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High-efficiency microwave-to-optical quantum transduction is crucial for quantum networks and
distributed quantum computing. Cavity-based electro-optic transducers have been widely explored
due to their cavity-enhanced conversion efficiency, albeit at the compromise of limited transduction
bandwidth and strict frequency alignment requirements between microwave and optical modes. A
recent advancement in meter-long superconducting electro-optic modulators (SEOM) has demon-
strated conversion efficiency approaching that of the cavity-based transducers on a traveling-wave
structure while maintaining a broad bandwidth of tens of GHz. This paper provides a further theo-
retical investigation into the dynamics of the microwave-to-optical conversion process in a traveling-
wave geometry. Based on this analysis, we propose a traveling-wave electro-optic transducer design
featuring near-unity conversion efficiency and tunable conversion frequency.

I. INTRODUCTION

Large-scale and distributed quantum networks of su-
perconducting quantum computing systems necessitate
high-efficiency conversion between microwave and op-
tical frequencies [1, 2]. In the past decades, coher-
ent microwave-to-optical transducers have been exten-
sively studied on various platforms, including cavity
electro-optics [3–8], optomagnonics [9–11], optomechan-
ics [12, 13] and atom ensembles [14–17]. Studies on those
platforms have universally employed cavity-based trans-
ducer design or resonant operation schemes, which en-
hances the conversion efficiency but limits the conver-
sion bandwidth and conversion frequencies. On the other
hand, the very broadband traveling-wave electro-optic
modulators (EOMs) have enabled the global internet, but
their microwave-to-optical transduction efficiency is only
on the order of 1 × 10−7 due to the limited nonlinear-
ity of the electro-optic materials and the short modula-
tion lengths in typical modulator designs [18]. Therefore,
traveling-wave transducers have not been widely pursued
for high-efficiency microwave-to-optical conversion, de-
spite its advantages of high bandwidth and operational
flexibility.

In recent years, the emergence of new electro-optic ma-
terial platforms with strong Pockels nonlinearity, such as
thin-film lithium niobate on insulator (LNOI) [19] and
barium titanate integrated into silicon photonics [20, 21],
has significantly advanced the performance of electro-
optic photonic devices. Integrated electro-optic modu-
lators with Vπ of 1V and bandwidth up to 100GHz
have been demonstrated on LNOI [22]. Micro- and
nanostructured barium titanate exhibits a strong Pock-
els coefficient r42 = 923 pmV−1 [21] and compatibility
with cryogenic operations [23]. These novel material
platforms have revitalized interest in the potential for
traveling-wave electro-optic transduction. As estimated
in [18], 5×10−2 conversion efficiency entails electro-optic
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modulators of Vπ 50mV with 10 dBm optical output
power. The recent experimental demonstration of super-
conducting electro-optic modulator (SEOM) with meter-
long modulation length and record-low Vπ in the tens
of mV range, achieved conversion efficiency of 1× 10−4,
a 3-orders-of-magnitude improvement over commercial
EOMs [24].
However, there will be two major challenges for further

advancements to near-unity efficiency with the current
SEOM design. First, near-unity efficiency necessitates
a modulation length of a few meters while maintaining
a low optical propagation length. For such long waveg-
uides, a propagation loss lower than 1 dB/m is desired,
which corresponds to quality factors over 30million. Al-
though it is in principle achievable with the intrinsic
lithium niobate material loss limited quality factor of
180million [25], such low-loss integrated optical compo-
nent has only been demonstrated on chemical-mechanical
polished (CMP) micro-disk resonators [26]. The CMP
process is not well suited for ultra-long waveguide fab-
rication which has more complex design patterns. Sec-
ond, in the typical traveling-wave electro-optic modula-
tion dispersion scheme, microwave-to-optical transduc-
tion happens to both blue and red sidebands, which in-
herently causes a 50% loss of efficiency. Moreover, cas-
caded transduction into high-order optical sidebands can
occur when the transduction efficiency is high, thus com-
promising the net efficiency.
In this paper, we propose an interband traveling-wave

electro-optic transducer. The scheme is based on the
SEOM design that has been reported in [24], but with
two optical mode branches and engineered phase match-
ing to enhance the conversion efficiency and prevent con-
version into high-order sidebands. This scheme involves
two optical mode branches, as shown in Fig. 1(d). By
leveraging the strong kinetic inductance of superconduc-
tors, microwave dispersion can be engineered to have a
slow microwave velocity, which permits phase matched
conversion between the two optical mode branches and
prohibits conversion into high-order optical modes. We
also show that the slowed microwave speed enhances the
electro-optic interaction strength and improves the con-
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FIG. 1. (a)-(b) Schematic illustration of cavity electro-
optics and traveling-wave electro-optics. (c) Material stack
and the optical waveguide-electrode design of the traveling-
wave electro-optics. (d) i) Intraband electro-optic conversion
dispersion. There is only one optical mode branch. Optical
pump is set at p point and scattered into multiple sidebands.
(d) ii) Interband electro-optic conversion dispersion. There
are two optical mode branches with mode crossing. The pump
is set at kp of mode branch a. The phase-matched microwave
with wave vector km is converted into optical mode branch b.

version efficiency. It is worth noting slowed microwave
transmission lines are commonly exploited in supercon-
ducting circuits and thus do not present a particular chal-
lenge to implement [27]. This paper is organized as fol-
lows. In Sec. II, we present the theoretical description of
the temporal and spatial dynamics of the traveling-wave
electro-optic interaction. In Sec. III, we calculate the
conversion efficiency based on the theoretical results and
numerically simulated mode profiles and dispersion.

II. THEORETICAL DESCRIPTION

Derivation of the traveling-wave electro-optic Hamilto-
nian follows the one done in reference [24], and is restated
in the Appendix A of this paper. Here, the main text
presents the phase-matching conditions and discusses the
theoretical solutions under specific conditions.

A. Dispersion and phase matching

Here we consider two different dispersion schemes as
shown in Fig. 1(d) i) and ii). In Fig. 1(d) i), the dispersion
relation corresponds to that of a conventional traveling-
wave electro-optic modulator [22], where there is only
one optical mode branch. In this situation, which we call
intraband conversion, the pump and converted sidebands
are on the same mode branch. The phase-matching
requirement in this case is straightforward, where the
slope of the dispersion curve for the microwave and op-
tical signals need to be identical, and this is also known
as velocity matching in electro-optic modulator design.
Note that this phase-matching condition allows cascaded
electro-optic transduction into higher-order sidebands.
The dispersion curves shown in Fig. 1(d) ii) are what
we propose for coherent microwave-to-optical conversion,
which involves two optical mode branches with mode
crossing. When a parametric pump is applied at fre-
quency ωp of optical mode a near the mode crossing
point, the phase-matched microwave frequency Ωm and
optical frequency ωs on mode branch b must satisfy:

kp + km = ks, (1a)

ωp +Ωm = ωs. (1b)

This phase-matching scheme is inherently single-
sideband. Also, due to the traveling wave’s continu-
ous spectrum, the phase-matched microwave frequency is
tunable by adjusting the pump light frequency. As shown
in Fig. 1(d) ii), for a given microwave, we can always find
the optical pump such that their sum ends up on mode
branch b. If the microwave frequency is detuned from
the perfect phase-matched frequency by ∆ to Ωm + ∆,
the converted optical frequency on mode branch b will
be ωs +∆. The corresponding wave vector mismatch is

k′(∆) =ka(ωp)− kb(ωs +∆) + kc(Ωm +∆). (2)

The impact of this phase mismatch on the microwave-
to-optical conversion will be discussed later in the next
section.
Note that the group velocities of the traveling mi-

crowave in the intraband and interband conversion are
different: in the intraband case, the microwave velocity
matches that of the optics; while in the interband case,
the microwave velocity is engineered to be much slower
than that of the optics. It is shown in Sec. III that the
slow microwave can be realized by utilizing the kinetic
inductance of the superconductor microwave transmis-
sion line. This slow microwave dispersion can improve
the coupling strength between microwave and optics, as
elaborated in the next section.

B. Dynamic Equations and Solutions

The general-case Heisenberg equations of motion are
given by Eq. (A17). In a practical experimental condi-
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tion, the pump is a constant laser input with strong in-
tensity to boost the electro-optic conversion efficiency.
Because of its much stronger intensity than that of the
signal light and microwave, the back-action of the electro-
optic interaction on the pump is negligible and the pump
can be taken as a classical light source. In the steady-
state,

A(z, t) = αpe
− κa

2va
z, (3)

where αp is a constant and the exponential decay term
indicates the dissipation in the optical waveguide of mode
a, where κa is the intrinsic dissipation and va is the group
velocity. Suppose that at z = 0 the pump power is Pin,
then Pin = vaℏωp|αp|2. If the phase of the pump is set
to be 0,

αp =

√
Pin

vaℏωp
. (4)

Considering the phase mismatch in Eq. (2) and the neg-
ligible back-action on A, the temporal-spatial dynamic
equations of Eq. (A17) become:

∂B

∂t
+ vb

∂B

∂z
= −κb

2
B − ig0αpe

− κa
2va

zCeik
′(∆)z, (5a)

∂C

∂t
+ vc

∂C

∂z
= −κc

2
C − ig∗0α

∗
pe

− κa
2va

zBe−ik′(∆)z,(5b)

where g0 is given by Eq. (A14), κl and vl (l = a, b or
c) are the intrinsic dissipation rates and group velocities
respectively for the three modes.

In the steady-state, the temporal derivative terms in
Eq. (5) equal to zero. We also further assume that the
intensity of the pump light does not decay along the in-
teraction length L, i.e. κa = 0. This is approximately
true for low loss photonic waveguide within tens of cm
length [28]. Under this undepleted pump assumption, the
steady-state Heisenberg equation and its solution is given
in Appendix B. We firstly assume perfect phase match
k′(∆) = 0, and the boundary conditions B = 0 and

C = C0 at z = 0. Then, in the regime |γ| ≫
∣∣∣κb

vb
− κc

vc

∣∣∣,
the solution Eq. (B2) can be simplified to

B = −iC0e
iarg(γ)

√
vc
vb

e
−
(

κb
2vb

+ κc
2vc

)
z
2 sin (|γ|z) , (6a)

C = C0e
−
(

κb
2vb

+ κc
2vc

)
z
2 cos (|γ|z) , (6b)

where γ =
g0αp√
vbvc

. The conversion efficiency can be given
as

η =
vb |B|2

vc |C0|2
= e

−
(

κb
2vb

+ κc
2vc

)
z
sin2 (|γ|z) , (7)

which is the output optical photon flux over the input
microwave photon flux.

This result indicates that with a strong pump, the
microwave-to-optical photon conversion happens period-
ically in space and a complete quantum state transfer

happens after a length of l = π
2|γ| . Under the present

assumption that |γ| ≫
∣∣∣κb

vb
− κc

vc

∣∣∣, the above shows that

the loss term becomes the average of the two modes. In-
tuitively, this stems from the periodic transfer of energy
from one mode to the other. Note that the assumption
above on |γ| is compared with the difference of the two
propagation loss terms, which makes no assumption on
the strength of γ compared to either of the two terms.
In the phase-mismatched condition, where k′ ̸= 0, we

assume κb = κc = 0 to examine the impact of phase
mismatch. In this case the solution is reduced to:

B = −iC0

√
vc
vb

ei
k′
2 z γ

β
sin(βz), (8a)

C = C0e
−i k′

2 z(cos(βz) +
ik′/2

β
sin(βz)), (8b)

where β =
√
|γ|2 + k′2/4. From the above, one can de-

rive that the phase-mismatched maximum conversion ef-
ficiency is η = |γ|2/β2 = 1/(1 + k′2/ 4|γ|2). Due to the
phase mismatch, the oscillation period is shorter and the
conversion is suppressed by a factor of |γ|2/β2. This spa-
tial phase mismatched result is analogous to temporal
frequency mismatched Rabi oscillations.

III. REALIZATION ON LITHIUM NIOBATE
PLATFORM

In this section we numerically simulate the microwave-
to-optical conversion efficiency of the proposed traveling-
wave transducer implemented on the LNOI platform,
which has large electro-optic coefficients, low optical loss,
and tight optical confinement [28, 29]. The microwave
transmission line is made from superconductor niobium
nitride (NbN), which has a high transition temperature
and high kinetic inductance [30]. The high kinetic in-
ductance of thin-film NbN can be utilized to engineer
the microwave dispersion and improve the electro-optic
coupling strength as shown in Sec. III B.

A. Optical and Microwave Dispersion

To produce the dispersion shown in Fig. 1(d) ii), two
optical modes with mode crossing are required. Mode
crossing happens between optical modes of different po-
larization in a birefringent optical waveguide. Given the
electro-optic coefficient tensor of lithium niobate [29],
we can utilize r42, r51 or r61 elements to realize con-
version between two optical modes of different polariza-
tion. To utilize the larger electro-optic coefficients of
r42 = r51 = 33pm/V, we consider the conversion be-
tween TM and TE modes on X-cut LNOI, and the electric
field is applied vertically along the crystalline X direction.
In this case, coplanar microwave transmission line can be
employed with the signal electrode placed on top of the
waveguide cladding to generate an electric field in the
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FIG. 2. (a) Cross section of optical waveguide and microwave
transmission line. The X-cut lithium niobate film is on silicon
dioxide on silicon. The mode profile of TE and TM mode are
shown on the right side. (b) Optical mode dispersion of the
TE and TM modes. In this simulation, the lithium niobate
film thickness is 615 nm, h=315 nm, w=2µm and m=1.5µm.
(c) Microwave impedance and velocity. In this simulation,
the signal electrode width s=0.5µm, gap=6µm and the NbN
film thickness t is varied to tune the microwave velocity and
impedance. We use 50 pH/square kinetic inductance for the
10 nm-thick NbN film. The normalized microwave speed is
normalized by the speed of light in vacuum.

vertical direction. The schematic cross section is illus-
trated in Fig 2(a), where a half-etched optical waveguide
is electro-optically coupled with a coplanar microwave
transmission line.

Optical and microwave modes are simulated using
COMSOL. With the geometric parameters specified in
the caption of Fig. 2, there is a mode crossing between
fundamental TM and TE mode at around 1550 nm. The
mode profile of these two modes are shown in Fig. 2(a)
and their simulated dispersion near the mode crossing
is shown in Fig. 2(b). In the coplanar superconduct-
ing microwave transmission line simulation, the kinetic
inductance is taken into account, which can be engi-
neered by changing the superconductor film thickness or
the signal electrode width [31]. From the simulated re-
sults shown in Fig. 2(c), we see that the microwave ve-
locity can be effectively slowed down by increasing the
kinetic inductance through reducing the film thickness.
The microwave speed can be decreased to as low as a
few percent of the light speed in vacuum. The slower
microwave also boosts the conversion efficiency as sug-
gested by Eq. 7. Actually, the characteristic impedance
increases as the microwave velocity decreases in our sim-
ulation with swept film thickness, as shown in Fig. 2(c).
This is because in microwave transmission line design, its
impedance Z =

√
L/C and velocity v =

√
1/LC, where

L and C are the specific inductance and capacitance.
By only sweeping the film thickness, the specific capac-
itance C does not change significantly, but the kinetic

inductance is tuned dramatically. As a result, decreas-
ing the velocity amounts to increasing the impedance.
Impedance matching between a 50Ω input and the de-
vice can be achieved by the design and fabrication of a
taper on chip [32]. For low RF reflection at all frequencies
above a threshold, a Klopfenstein taper can be used.

B. Numerical Simulation of Conversion Efficiency

We calculate the coupling strength by inserting the
simulated optical and microwave mode profiles into
Eq.A14. The conversion efficiency is then computed
by Eq. 6. Here we assume an undepleted optical pump
power of 20 dBm at telecom wavelength (ωp = 200THz),
κb = 10MHz and vb = c/2 (optical propagation loss of
1.5 dB/m, or equivalently 20million intrinsic quality fac-
tor). We also assume Ω = 10GHz, κc = 0.5MHz (intrin-
sic quality factor of 20 k) and vc is varied in the calcu-
lation by tuning the film thickness according to Fig 2(c).
The result is shown in Fig. 3. With a thick film and
low microwave impedance of 200Ohm, it takes about a
2meter-long modulation length to reach peak conversion
efficiency of about 50%. However with thinner film of
about 5 nm and therefore higher microwave impedance at
2500Ohm, the optimal modulation length is reduced to
about 0.6m and the peak conversion efficiency increases
to about 80%. It should be noted here that a prac-
tical demonstration of quantum signal transduction at
temperatures below 100mK would make use of a device
operating in a pulsed regime [33]. Considering the bal-
ance between optical power consumption and the cooling
power of dilution fridge systems, duty cycles on the order
of 1% should be suitable.
Here, the assumed optical propagation loss is close to

the state-of-the-art reported on integrated LNOI using
conventional fabrication process and well within the ma-
terial’s intrinsic loss. The thinnest NbN film thickness we
assume is 5 nm at width of s=0.5µm. We believe the as-
sumed 20 k quality factor is reasonable given the reported
4 k quality factor of a 4 nm-thick resonator with only
23 nm-wide nano-wire inductor [30]. Note that electro-
optic materials like barium titanate possess a one-order-
of-magnitude higher nonlinear coefficient. With future
enhancement on the material preparation and low-loss
fabrication process, it is possible to reduce the modula-
tion length for near-unity efficiency to a few centimeters,
close to that of the conventional EOMs.

IV. CONCLUSION

In this paper, we present an interband traveling-wave
electro-optic transduction scheme, which allows coherent
microwave-to-optical conversion without possible excita-
tions to higher-order sidebands. This interband phase-
matching condition also allows the conversion of selected
microwave frequency by adjusting the pump light wave-
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FIG. 3. Conversion efficiency with different microwave veloc-
ity and impedance. With a high impedance of 2500Ohm, the
highest conversion efficiency of about 80% is achieved with
only 0.6meter-long modulation length.

length. Our analysis shows that under a strong pump
light, the microwave-to-optical conversion occurs period-
ically in space. The fundamental limit on the conversion
efficiency is the electro-optic nonlinear coefficient and the
optical and microwave losses of the material platform.
We perform numerical simulation and calculation to show
that near-unity conversion efficiency is achievable on the
LNOI and NbN material platform with appropriate ma-
terial parameters.

ACKNOWLEDGMENTS

This project is funded by DOE Office of Science, Na-
tional Quantum Information Science Research Centers,
Co-design Center for Quantum Advantage (C2QA), Con-
tract No. DE-SC0012704.

Appendix A: Traveling-wave Electro-optic
Hamiltonian

Based on previous theoretical works on quantum de-
scription of traveling wave systems [34–36], we derive the
dynamic equations of the electro-optic system through
its Hamiltonian, which captures the spatial and tem-
poral variance, electro-optic coupling and phase mis-
match. If we consider the dispersion situation illustrated
in Fig. 1(d) ii), the system can be described by Hamilto-
nian

H = Ha +Hb +Hc +HV , (A1)

where Ha, Hb and Hc are the Hamiltonian for the two
optical mode branches and the microwave respectively
and HV is the electro-optic coupling term.
The electric field of these three modes can be expressed

in terms of the continuous mode creation and annihila-
tion operators [34],

El =

∫
l(k)ulk(x, y)e

ikz +H.c.√
4π
∫
ϵl,iulk,iu∗

lk,idxdy/ℏΩ(k)
dk, (A2)

where l(k) is the continuous mode annihilation operator,
ϵl,i are the three components of the material permittivity,
and ulk(x, y) = ulk,i(x, y)ei. In the above, l = a, b or c
and i = x, y or z and Einstein summation convention
over i is applied. Here ulk(x, y) is the electric field mode
profile of each mode at wave vector k. The denominators
in the equation are for normalization purposes and will
disappear in the expression of later Hamiltonian. The
commutation relations of the continuous annihilation and
creation operators reads below [34]:

[l(k), l′(k′)] = 0, [l(k), l′†(k′)] = δll′δ(k − k′). (A3)

Still l = a, b or c. With Eq. (A2) and neglecting vacuum
fluctuations, the Hamiltonian of each mode branch is

Hl =

∫
ϵl,iEl,iE

∗
l,idxdydz

=

∫
ℏωl(k)l

†(k)l(k)dk. (A4)

In Eq. (A4), the 1
2 factor of the electric field energy den-

sity is multiplied by 2 to account for the magnetic field
energy as the electric field and the magnetic field have
the same amount of energy.
With the continuous mode operators, a wave packet in

a given mode branch can be mathematically expressed by
the envelope operator [35, 36] around a chosen frequency
ω. This is defined as

Ãω(z) =
1√
2π

∫
ake

i(k−ka(ω))zdk, (A5)

where Ãω(z) is the envelope operator of the wave packet
in mode branch a, with continuous mode annihilation
operators ak, dispersion relation ka(ω), and the chosen
central frequency ω. Through inverse Fourier transfor-
mation, we have

ak =
1√
2π

∫
Ãω(z)e

−i(k−ka(ω))zdz. (A6)

The commutation relation of the envelope operators can
be derived from the commutation relation of the con-
tinuous creation and annihilation operators in Eq. (A3),
which gives[

Ãω(z), Ãω′(z′)
]
= 0, (A7a)[

Ãω(z), Ã
†
ω′(z

′)
]
= ei(ka(ω

′)−ka(ω))zδ(z − z′).(A7b)

We use Ã, B̃ and C̃ to represent the envelope operator
of mode a, b and c. Substituting Eq. (A6) to Eq. (A4) and
using the Taylor expansion of ωa(k) around ka(ω) giving
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ωa(k) =
∑∞

n=0
1
n!

∂nωa

∂kn

∣∣∣
ω
(k − ka(ω))

n , the Hamiltonian

for mode branch a becomes

Ha =

∫
ℏÃ†

ω(z)

( ∞∑
n=0

1

n!

∂nωa

∂kn

∣∣∣∣
ω

(
−i

∂

∂z

)n

Ãω(z)

)
dz.

(A8)

To arrive at the equation above we use the Fourier trans-
form identity∫

(ik)nf(x)eikxdkdx =

∫
∂nf(x)

∂xn
eikxdkdx. (A9)

The integration in the definition of the envelope oper-
ators is over all the wavenumber, physically, this means
that the envelope operator represents the photons in all
the frequency range. In real experiments, however, we
are interested in bandwidths where the dispersion rela-
tion can be approximated as linear. In this linear dis-
persion wave packet assumption, the Hamiltonian can be
simplified as Eq. (A10):

Ha =

∫
(ℏωÃ†

ω(z)Ãω(z)− iℏvaÃ†
ω(z)

∂Ãω(z)

∂z
)dz,

(A10)

where va is the group velocity at frequency ω for mode
branch a. The first term is only exact if the signal is

monochromatic at ω, and Ã†(z, ω)Ã(z, ω) would then be
the photon number density. The second term is the cor-
rection for other frequencies under the linear dispersion
assumption. The Hamiltonian for mode branches b and
c, Hb and Hc can also be expressed using the envelope
operators in the same form. Using the commutation re-
lation Eq. (A7), we can get the Heisenberg equation of
motion in terms of the envelope operators

∂Ãω(z)

∂t
=

1

iℏ
[Ãω(z), Ha]

= −iωÃω(z)− va
∂Ãω(z)

∂z
. (A11)

Now consider the interaction term in the system
Hamiltonian which can be expressed as [4]

HV =
1

2

∫
rijkϵa,iϵb,jEa,iEb,jEc,kdxdydz, (A12)

where a, b and c denote the different mode branches and
rijk is the electro-optic component. In Eq. (A2) the elec-
tric field mode profile ulk(x, y) is a function of the wave-
length, but within a narrow frequency range, it is a good
assumption that the mode profile does not change. In
addition, the narrow frequency range can also be used
to approximate ωl(k) from the normalization factor as ωl

(δk terms would combine with the integrals in ki to give
higher order terms). Given this, substitute Eq. (A2) into
HV and keep only the electro-optic conversion terms of

interests, we have

HV =

∫ (
ℏg0eik

′z

(2π)
3
2

a(k1)b
†(k2)c(k3) +H.c.

)
dk1dk2dk3dz,

(A13)

ℏg0 =
1

4
√
2

∫
rijkϵa,iϵb,jua,iu

∗
b,juc,kdxdy∏

l=a,b,c

√∫
ϵl,iul,iu∗

l,idxdy/ℏωl

(A14)

where k′ = k1−k2+k3. As shown in Fig. 1 c) ii), suppose
that the central frequency of the wave packets of mode
a, b and c are ωp, ωs and Ω respectively, then Eq. (A13)
can be written in terms of envelope operators as

HV =

∫ (
ℏg0Ãωp(z)B̃

†
ωs
(z)C̃Ω(z)e

ik′z +H.c.
)
dz,

(A15)
where k′ = ka(ωp)−kb(ωs)+kc(Ω) is the phase mismatch
term between wave packet center frequencies.
Knowing the interaction Hamiltonian, the interaction

term in the Heisenberg equations of motion are obtained
in the same way as for the free propagation term in
Eq. (A11). This gives the two-operator terms in Eq.
(A16a) to (A16c). In the following, the loss rate of
each mode was also added with κl factors. In the band-
width considered, these rates are considered to be loca-
tion and frequency independent. Mathematically, they
have no impact on the above calculations and are ob-
tained by generalizing to complex frequencies (replacing
ω = ωl(k) + iκl/2). The system of dynamic equations
then reads:

∂Ã

∂t
= −(iωp +

κa

2
)Ã− va

∂Ã

∂z
− ig∗0B̃C̃†e−ik′z,

(A16a)

∂B̃

∂t
= −(iωs +

κb

2
)B̃ − vb

∂B̃

∂z
− ig0ÃC̃eik

′z, (A16b)

∂C̃

∂t
= −(iΩ+

κc

2
)C̃ − vc

∂C̃

∂z
− ig∗0Ã

†B̃e−ik′z.(A16c)

To get rid of the fast oscillating component in Ã, B̃

and C̃, we introduce their rotating frame equivalent A =

Ãωpe
iωpt, B = B̃ωse

iωst and C = C̃Ωe
iΩt. Replacing

them into Eq. (A16), Ã, B̃ and C̃ are replaced by A, B
and C and the fast oscillating terms on the right hand
side of Eq. (A16) disappear:

∂A

∂t
= −κa

2
A− va

∂A

∂z
− ig∗0BC†e−ik′z, (A17a)

∂B

∂t
= −κb

2
B − vb

∂B

∂z
− ig0ACeik

′z, (A17b)

∂C

∂t
= −κc

2
C − vc

∂C

∂z
− ig∗0A

†Be−ik′z. (A17c)

Up to this point, perfect frequency matching (ωs =
ωp + Ω) has not been required. One could have selected
ωs +∆ instead of ωs for mode branch b’s envelope oper-
ator and associated rotating frame. In the above, we can
therefore simply replace the phase mismatch k′ with its
expression given in Eq. 2.
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Appendix B: Dynamic equations solution

The steady-state Heisenberg equation under the unde-
pleted pump assumption can be written as:

∂B

∂z
= − κb

2vb
B − i

g0αp

vb
Ceik

′(∆)z, (B1a)

∂C

∂z
= − κc

2vc
C − i

g∗0α
∗
p

vc
Be−ik′(∆)z, (B1b)

which has solutions:

B = e
− κb

2vb
z
(C1e

β1z + C2e
β2z), (B2a)

C = − vb
ig0αp

e−
κc
2vc

z(C1β1e
−β2z + C2β2e

−β1z),

(B2b)

where

β =
κb

2vb
− κc

2vc
+ ik′(∆), (B3a)

β1 =
β +

√
β2 − 4

|g0αp|2
vbvc

2
, (B3b)

β2 =
β −

√
β2 − 4

|g0αp|2
vbvc

2
, (B3c)

and C1 and C2 are two constants determined according
to boundary conditions.

Appendix C: Transduction bandwidth

In this section we estimate the transduction bandwidth
of our proposed conversion scheme. As shown in Eq. (8a),
the effect of phase mismatch arise from the non-zero k′

in the β =
√

|γ|2 + k′2/4 term. We can define the band-
width as the frequency detuning ∆ such that k′(∆) = 2γ.
Given Eq. (1a) and (2),

k′(∆) =(
1

vb
− 1

vc
)∆. (C1)

Taking the simulated condition in Fig 3 as an exam-
ple, where optical velocity vb = 0.5c, microwave veloc-
ity vc = 0.03c and an about 80% conversion efficiency is
achieved at 0.6m, the corresponding frequency detuning
is ∆ = ±50MHz, and therefore, the bandwidth is about
100MHz.
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