] Bijaya K. Sahoo, Rajat K. Chaudhuri, B. P. Das, Sonjoy Majumder, Holger Merlitz, Uttam Sinha Mahapatra, and Debashis Mukherjee, J. Phys. B 36, 1899 (2003).
[55] Kai-zhi Yu, Li-jin Wu, Bing-cong Gou, and Ting-yun Shi, Phys. Rev. A 70, 012506 (2004).
[56] Yu. Ralchenko, F.-C. Jou, D.E. Kelleher, A.E. Kramida, A. Musgrove, J. Reader, W.L. Wiese, and K. Olsen (2005). NIST Atomic Spectra Database (version 3.0.2), [Online]. Available: http://physics.nist.gov/asd3 [2006, January 4]. National Institute of Standards and Technology, Gaithersburg, MD.
[57] M. S. Safronova and W. R. Johnson, Adv. At. Mol., Opt. Phys. 55, 191 (2007).
[58] L. W. Fullerton and G. A. Rinker, Jr., Phys. Rev. A 13, 1283 (1976).
[59] P. J. Mohr, Ann. Phys. (N.Y.) 88, 26 (1974).
[60] P. J. Mohr, Ann. Phys. (N.Y.) 88, 52 (1974).
[61] P. J. Mohr, Phys. Rev. Lett. 34, 1050 (1975).
[62] M. S. Safronova, W. R. Johnson, and U. I. Safronova, Phys. Rev. A 53, 4036 (1996).
[63] M. S. Safronova, W. R. Johnson, and U. I. Safronova, J. Phys. B 30, 2375 (1997).
[64] W. R. Johnon, Z. W. Liu, and J. Sapirstein, At. Data and Nucl. Data Tables 64, 279 (1996).
[65] A. Derevianko and E. D. Emmons, Phys. Rev. A 66, 012503 (2002).
[66] D. Jiang, B. Arora, and M. S. Safronova, Phys. Rev. A 78, 022514 (2008).
[67] M. S. Safronova, M. G. Kozlov, W. R. Johnson, and D. Jiang, Phys. Rev. A 80, 012516 (2009).
[68] U. I. Safronova, Phys. Rev. A 82, 022504 (2010).
[69] U. I. Safronova, Phys. Rev. A 81, 052506 (2010).
[70] U. I. Safronova, M. S. Safronova, and W. R. Johnson, Phys. Rev. A 71, 052506 (2005).
[71] B. Arora, M. S. Safronova, and C. W. Clark, Phys. Rev. A 76, 052516 (2007).
[72] M. Gunawardena, D. S. Elliott, M. S. Safronova, and U. Safronova, Phys. Rev. A 75, 022507 (2007).
[73] M. Auzinsh, K. Bluss, R. Ferber, F. Gahbauer, A. Jarmola, M. S. Safronova, U. I. Safronova, and M. Tamanis, Phys. Rev. A 75, 022502 (2007).
[74] M. S. Safronova, W. R. Johnson, U. I. Safronova, and T. E. Cowan, Phys. Rev. A 74, 022504 (2006).
[75] S. B. Bayram, M. D. Havey, M. S. Safronova, and A. Sieradzan, J. Phys. B 39, 2545 (2006).
[76] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43, 202001 (2010).
[77] U. Volz and H. Schmoranzer, Phys. Scr. T 65, 48 (1996).
[78] A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb, Phys. Rev. L 82, 3589 (1999).
[79] W. R. Johnson, D. Kolb, and K.-N. Huang, At. Data Nucl. Data Tables 28, 333 (1983).
[80] J. W. Farley and W. H. Wing, Phys. Rev. A 23, 2397 (1981).
[81] S. G. Porsev and A. Derevianko, Phys. Rev. A 74, 020502(R) (2006).
[82] URL = http://www.webelements.com.
[83] K. Beloy, U. I. Safronova, and A. Derevianko, Phys. Rev. Lett. 97, 40801 (2006).
[84] W. R. Johnson, U. I. Safronova, A. Derevianko, and M. S. Safronova, Phys. Rev. A 77, 022510 (2008).
[85] M. S. Safronova, D. Jiang, and U. I. Safronova, Phys. Rev. A 82, 022510 (2010).

