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A driven quantum system can experience Landau-Zener-Stückelberg-Majorana (LZSM) transi-
tions between its states, when the respective energy levels quasi-cross. If this quasicrossing is
traversed repeatedly under periodic driving, the trajectories can interfere either constructively or
destructively. In the latter case, known as coherent destruction of tunneling, the transition between
the energy states is suppressed. Even for the double-passage case, the accumulated phase difference
(also referred to as the Stückelberg phase) can lead to destructive interference, resulting in no tran-
sition. In this paper, we discuss a similar process for the single-passage dynamics. We study the
LZSM single-passage problem starting from a superposition state. The phase difference of this initial
state results in interference. When this results in either a zero or a unit transition probability, such
a situation can be called single-passage complete localization in a target state. The phase can be
chosen so that the occupation probabilities do not change after the transition, which is analogous to
the problem of transitionless driving. We demonstrate how varying the system parameters (driving
velocity, initial phase, initial detuning) can be used for quantum coherent control.

I. INTRODUCTION

For quantum computing it is important to have differ-
ent methods on how to steer quantum systems to desired
states, see e.g. Refs. [1–4]. The ability to predict the
behavior of the system opens the opportunity to use it
either as a quantum logic gate or to improve already ex-
isting gates. This means to make the process faster or the
errors smaller, or easier for an experimental realization.
A dynamics that allows the system to return to its orig-
inal state can be useful for quantum information. This
can be realized by adiabatically slow driving [5–9]. We
could also consider the following question: is it possible to
return to the original state using fast processes? In some
cases this is possible [10, 11]. A number of parameters
exist that can drive the system. If the signal is periodic,
there are special values of the frequency and amplitude
which guide the system to its ground state [12–16]. Since
this results from destructive interference [17–22], this is
known as coherent destruction of tunneling (CDT) and
dynamic localization [20, 23].

In a different context, the problem of controlling a
quantum system can be formulated as how to correct
a given drive so that the system remained in one of the
basis states. Such transitionless driving was studied in
Ref. [24]; first for a generic case, and also for the par-
ticular situation of a two-level system with linear drive.
This last case corresponds to Landau-Zener-Stückelberg-
Majorana (LZSM) transitions [25–28]. LZSM transi-
tions are interesting in different aspects and processes,
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including: axion-photon conversion [29], interferome-
try in a non-Hermitian N -body interacting boson sys-
tem [30], interference effects in a qubit [31–35], Mach-
Zehnder–type interferometry in a superconducting qubit
[36, 37], tunneling under the effect of higher-order dis-
persion [38], spin-flip in the multi-stage Stern–Gerlach
experiment [39]. LZSM transitions can also be driven
with intense laser pulses in the avoided-crossing band
structure of graphene’s Dirac cones [40–44]; the authors
of these works demonstrated different transition scenar-
ios, including different transition scenarios were demon-
strated, including limiting cases such as CDT and the
intermediate case of returning to the initial occupation.

Here we study similar questions to the ones in Refs. [13,
24]: how to steer the system to a given state? Can the
system remain in the same state as before the driving
(also known as transitionless driving)? What is needed
to direct and guide the system to its ground state or
excited state, which we call Complete Localization (CL)
in a target state?

In our case, we consider the simplest linear driving
with velocity v and starting from a generic superposi-
tion state, using the initial phase difference between the
spinor components as a tunable parameter. A phase mea-
surement is described in Ref. [45]. In our approach, con-
sidering the phase as a controlling parameter, we follow
Ref. [46]. What we mean is illustrated in Fig. 1, showing
the dynamics of a qubit, when starting from three dif-
ferent superposition states, with the same initial occupa-
tion probability but with three different phase differences
between the spinor components. The three respective
curves show (from bottom to top): complete localization
in a |1⟩ state (constructive interference, bottom curve),
remaining at the same position as the initial one (middle
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FIG. 1. Dependence of the occupation probability on the dimensionless time τ =
√

v/(2ℏ)t in the diabatic basis. A graphical
illustration of two possible bases is shown in the bottom left inset. The adiabatic basis |E±⟩ refers to the eigenvalues of the
energy levels (red and blue hyperbolas). Diabatic basis {|0⟩ , |1⟩} is the basis of eigenvalues of the Pauli matrices (orange and
green dashed straight lines). The three curves show three possible different occupation probabilities of state |0⟩ starting from the
same initial occupation probability P|0⟩ and different initial phases of the wave function. We are interested in the occupation of
the ground state to the right (which is P|0⟩); for convenience, we say ”constructive interference” when this results in increasing
P|0⟩ and vice versa. So, the maximum value of the occupation probability P|0⟩ corresponds to constructive interference (dark
blue curve). The phase in this case is defined in Eq. (23) and approximately equals to ϕi ≈ 0.36. The minimal value of the
occupation probability corresponds to destructive interference (dark red curve). The phase, in this case, is defined in Eq. (22)
and approximately equals to ϕi ≈ 1.53. Any occupation probability between these values, defined by the constructive and
destructive interferences, could be obtained by changing the initial phase. In particular, there are parameters which allow
the system to return to its initial state (grey dashed curve). The adiabaticity parameter must correspond to the condition
defined in Eq. (31) and then the initial phase is equal to the value in Eq. (32) (in the plot above this approximately equals to
ϕi ≈ −2.78).

curve, transitionless driving), and obtaining maximal oc-
cupation probability (constructive interference) shown in
the top curve. In general, changing the initial phase gives
the possibility to obtain any probability between construc-
tive and destructive ones. Just for convenience, studying
the occupation of |0⟩ state, we call the interference con-
structive, if its occupation is increased; and we call the
interference destructive, if the population of the |0⟩ state
is decreased.

The rest of the paper is organized as follows. In
Section II we describe the dynamics and introduce im-
portant aspects of the adiabatic-impulse approximation
(with details of the adiabatic stage of the dynamics in
Appendix A). In Section III we find the dependence of
the final probability on the system’s parameters, includ-
ing the initial phase. In Section IV we analyze the range
of the possible values of the final occupation probabil-
ity. The eventual return of the system to its initial state

and single-passage CL are discussed in Section V. In Sec-
tion VI we describe how to control the qubit only by
changing its phase and linear perturbations. The adia-
batic evolution in the diabatic basis is described in Ap-
pendix B. The respective results in the adiabatic basis
are presented in Appendix C. In Appendix D, we gener-
alize the result for any type of dynamics which could be
described by the adiabatic impulse model.

II. DYNAMICS: ADIABATIC-IMPULSE
APPROXIMATION

Consider the dynamics of a two-level system with a
linear perturbation. Such a system is described by the
Schrödinger equation in the diabatic basis

iℏ
∂

∂t
|ψ⟩ = −1

2
(∆σx + ε(t)σz) |ψ⟩ , (1)
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where

ε(t) = vt, (2)

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α
β

)
, (3)

∆ and v are constant values and σi stands for the Pauli
matrices. Such dynamics describes the Landau-Zener-
Stückelberg-Majorana (LZSM) transitions, with the ex-
citation probability (see Ref. [26] and references therein)

P = exp(−2πδ), (4)

(if starting from the ground state), where

δ = ∆2/(4vℏ) (5)

is the adiabaticity parameter.
The dynamics with initial time ti and final time tf

can be described by the adiabatic-impulse approxima-
tion [47]. The dynamics could be separated into three
different stages [21]: adiabatic evolution, transition, and
adiabatic evolution again:

|ψf⟩ = Uad(tf , 0)NUad(0, ti) |ψi⟩ , (6)

where |ψi,f⟩ are the initial and final wave functions, Uad

describes the adiabatic evolution, and N describes the
LZSM transition. The adiabatic-evolution matrix before
the transition is

Uad(0, ti) =

(
exp (−iζ) 0

0 exp (iζ)

)
, (7)

and after the transition the adiabatic-evolution matrix is

Uad(tf , 0) =

(
exp (iζ) 0

0 exp (−iζ)

)
. (8)

Here the phase ζ and its asymptotic expressions at large
times, i.e. at

t = ±τa

√
2ℏ
v

(9)

with τa ≫ 1, are the following [47]:

ζ (±τa) =
1

2ℏ

±τa∫
0

√
∆2 + 2ℏvτ2dτ ≈ (10)

≈ ±
[
τ2a
2

+
δ

2
− δ

2
ln δ + δ ln

√
2τa

]
. (11)

A non-adiabatic transition is described by the transfer
matrix N , which is associated with a scattering matrix
in scattering theory [48]. The components of the trans-
fer matrix are related to the amplitudes of the respective
states of the system in energy space. The diagonal ele-
ments of N [25, 26] correspond to the square root of the

reflection coefficient R, and the off-diagonal elements cor-
respond to the square root of the transmission coefficient
T and its complex conjugate:

N =

( √
R

√
T

−
(√

T
)∗ √

R

)
. (12)

In our problem, these elements are

R = P and T = (1− P) exp (i2φS) , (13)

where φS is the Stokes phase

φS =
π

4
+ Arg [Γ (1− iδ)] + δ (ln δ − 1) , (14)

where Γ denotes the Gamma special function. In what
follows we will use the formalism summarized in this sec-
tion (and explained at length in Refs. [25, 47]) to describe
the system dynamics when starting from a superposition
state. Using these results it is possible to describe not
only a single passage but also the multiple-passages case
using the adiabatic-impulse model.

III. DEPENDENCE OF THE FINAL STATE ON
THE INITIAL PHASE

Consider the dependence of the final occupation prob-
ability on the initial phase of the wave function. For this,
we take the wave function in the diabatic basis Eq. (3).
Then taking the initial wave function |ψi⟩ with the

component αi real for the initial condition, we introduce
the phase difference in βi:

βi =
√

1− α2
i exp (iϕi). (15)

The single-passage evolution is described by the Her-
mitian matrix

Ñ = Uad(τf , 0)NUad(0, τi). (16)

Taking for simplicity τf = τa and τi = −τa, we obtain the
components of this matrix(

Ñ11 Ñ12

Ñ21 Ñ22

)
=

( √
R

√
Te2iζ(τa)

−
√
T

∗
e−2iζ(τa)

√
R

)
. (17)

For a more general case, τf ̸= −τi, see Appendix A. The
wave function after the transition can be derived from
Eq. (6). Then the first component of the spinor becomes

αf = αiÑ11 +
√

1 + α2
i e

iϕiÑ12. (18)

The final occupation probability of the |0⟩ state is P|0⟩f =

|αf |2. Then using Eqs. (11,14), we can write the direct
dependence of the occupation probability on the system
parameters

P|0⟩f = α2
i e

−2πδ + (1− α2
i )(1− e−2πδ)
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FIG. 2. Impact of the initial phase ϕi on the final occupa-
tion probability P|0⟩. If the value of the interference term
in Eq. (21) is maximal, the final occupation probability is
also maximal and corresponds to the constructive interfer-
ence case. On the other hand, if Eq. (21) is minimal, the final
occupation probability P|0⟩ is also minimal, and this corre-
sponds to the destructive interference case. (a) shows the
temporal dependence of both of these occupation probabil-
ities. (b) shows the dynamics on the Bloch sphere for the
constructive interference case shown in panel (a). (c) shows
the dynamics on the Bloch sphere for the destructive in-
terference case shown in panel (a). The initial occupation
probability is P|0⟩i = 0.36 and the adiabaticity parameter is
δ = ln 2/2π.

+2αi

√
1− α2

i e
−πδ
√
1− e−2πδ cos θ, (19)

where

θ (δ, τa, ϕi) =
π

4
+Arg [Γ(1− iδ)]+ τ2a +2δ ln (

√
2τa)+ϕi.

(20)
It is important to note that the final occupation probabil-
ity does not depend on the final time; for a more general
treatment see Appendix A. The final result will be the
same as Eq. (19), with −τa → τi.

IV. HOW THE INITIAL PARAMETERS
AFFECT THE FINAL PROBABILITIES

The final probability P|0⟩ depends on the following pa-
rameters: δ, αi, ϕi, τi. We are now interested in studying
the contribution of the third term in Eq. (19). This term
is the result of interference, and (for convenience) we will
designate it as α2

int

α2
int = 2αi

√
1− α2

i e
−πδ
√

1− e−2πδ cos θ. (21)

Figure 2 shows the contribution of this interference term.
If the initial probability |αi|2 is fixed and the phase dif-
ference ϕi between the components of the wave function
is varied, we can obtain the final probabilities |αf |2 in a
wide range.
Having obtained interference term we analyze the de-

pendence on αi is proportional to the factor 2αi

√
1− α2

i ,

so there is a maximum at αi = 1/
√
2.

The dependence on τi and ϕi is via the argument of
cos θ. Since the parameters ϕi and τi both contribute to
the final result only in the argument of cos θ in Eq. (19),
then their contribution is similar.
The phase before the transition is the sum of the ini-

tial phase ϕi and the phase which was collected during
the adiabatic evolution before the transition. The latter
phase is defined with the initial time. There are minimum
and maximum values of this interference term, which cor-
respond to cos θ = ±1. We describe occupation proba-
bilities in the diabatic basis. In our problem, we consider
the system without relaxations, which means that these
two levels are equivalent. Accordingly, we use the terms
constructive/destructive for the final occupation proba-
bility P|0⟩. We define the maximum value of the occu-
pation probability of the state |0⟩ as the constructive in-
terference case. The minimum value corresponds to the
destructive interference case.These respective cases will
occur if the initial phase difference is

ϕdestri = ϕi0 +
π

2
, (22)

and

ϕconstri = ϕi0 −
π

2
, (23)
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FIG. 3. Visualization of the difference (or width) between constructive and destructive interference in the dependence of the
occupation probability P|0⟩ on the adiabaticity parameter δ [upper panels] and on the single-passage probability P(δ) [lower
panels]. (a) and (c) correspond to the case when αi = 0.3, while (b) and (d) are for αi = 0.8. The dark green curve shows the
constructive case, and the dark red curve shows the destructive interference case. The light blue background region shows the
values of the adiabaticity parameter where returning to the initial occupation probability is possible, that is when δ < δst. The
points that correspond to the complete localizations are marked by star, destructive complete localization (DCL) and X-cross,
constructive complete localization (CCL). The values of the adiabaticity parameter in these cases correspond to Eqs. (33, 34)
respectively.

where ϕi0 corresponds to the zero contribution from the
interference and equals to

ϕi0 = 2πn+
π

4
−Arg [Γ(1− iδ)]− τ2i −2δ ln(

√
2τi), (24)

with n being an integer.

We can obtain any value of the interference term be-
tween the constructive- and destructive-interference val-
ues. The minimum and maximum values of the occupa-
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tion probability are

P|0⟩max/min =

(
αie

−πδ ±
√
1− α2

i

√
1− e−2πδ

)2

. (25)

The width of this region (between destructive and con-
structive interference) is

∆P (αi, δ) = 4αi

√
1− α2

i e
−πδ
√
1− e−2πδ. (26)

The maximum value of the width, at αi =
1√
2
, is

∆P (δ)max = 2e−πδ
√

1− e−2πδ. (27)

Alternatively, the width could be changed by the adia-
baticity parameter δ. In particular, if δ = ln

√
2/π, then

the width becomes

∆P (αi)max = 2αi

√
1− α2

i . (28)

If we take

αi =
1√
2

and δ =
ln
√
2

π
(29)

at the same time, the width will be 1, which means that
the any final probability could be obtained.

Figure 3 shows the dependence of the width between
constructive and destructive interference on the adia-
baticity parameter δ as well as on the single-passage
probability P(δ) in two cases of the initial occupation
probability. The dark green line shows the maximal value
of Eq. (21) and the dark red line shows the minimal value.
The impact of the interference term α2

int depends on the
adiabaticity parameter. When δ ≫ 1 or δ ≪ 1, the im-
pact of the interference term tends to zero. Values of the
adiabaticity parameter, when the interference impact is
not negligible, correspond to the fast processes which are
not adiabatic.

V. CONDITION FOR RETURNING TO THE
SAME OCCUPATION PROBABILITY AS THE

INITIAL ONE AFTER THE TRANSITION

The condition for returning to the same state as the ini-
tial one after the transition could be found from Eq. (19)
if we require P|0⟩ = α2

i , which determines the value of
cos θ:

cos θ =

(
2α2

i − 1
)√

1− exp(−2πδ)

2αi

√
1− α2

i exp(−πδ)
. (30)

This condition can be satisfied when the value of |cos θ| ≤
1, which requires

δ ≤ δst ≡
1

2π
ln

1

(2α2
i − 1)

= − 1

2π
ln
(
2α2

i − 1
)
. (31)

Then the phase difference between αi and βi should be

ϕi = arccos

(
2α2

i − 1
)√

1− e−2πδ

2αi

√
1− α2

i e
−πδ

+ ϕi0 −
π

2
. (32)

In Fig. 3 the region where there could be a return to
the initial occupation probability is shown as a light blue
region. In the diabatic basis, it corresponds to the small
values of the adiabaticity parameter δ. In these cases the
processes are nonadiabatic.
Consider now reaching the ground and excited states,

which correspond to CLs. In Fig. 3 we indicate the points
where it is possible to obtain the system in the ground
state. If the final occupation probability is equal to one
this means that the final state is |0⟩. In the opposite
case, if the final occupation probability is equal to zero,
the state is |1⟩.
These cases are present for any initial occupation prob-

ability and correspond to the minimum and maximum of
the destructive and constructive interference occupation
probabilities. From Eq. (25) the values of the adiabatic-
ity parameter δ for these cases could be found. For the
destructive CL, the adiabaticity parameter is

δDCL = − 1

2π
ln
(
1− α2

i

)
, (33)

and constructive CL, the adiabaticity parameter is

δCCL = − 1

π
lnαi. (34)

The results of this section could be surprising because
these indicate that, it is possible for the occupation prob-
ability to return to its initial value by only using phase
control. Obtaining localization of the dynamics for any
state exists for any initial occupation probability.

VI. PREPARING A DESIRED TARGET STATE
BY ONLY CHANGING ITS INITIAL PHASE

We now consider how to control qubits by changing
their initial phase. We describe a qubit undergoing adi-
abatic evolution under the constant offset

ε(t) = const = ε0 (35)

in Eq. (1). If we apply a constant drive, the evolution
of the wave function consists in changing the phase. In
the Bloch sphere, this corresponds to a rotation around
the z axis. The phase which appears after this evolution
during the time twait is

ϕad = −sgn(ε0)

√
∆2 + ε20
ℏ

twait. (36)

The sign of the phase depends on the sign of the drive
ε0, see details in Appendix B. This means that using this
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FIG. 4. Multiple-passage dynamics. The plots in the first row show the dynamics for two passages on a diabatic basis. The left

column plots show the dynamics of the single LZSM transition with δ = ln
√
2

π
starting with an initial occupation probability

P|0⟩i = 0.01. The final states are between the dark green curve (constructive interference) and the dark red curve (destructive
interference). The right column shows the second passage with the same adiabaticity parameter δ as in the first transition
starting from one of the possible final stages after one transition. After the second transition, the final occupation probability
could be chosen between 0 and 1 using as a tunable parameter the phase of the wave function before the second transition.
The same dynamics is shown in the second row.

type of signal we can change the phase of the wave func-
tion without changing the occupation probability. We
can use it to control the phase to prepare the desired
initial state before the LZSM transition.

As was discussed in the previous section, for any ini-
tial occupation probability P|0⟩, it is possible to obtain
the ground state. This means that by changing the adia-
baticity parameter δ and the initial phase ϕi it is possible
to obtain any desired final state.

If the initial state is close to the ground state, an infi-
nite adiabaticity parameter δ is needed to obtain another
ground state. To overcome this difficulty, we can apply
multiple passages. Thus, two or more LZSM transitions
allow to obtain the final occupation probability with ex-
perimentally realizable parameters.

For illustration, Figure 4 demonstrates two passages
(in the diabatic basis see the panels in the first row).
The first passage starts with an initial occupation proba-
bility P|0⟩i = 0.01. This state is close to the ground state

|1⟩. After the first LZSM transition (left panel) with the

adiabaticity parameter δ = ln
√
2/π, the final occupa-

tion probability could be P|0⟩f ≈ 0.5± 0.1. Applying the
second LZSM transition with the same adiabaticity pa-
rameter as one of the possible final states after the first
transition, the final occupation probability is now in the
range between 0 and 1. Thus, changing the phase of the
wave function after the first transition gives the possibil-
ity to choose the final state after the next transition.

This process can be also considered on the adiabatic
basis which is the eigen energy levels basis. All these
formulas could be obtained by the relation between dia-
batic and adiabatic basis; see details in Appendix C. The
example of the double passage in the adiabatic basis is
shown in the second row in Fig. 4.

After the single LZSM passage, any final state could
be obtained using as the tunable parameters the initial
phase and adiabaticity parameter δ. The multi-passage
dynamics with finite adiabaticity parameter could be ap-
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plied in cases when obtaining some final stages of the
infinite adiabaticity parameter is required for the single-
passage case.

VII. CONCLUSIONS

We analyzed the single-passage qubit dynamics with a
linear drive ε(t) = vt. The initial phase of the wave func-
tion was considered as a parameter. Several results (such
as recovering the initial occupation probability (analog of
the transitionless driving), obtaining ground and excited
states (CL)) were derived; these are summarized in Ta-
ble I. We obtained various target occupation probabilities
using phase control. Also, multiple passages were consid-
ered in order to obtain desired qubit states for a given
value of the adiabaticity parameter δ. Results are shown
in Table I.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with Oleg
Ivakhnenko. The research work of P.O.K. and S.N.S.
is sponsored by the Army Research Office under Grant
No. W911NF-20-1-0261. P.O.K. gratefully acknowledges
an IPA RIKEN scholarship. F.N. is supported in part by:
Nippon Telegraph and Telephone Corporation (NTT)

Research, the Japan Science and Technology Agency
(JST) [via the Quantum Leap Flagship Program (Q-
LEAP), and the Moonshot R&D Grant Number JP-
MJMS2061], the Asian Office of Aerospace Research and
Development (AOARD) (via Grant No. FA2386-20-1-
4069), and the Office of Naval Research.

Appendix A: Different initial and final times

The values of the initial and final times are not the
same in the general case. In this section, we will show the
generalization of the transfer matrix, Eq. (17). Different
initial and final times correspond to the value of phase
which will occur due to adiabatic evolution. We use the
following notations for values of the initial and final times
respectively τi and τf . Following Ref. [47] the adiabatic
evolution matrix before the transition is

τ < 0 : Uad(0, τi) =

(
exp (−iζ(τi)) 0

0 exp (iζ(τi))

)
(A1)

and after the transition

τ > 0 : Uad(τf , 0) =

(
exp (iζ(τf)) 0

0 exp (−iζ(τf))

)
.

(A2)
Now we consider a bias which is linear in time ε(t) = vt.
The asymptotic expressions for ζ at large times, i.e. at
t = ±τa

√
2ℏ/v, with τa ≫ 1 defined in Eq. (11).

In general, Eq. (17) becomes

Ñ =

(
exp (iζ(τf)− iζ(τi))

√
P exp (iζ(τf) + iζ(τi) + i2φS)

√
1− P

− exp (−iζ(τf)− iζ(τi)− i2φS)
√
1− P exp (−iζ(τf) + iζ(τi))

√
P

)
. (A3)

The final components of the wave function then become

αf = exp [iζ(τf)− iζ(τi)]
√
Pαi + exp [iζ(τf) + iζ(τi) + i2φS + iϕi]

√
1− P

√
1− α2

i , (A4)

βf = − exp [−iζ(τf)− iζ(τi)− i2φS]
√
1− Pαi + exp [−iζ(τf) + iζ(τi) + iϕi]

√
P
√
1− α2

i . (A5)

This gives the final state depending on the initial phase
difference between the spinor components. Knowing this
dependence is important when we want to describe the
dynamics with multiple passages. If we are interested in
the occupation probability, the final time does not mat-
ter when it is large enough for applying the adiabatic-
impulse model. It is understandable that after the tran-
sition (when the energy levels are far from each other)
the final time enters only at the phase that was collected
during the adiabatic evolution.

Appendix B: Adiabatic evolution in the diabatic
basis

If we want to prepare the state with some special phase
we can use the adiabatic evolution. This evolution is
described by the following matrix in the adiabatic basis

Uad(tf , ti) =

(
exp (−iζ) 0

0 exp (iζ)

)
, (B1)

where

ζ (tf , ti) =
1

2ℏ

tf∫
ti

√
∆2 + ε(t)2dt. (B2)
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Initial phase φi

Type of the dynamics and Final occupation probability
adiabaticity parameter δ P|0⟩i

Zero interference impact ϕi0 = 2πn+ π
4
−Arg [Γ(1− iδ)] α2

i e
−2πδ + (1− α2

i )(1− e−2πδ)

−τ2
i − 2δ ln(

√
2τi)

Destructive interference ϕdestr
i = ϕi0 +

π
2

(
αie

−πδ −
√

1− α2
i

√
1− e−2πδ

)2

Constructive interference ϕconstr
i = ϕi0 − π

2

(
αie

−πδ +
√

1− α2
i

√
1− e−2πδ

)2

ϕi = arccos
(2α2

i −1)
√

1−e−2πδ

2αi

√
1−α2

i e
−πδ

+ ϕi0 − π
2

Returning to initial occupation
probability and Initial occupation probability P|0⟩i

δ ≤ − 1
2π

ln
(
2α2

i − 1
)

ϕi = ϕdestr
i

Destructive complete localization in a
target state and 0

δDCL = − 1
2π

ln
(
1− α2

i

)
ϕi = ϕconstr

i

Constructive complete localization in a
target state and 1

δCCL = − 1
π
lnαi

TABLE I. Summary of the main results. If the adiabaticity parameter δ can have any value, we do not show it in the second
column, like in the first three lines.

If the drive is constant ε(t) = ε0, the evolution is de-
scribed by

Uad(tf , ti) =

(
exp [−iωtwait] 0

0 exp [iωtwait]

)
, (B3)

where we introduce the following notation twait = tf − ti
and

ω =

√
∆2 + ε20
2ℏ

. (B4)

The adiabatic and diabatic bases are related in the fol-
lowing way

|φ±⟩ = γ∓ |ψ−⟩ ∓ γ± |ψ+⟩ , (B5)

where

γ± =
1√
2

√
1± ε(t)√

∆2 + ε(t)2
. (B6)

The matrix which describes the transition from the dia-
batic basis to the adiabatic one is

M =

(
γ− −γ+
γ+ γ−

)
. (B7)

The matrix M is unitary, so the adiabatic evolution in
the diabatic basis is described by the matrix

Udiab
ad (tf , ti) = MTUad(tf , ti)M, (B8)

Udiab
ad (tf , ti) =

 γ2−e
−iωtwait + γ2+e

iωtwait γ−γ+ (exp [iωtwait]− exp [−iωtwait])

γ−γ+ (exp [iωtwait]− exp [−iωtwait]) γ2+ exp [−iωtwait] + γ2− exp [iωtwait]

 . (B9)
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FIG. 5. Adiabatic evolution on the Bloch sphere. The red
curve shows that when the drive is constant and ε0 > 0, the
evolution corresponds to a clockwise (seeing from the top)
rotation around the z -axis accumulating the phase ϕad, which
is defined in Eq. (36). If the bias is ε0 < 0, the rotation turns
counterclockwise, shown in blue.

The same result could be obtained by directly solving the
Schrödinger equation in the diabatic basis.

If the adiabatic evolution is far from the crossing en-
ergy levels region, |ε0| ≫ ∆, the adiabatic evolution will
be

ε0 < 0 : Udiab
ad (tf , ti) =

(
exp [−iωtwait] 0

0 exp [iωtwait]

)
;

(B10)

ε0 > 0 : Udiab
ad (tf , ti) =

(
exp [iωtwait] 0

0 exp [−iωtwait]

)
.

(B11)
It shows that (for the different signs of ε0) the rotations
along the z axis are in different directions, and the visu-
alization is presented in Fig. 5.

Appendix C: Adiabatic basis

The matrix which describes the transition from a dia-
batic basis to the adiabatic one is Eq. (B7). Using this
relation and assuming that we are far from the quasi-
crossing region, we obtain the transition matrix in the
adiabatic basis

Ñad =

((√
T
)∗
e−2iζ(τa) −

√
R

√
R

√
Te2iζ(τa)

)
. (C1)

The wave function in the adiabatic basis is∣∣ψad
〉
=

(
b1
b2

)
. (C2)

Then if b1i and b2i are the initial components of the
spinor, the final components become

b1f =
√
1− P exp [−i(2ζ(τa + φS)]b1i −

√
Pb2i, (C3)

b1f =
√
Pb1i +

√
1− P exp [i(2ζ(τa + φS)]b2i. (C4)

Then the occupation probability becomes

P+ = |b1f |2 = (1−P)b21i+Pb22i+2
√

P(1− P)b1ib2i cos θ,
(C5)

where θ is defined in Eq. (20) and the initial compo-
nents of the spinor satisfy the following relation b2i =√
1− b21ie

iϕi .
The condition for staying in the same state as the ini-

tial one after the transition is given by

cos θ =

(
2b21i − 1

)√
P

2b1i
√
1− b21i

√
1− P

. (C6)

The condition of the existence of cos θ becomes

δ > δadst ≡ − 1

2π
ln
[
4b21i(1− b21i)

]
. (C7)
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FIG. 6. Dependence of the occupation probability on time in cases of constructive/destructive interference for different adia-
baticity parameters δ and for different initial occupation probabilities P+i in the adiabatic basis. The three columns correspond
to three values of the adiabaticity parameter δ. Each panel shows the dynamics of the occupation probability P+ versus the
dimensionless time τ . These dynamical evolutions show that the impact of the interference is smaller when δ is larger. Maximal
width is when the initial occupation probability is equal to 0.5 (see the second row).

Appendix D: Generalization of the problem

If we consider a non-linear perturbation which could be
described by the adiabatic-impulse model, then all the
above formulas could be generalized. According to the
adiabatic-impulse model, the dynamics will be separated
on three stages: adiabatic

Uad =

(
exp(−iζ1) 0

0 exp(iζ1)

)
; (D1)

transition

N =

(
N11 N12

N21 N22

)
; (D2)

and adiabatic again

Uad =

(
exp(iζ2) 0

0 exp(−iζ2)

)
, (D3)

where ζ is defined in Eq. (B2). The initial state is the
same as Eq. (15). Then the components of the wave
function are

αf = N11αi exp [i(ζ2 − ζ1)] +N12βi exp [i(ζ1 + ζ2)] ,
(D4)

βf = N21αi exp [−i(ζ1 + ζ2)] +N22βi exp [i(ζ1 − ζ2)] .
(D5)

Then the occupation probability of |0⟩ becomes

|αf |2 = |N11|2α2
i + |N12|2(1− α2

i )

+2αi

√
1− α2

i |N11||N12| cos (2ζ1 + ϕi + φ11 − φ12) ,

(D6)
where the components of the transfer matrix are rewrit-
ten as N11 = |N11|eiφ11 and N12 = |N12|eiφ12 . As a
result, we see that all the dependence on phase is in the
cosine at the one term which is associated with interfer-
ence. It shows that all results are applicable not only
for the linear perturbation but also for any perturbation
which could be approximated by adiabatic-impulse model
[47].
In Fig. 6 we show the dependence of the construc-

tive and destructive interference versus time for different
initial occupation probabilities and different adiabaticity
parameters δ in the adiabatic basis.
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