ars CHGRUS

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Experimental implementation of an efficient test of
quantumness
Laura Lewis, Daiwei Zhu, Alexandru Gheorghiu, Crystal Noel, Or Katz, Bahaa Harraz,
Qingfeng Wang, Andrew Risinger, Lei Feng, Debopriyo Biswas, Laird Egan, Thomas Vidick,
Marko Cetina, and Christopher Monroe
Phys. Rev. A 109, 012610 — Published 9 January 2024
DOI: 10.1103/PhysRevA.109.012610

https://dx.doi.org/10.1103/PhysRevA.109.012610

Experimental implementation of an efficient test of quantumness

Laura Lewis,"2[] Daiwei Zhu,* %6 Alexandru Gheorghiu,” Crystal Noel,% 9 Or Katz,3°

Bahaa Harraz,® Qingfeng Wang,® %10 Andrew Risinger,®* Lei Feng,® 4 Debopriyo Biswas,

3,4

Laird Egan,>* Thomas Vidick,! Marko Cetina,®® and Christopher Monroe® 45 89

Institute for Quantum Information and Matter and Department of Computing and Mathematical Sciences,
California Institute of Technology, CA 91125, USA
2 Division of Physics, Mathematics, and Astronomy,
California Institute of Technology, CA 91125, USA
3 Joint Quantum Institute, Departments of Physics and Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742, USA
4 Joint Center for Quantum Information and Computer Science,
NIST/University of Maryland, College Park, MD 20742, USA
5Ion@Q, Inc., College Park, MD 20740, USA
S Departments of Flectrical and Computer Engineering,
University of Maryland, College Park, MD 20742, USA
"Institute for Theoretical Studies, ETH Ziirich, CH 8001, Switzerland
8 Duke Quantum Center and Department of Physics, Duke University, Durham, NC 27708, USA
9 Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
10 Chemical Physics Program and Institute for Physical Science and Technology,
University of Maryland, College Park, MD 20742, USA
(Dated: November 1, 2023)

A test of quantumness is a protocol where a classical user issues challenges to a quantum de-
vice to determine if it exhibits non-classical behavior, under certain cryptographic assumptions.
Recent attempts to implement such tests on current quantum computers rely on either interactive
challenges with efficient verification, or non-interactive challenges with inefficient (exponential time)
verification. In this paper, we execute an efficient non-interactive test of quantumness on an ion-trap
quantum computer. Our results significantly exceed the bound for a classical device’s success.

As research in quantum theory continues to advance,
experimentally testing the validity of the theory becomes
of greater importance. In particular, a key question is
whether quantum mechanics is falsifiable in the regime
of high complexity arising from large entangled states [I].
This is exceptionally difficult to answer due to the expo-
nential complexity in representing general quantum sys-
tems. Traditionally, one can test a physical theory by
first predicting an outcome according to the theory and
comparing with the experimental result. In quantum
mechanics, such predictions can require exponential re-
sources to obtain and therefore do not provide a feasible
approach for validating the theory.

The work of [I] proposed one way to overcome this ex-
ponential overhead: using interactive protocols known as
interactive proof systems [2HG]. Such protocols allow a
computationally weak werifier to test the behavior of a
powerful prover (or even multiple provers [THI0]). The
protocols work by having the verifier issue a challenge
to the prover, the prover responds, the verifier issues an-
other challenge and the process repeats. After a certain
number of rounds, the verifier either accepts or rejects
based on the prover’s responses in all rounds. Interactive
proofs have been key to several developments in complex-
ity theory and cryptography [4, TTHI3].

For the specific case in which the prover is a quantum
computer, a number of protocols have been proposed to
verify the results of general quantum computations [14].

Prior to 2018, all such protocols required quantum com-
munication between the verifier and the prover. This
changed following the breakthrough result of Mahadev
who gave the first protocol for quantum verification us-
ing only a classical verifier [15]. At the same time, Brak-
erski et al., introduced the concept of a test (or proof) of
quantumness [16]. This is a protocol in which the verifier
simply wishes to determine if the prover is non-classical.
In other words, a test of quantumness is an interactive
protocol in which an efficient quantum prover can make
the verifier accept (with high probability) and no efficient
classical prover can make the verifier accept (with high
probability). “Efficient” in this context means that the
prover runs in polynomial time. The challenges issued
by the verifier in this protocol are constructed so that a
classical prover would be unable to answer them, unless
it is able to efficiently solve hard cryptographic problems
(such as factoring, or the Learning With Errors prob-
lem [I7]). On the other hand, the quantum prover is able
to answer these challenges, without necessarily violating
the intractability of the cryptographic tasks. Crucially,
the verifier can efficiently check whether the challenges
were answered correctly or not. This then serves as a
test of quantum behavior under certain cryptographic
assumptions.

Several recent works have addressed the problem of
constructing cryptographic proofs of quantumness [16]
18H23]. As these are interactive protocols, the main chal-

lenge towards an experimental implementation is that
the quantum prover must perform mid-circuit measure-
ments in order to correctly answer the verifier’s chal-
lenges. While extensive research has been conducted
on how to effectively implement mid-circuit measure-
ments [24H26], the process introduces more errors com-
pared to performing terminal measurements, which occur
only at the end of the algorithm. The feasibility of imple-
menting interactive cryptographic proofs of quantumness
via mid-circuit measurements with near-term devices was
recently demonstrated in [22]. There, it was observed
that when implementing both mid-circuit measurements
and terminal measurements for the same protocol, the
protocols with intermediate measurements resulted in a
significantly lower success probability. Moreover, other
currently known interactive protocols rely on heavy cryp-
tographic assumptions that have a large impact on the
qubit count and depth of the required circuits. It would
therefore be desirable to have a test of quantumness that
is non-interactive.

Such a protocol was proposed in [27]. This replaces
the need for interaction with the use of a one-bit hash
function. The high-level idea is that because the hash
function acts as a random function (or, more formally, as
a random oracle), in order to succeed in the verifier’s new
challenge involving the hash function, the prover must
effectively have been able to answer both branches of the
interactive version of the protocol. In a sense, the hash
function accounts for both branches of the interactive
protocol, eliminating the need for interaction. The idea
of using hash functions to eliminate interaction originates
in cryptography, where it is known as the Fiat-Shamir
heuristic [2§].

This technique opens up more possibilities for efficient
tests of quantum mechanics on near-term devices and
contrasts the approaches used previously to certify quan-
tum advantage [29] [30]. Those approaches are based
on delegating a sampling task to the quantum device
(such as random circuit sampling or boson sampling)
and then checking the validity of the obtained samples
using the linear cross-entropy benchmark (LXEB) [31].
The major downside of this approach is that computing
the LXEB takes exponential time, meaning that certify-
ing quantum advantage in this way quickly becomes in-
tractable [29] [3T] [32]. In addition, there are situations in
which the LXEB can be “classically spoofed” (i.e. there
is an efficient classical algorithm which can produce sam-
ples that are valid according to the LXEB) [33, [34]. The
proof of quantumness of [27], on the other hand, requires
only polynomial runtime to perform the certification and
is thus efficient. In addition, classically spoofing the re-
sults of a proof of quantumness is (provably) as hard
as breaking the underlying cryptography (this follows
from the soundness of these protocols against classical
provers as shown in [16, 27]). We note that a new non-
interactive test of quantumness was recently introduced

in [35], which only relies on one of the two cryptographic
assumptions required in [27] (the hash functions, see be-
low). However, the protocol from [35] seems more com-
putationally intensiveﬂ for the quantum prover compared
to the approach in [27]. For this reason, we only consider
an experimental implementation of [27].

In this work, we advance past the experimental work
for the simpler learning with errors protocol in [22] to
eliminate interaction and implement the protocol of [27]
using 11 qubits on an ion-trap quantum computer. Our
results are also complementary to the recent experimen-
tal work [23], which implements a simpler version [21] of
Mahadev’s interactive protocol for the classical verifica-
tion of quantum computations [I5] (but does not exper-
imentally implement the required interaction). In each
of our experiments, the quantum device’s success rate in
answering the verifier’s challenges significantly exceeds
that of the best possible classical strategy. This there-
fore verifies our device’s non-classical behavior and serves
as a non-interactive proof of quantumness. We also com-
ment on the possibility of scaling up this experiment to
larger devices as a test of quantum mechanics, where we
present this non-interactive protocol as a valuable alter-
native, which potentially has a much improved asymp-
totic scaling.

The non-interactive protocol of [27] relies on two cryp-
tographic primitives: trapdoor claw-free functions (TCF)
and hash functions [38].

A TCF, denoted f, is a 2-to-1 function. In other words,
there exist exactly two preimages xg, 1 that map to the
same image w = f(xz9) = f(x1). The pair (xg, 1) is re-
ferred to as a claw. The “claw-free” property of a TCF
is that, given the description of f (for instance, a cir-
cuit which evaluates f), it should be intractable to find
a claw. In other words, no polynomial time classical (or
quantum) algorithm can find a tuple (zg, 1, w) such that
f(xzo) = f(z1) = w. Finally, the trapdoor is a secret in-
formation that allows one to efficiently invert the func-
tion, recovering xy and x; from w.

The TCF we consider in this paper is based on the
learning with errors (LWE) problem [I7, [39]. In short,
this problem is that of solving an approzximate system of
linear equations over the integers modulo ¢, denoted Z,.
Explicitly, given an m x n matrix A € Z;”X” with entries

I Without going into details about how the protocol from [35]
works, the reason it appears more computationally intensive is
because the quantum prover in that protocol is required to per-
form a quantum Fourier transform (QFT) as well as coherently
decode noisy codewords for a Reed-Solomon code. The circuits
for these operations are comparable to the circuits for perform-
ing Shor’s algorithm [36] [37] and so would not be suitable for
near-term devices. In contrast, as we explain later, the protocol
from [27] does not require the use of the QFT and only requires
the coherent evaluation of a class of functions that can be imple-
mented with short depth circuits [20].

modulo g and an m-dimensional vector y = As+e € Z"
with entries modulo ¢, where e is a vector with small en-
tries, known as the error vector, the problem is to solve
for s € {0,1}". The entries in the error vector, e, are
sampled from a discrete Gaussian distribution of small
width (centered around 0). The LWE problem is conjec-
tured to be intractable for both classical and quantum
computers (i.e. it cannot be solved in polynomial time).
This is known as the LWE assumption [39]. The assumed
intractability forms the basis for defining a TCF. The
specific TCF we consider here was also used in [20, 22)].
Starting from an LWE sample consisting of a matrix A
and vector y = As + e, the function is defined as

f(byx) = |Ax + by]. (1)

Here, b € {0,1} is a single bit while x € Z} is a vec-
tor of dimension n with entries modulo ¢. Additionally,
|-] denotes a rounding operation, which can be under-
stood as taking the most significant bits of the entry be-
ing rounded (for more details, see the related learning
with rounding problem [40], 41]). In this case, | Az + by]
corresponds to simply taking the most significant bit
of each component of the vector Ax + by. Notice that
here the claw is determined by f(0,z¢) = f(1,21) where
Xr1 = g — S.

The second type of cryptographic function we con-
sider is the hash function. Hash functions are a fun-
damental tool in cryptographic protocols and are usu-
ally modeled as random oracles. An oracle function,
h:{0,1}* — {0,1}, is a function for which one is not
given an explicit description and instead queries it in a
black box manner. Here {0,1}* denotes bitstrings of ar-
bitrary length. A random oracle refers to the fact that
the oracle function is chosen uniformly at random from
the set of all functions (or rather, for each input length
n, one chooses a random function from {0,1}" to {0,1}).
As it is often difficult to prove the security of a protocol
with respect to a concrete instantiation of a hash func-
tion, one instead proves security in the random oracle
model [42]. This simply means that the hash function is
modeled as a random function, which all parties in the
protocol can evaluate. Classically, this means querying
with some input = and obtaining the output h(x). In the
quantum case, however, it is possible to query the ran-
dom oracle in superposition [43]. In other words, when
performing a quantum query, the state > ag |z)|y) is
mapped to Y ag |x) |y ® h(z)). Here, we restricted the
output of the oracle to one bit, as this is the type of
function used in the protocol of [27].

In the random oracle model and together with the
LWE assumption, the protocol in [27] is a non-interactive
test of quantum mechanics. When instantiating this pro-
tocol, we considered the TCF from Equation [I] and a
simple hash function represented as a low-degree poly-
nomial. Ideally, one would use a hash function stan-
dardized by NIST, such as SHA-256 or SHA-3 [44], [45].

However, those hash functions would require large num-
bers of qubits and gates in order to implement. For this
reason, we propose using a small circuit, representing
either a low-degree polynomial or a random (classical)
circuit of short depth. This takes inspiration from the
low-complexity hash functions introduced in [46] as well
as the low-complexity one-way function of Goldreich [47].
Specifically, for our implementation we utilized the hash
function

H(b,x) =b+ 21 + bxy + 2124 + brsxy, (2)

where x; denotes the ith bit of the binary representation
of z. It should be noted that in our implementation, x =
T1ToT3T4 1S 4 bits long. A circuit diagram for this hash
function, where the computation of the hash is performed
in phase, is depicted in Figure b).

With this background, we can now describe the proto-
col from [27] in more detail. A high-level circuit diagram
depicting the prover’s operations is displayed in Figure[l}
Recall that the protocol is non-interactive, in the sense
that it only consists of one challenge message from the
verifier to the prover, followed by the prover’s response.
Additionally, one assumes that the hash function is cho-
sen before the start of the protocol and is known to both
the verifier and the prover.

The protocol starts with the verifier generating an
LWE instance (A, y) (together with a trapdoor [48, 49]),
that defines the TCF from Equation [l] and sending the
instance to the prover (while keeping the trapdoor se-
cret). The prover is then required to evaluate the TCF f
and the hash function H on a superposition of all possi-
ble inputs (consisting of the bit b and the string x). The
TCF is evaluated in the computational basis, while the
hash function is evaluated in phase. In other words, the
prover prepares the state

D (DD) |f (b)), 3)

b,x

suitably normalized. The prover then measures the reg-

ister of qubits storing the result of evaluating the TCF,

denoting the classical output as w, resulting in the state
1

—=(10,20) + (=) OXFHLI) L 21))), (4)

V2
where (0,z9) and (1,z1) are the two preimages of w =
f(0,29) = f(1,z1). Finally, the prover measures the
qubits in the input registers storing b and x in the
Hadamard basis. The prover’s operations are depicted
in Figure a). Denoting the first bit in the measure-
ment outcome as z and the remaining bits as the string

d, it can be shown that the following equation will be
satisfied

d-(xo®x1) =2® H(0,20) ® H(1,27). (5)

When the verifier sent the LWE instance to the prover,
the challenge for the prover was to produce a tuple
(w, z,d), such that Equation [f]is satisfied. The quantum
strategy of the prover, outlined here, does indeed produce
such a tuple and this will be the prover’s response to the
verifier. The verifier uses the trapdoor to invert f on w,
obtaining (0, zo) and (1,z1). With this, and the prover’s
response, the verifier checks Equation |5, accepting if it
is satisfied and rejecting otherwise. Note that while we
presented the prover as performing its two measurements
in sequence, the measurements can in fact be performed
at the same time, as depicted in Figure [I[a).

Let us provide some intuition for why a classical prover
cannot succeed in the above protocol. The reason has to
do with the intractability of finding a claw for the TCF
and the fact that, classically, the random oracle (rep-
resenting the hash function) can only be queried on a
single input at a time (in contrast to the quantum case,
where it is possible to query it on a superposition). We
know that no efficient classical prover can produce a tu-
ple (w,xg,x1), with f(0,z¢) = f(1,21) = w. Of course,
in the protocol, the prover is merely required to produce
a valid equation in the preimages of w, which can in
principle be easier than finding a claw. However, in this
case the use of the hash function precludes this possi-
bility. A classical prover cannot compute both H (0, z¢)
and H(1,z1), as this would require querying the oracle
on both points, meaning that the prover had obtained
a claw. This then means that at least one of H(0,x),
H(1,21) will be random and so a classical prover’s prob-
ability of finding a valid equation will be 1/2. By sim-
ply repeating the protocol multiple times, the classical
prover’s probability of succeeding in all challenges be-
comes negligible. The reason this argument fails for
quantum provers is because quantum provers can query
both the TCF and the random oracle in superposition.
Indeed, this is precisely what is leveraged in the protocol
in order to produce a valid equation. For the full proof
of classical hardness, we refer the reader to [27].

To concretely describe how the quantum prover ex-
ecutes the protocol, we now describe the quantum op-
erations performed, which are illustrated at a high
level in Figure [l Details about the implementation of
U(A,b,z,s,e) can be found in the supplementary infor-
mation of [22]. We summarize this information here for
completeness. The crucial portions of the algorithm are
the evaluation of the TCF, represented by U(A, b, x, s, €),
and the evaluation of the hash function, represented by
Up. The latter is explicitly defined in Figure b), SO we
focus on the former. To compute the TCF, the prover
utilizes four total registers of qubits: one for each of the
b and x inputs, one for the output, and an ancilla reg-
ister to assist in the computation, requiring a total of
N =1+ nlog,(q) + logy(q) + m qubits. Here, the bit b
is stored in a single qubit while the n-dimensional vector
x with entries modulo ¢ requires nlog,(q) qubits. As we

shortly describe, the ancilla register only stores one entry
of an m-dimensional vector with entries modulo ¢ at a
time so that it uses log,(¢q) qubits. Finally, the output
register is an m-dimensional vector with binary entries;
hence it requires m qubits. For our choices of parameters
n=2,m =4,q = 4, this results in N = 11 qubits.

Recall that the prover wishes to compute f(b,z) =
| Az +by| coherently, where this is an m-dimensional vec-
tor when A is an m x n matrix. The prover computes this
vector one entry at a time, allowing it to reuse the ancilla
qubits for each entry. More precisely, the i’th component
of this vector is the most significant bit of {(a;, z) + by,
where a; denotes the i’th row of the matrix A and (-, -) de-
notes the inner product modulo ¢q. The prover can com-
pute this in the ancilla register in the Fourier basis via
several controlled rotation gates (controlled on the input
qubits). Following this, the prover converts the ancilla
register to the computational basis by applying the in-
verse quantum Fourier transform, “copies” the most sig-
nificant bit from the ancilla register to the output register
via another controlled rotation, and converts the ancilla
register back into the Fourier basis. Now, the output reg-
ister stores the i’th component of the desired vector. To
compute the remaining entries, the prover reverses this
computation on the ancilla register and proceeds for the
other rows of the matrix. This resetting of the ancilla
allows the prover to reuse the qubits, significantly reduc-
ing the qubit usage required for the protocol. Precisely,
without the ancilla, the number of qubits would scale as
1+ nlogy(q) + mlogy(q) + m, where m > n.

This also exhibits a tradeoff between the number of
qubits and the depth of the quantum circuit. Namely,
one can use more ancilla qubits to simultaneously com-
pute multiple entries of the vector f(b, x), thus decreasing
the depth. This flexibility makes the protocol amenable
to implementation on different devices, for which one
of qubit count or depth may be more costly. Another
potential tradeoff could be in the cost of reversing the
computation on the ancilla register versus executing a
mid-circuit reset of the ancilla qubits (similarly to the
protocol in [I8]). This could be useful for devices in
which a mid-circuit reset is less costly than performing
the gates required for reversing the computation coher-
ently. We remark that this mid-circuit reset differs from
the mid-circuit measurement approach for these proto-
cols [22] because we are not required to perform gates on
the post-measurement ancilla qubits, potentially allow-
ing for lower error rates [26].

We implement the quantum prover’s circuits (Figure 1))
using an ion-trap quantum computer [22, 50} 5] to test
our protocol. The quantum computer consists of thirteen
qubits made from a linear chain of fifteen '"'Yb™ ions
that are laser cooled to near the motional ground state.
In our protocol, we utilize eleven of these thirteen avail-
able qubits. The system is capable of applying a universal
gate set consisting of arbitrary single-qubit rotations on

S
=

8

|
NE

U(A,b,x,s,e€)

Ancilla

|0)—+ H H Az +b- (As +¢)]

f(b,z)

=

=

P s T T IS S

FIG. 1. Circuit diagrams for prover’s operations (a) and hash function used (b) in the protocol. The prover first evaluates the
TCF f and the hash function H on a superposition of all possible inputs. In (a), U(A4,b,z, s, e) denotes the operations used to
evaluate the TCF in Eq. |I] and Uj, denotes the operations used to evaluate the cryptographic hash function in Eq. [2] which is
illustrated explicitly in (b). Details about the implementation of U(A, b, z, s, e) can be found in the supplementary information
of [22]. The prover then measures the registers of qubits storing b and z in the Hadamard basis and the register storing the

result of evaluating the TCF in the standard basis.

any target qubit as well as two-qubit Mglmer-Sgrensen
gates [52] on any arbitrary pair of qubits. The quantum
circuits are implemented via the consecutive application
of native single and two-qubit gates using individual op-
tical addressing, where the fidelities of native single and
two-qubit gates are given by 99.98% and 98.5 — 99.3%,
respectively [51]. Individual-qubit readout is performed
with high fidelity at the end of circuit operations via
state-dependent fluorescence detection [53].

The results for implementing the protocols are dis-
played in Figure[2] Here, we ran the experiment for sev-
eral different choices of the matrix A and error vector e
in the LWE instance, detailed in Table [l using 11 qubits.

Instance AT eT (As+e)T
N R TE Y
(2 e ey
s (00 oG
() o)

TABLE I. Details of the LWE instances. Note that the entries
are transposed and for all instances we use s" = (0 1).

Furthermore, we repeat the experiment 9 times, with
each repetition covering 2000 executions of all four LWE

instances in Table [Hence, we obtain the success prob-
abilities seen in Figure [2l We note that Instances 0 and
2 perform better due to optimizations reducing the gate
count for the implementation of the TCF based on those
instances. In particular, we achieved an approximately
42% decrease in gate count due to optimization for In-
stances 0 and 2. In contrast, the same optimization re-
duced the gate count of Instances 1 and 3 by only ap-
proximately 256% and 29%, respectively. The gate counts
before and after optimization can be found in Table[[T} In
general, the gate count scales as O(mnlog, ¢). These op-
timizations were achieved by finding simpler ways to im-
plement modular arithmetic operations for special cases
for the form of the matrix A and vector As + e. This re-
sults in simplifying a number of controlled rotation gates
into only one or two CNOT gates. The special cases
we optimized for were determined after sampling A and
As + e and examining recurring patterns in their struc-
ture. It is expected that other choices of LWE instances
could be optimized in a similar manner, although a sepa-
rate analysis would likely be required. The optimizations
are detailed in the appendix.

We know from [27] that a classical adversary can suc-
ceed in the verifier’s challenge with probability at most
0.5. Thus, we see that the results exceed this classical
success probability for each LWE instance used. In par-
ticular, for each instance, we exceed this bound by be-
tween 150 and 250, where o denotes the standard devia-
tion of the distribution of observed success probabilities

Instance
lo|1]2]3
Unoptimized 7375|8179
Optimized 42|56 (47|56

Multi-Qubit Unoptimized |45 |47 | 53 | 51
Multi-Qubit Optimized |24 |34 (29|34

TABLE II. Gate counts for different LWE instances. The gate
counts are given for the unoptimized (original) algorithm and
the optimized algorithm with the optimizations detailed in the
appendix. We also note the number of multi-qubit operations
in each of these cases.

under the null hypothesis that the prover is classical with
success probability 0.5. Here, o can be computed using
the normal approximation to the binomial distribution
as 0 = 1/(2v/N), where N is the number of executions
of the experiment. The corresponding statistical signifi-
cance with which the null hypothesis of a classical prover
is rejected exceeds p < 107°%, providing strong evidence
of a quantum prover. Thus, our results significantly sur-
pass the threshold for classical behavior, emphasizing our
success in implementing a test of quantum mechanics ex-
perimentally, albeit on a small number of qubits. In par-
ticular, this confirms the quantum behavior of the device
this was executed on given the cryptographic security of
our TCF and hash function.

Moreover, these results match reasonably well with
estimates of the success probability based on known
gate fidelities of the device. Namely, assuming a single-
qubit gate fidelity of 99.98% and a two-qubit gate fi-
delity of 98.9% (the midpoint of the range 98.5 —
99.3%) [51], then a rough estimate based on the opti-
mized gate count results in the following success prob-
abilities: 76%, 68%, 72%, 68% for Instances 0, 1,2, 3, re-
spectively. Thus, these estimates agree roughly with the
measured success probabilities.

We can also compare these results directly to those
of [22]. Recall that for the “interference measurement”
case considered in [22], a similar algorithm to the one in
this work is implemented. Namely, the circuit is almost
the same as in Figure a) but with the hash function Uy,
removed. Moreover, the verifier checks the equation

d-(zo®x1) =2,

as opposed to Equation [f] in this work. When imple-
menting this “interference measurement” as a part of
the interactive protocol with mid-circuit measurements,
the success probability is approximately 71% on aver-
age [22]. In contrast, our non-interactive implementation
has success probability of approximately 74% on average,
with some instances reaching up to 77 — 78%. Repeat-
ing the experiment multiple times, this is a significant
advantage. Thus, this indicates the benefit of using this

non-interactive protocol over the interactive protocol via
mid-circuit measurements.

1.0
@® Instance 0
M Instancel
A Instance 2
0.9 Instance 3
Py
S 0.8+ I *
Q
: LI
o
a » | | | e
8071 @ - - - * ﬁ *
a
0.6
0.5 T T T T T T T T T
0 1 2 3 4 5 6 7 8

Experimental Repetition

FIG. 2. Results of the protocol on four different LWE in-
stances from Table [The experiment is run 9 times (ex-
perimental repetitions) for each instance with each repetition
covering 2000 executions of the experiment. The data were
collected 2000 executions at a time, which can indicate ran-
dom fluctuations between each experimental repetition. The
best possible success probability for a classical prover is 0.5
while it is 1.0 for an honest quantum prover. The error bars
are computed using a binomial proportion 95% confidence
interval via the Clopper-Pearson method as implemented in
scipy.stats.

We implemented an efficient non-interactive test of
quantumness with an ion trap quantum computer and
obtained results which exceed the threshold required for
demonstrating non-classical behavior under certain cryp-
tographic assumptions. Since our implementation used
11 qubits, this does not constitute a certification of quan-
tum advantage and is instead certifying quantum me-
chanical behavior within the device. For a demonstra-
tion of quantum advantage, one would have to use a
large enough instance of a claw-free function, for which
classically “breaking” the underlying cryptographic task
takes longer than the time it takes to run the experiment
with a quantum device. The circuit complexity of imple-
menting this function would be the dominating cost for
the quantum prover’s strategy, where the best achiev-
able circuit sizes scale as O(nlogn) [I8]. Meanwhile,
as we have shown with our implementation, the hash
function can be implemented as some low-degree poly-
nomial, or as a small random (classical) circuit. In par-
ticular, a quantum circuit with linear circuit complexity
O(n) will suffice in practice. Thus, the circuit complex-
ity for both the interactive and non-interactive versions
of the protocol is on the same order of magnitude. As
such, the estimated numbers of qubits and circuit sizes
for demonstrating quantum advantage with such a pro-
tocol are similar to those described in [I8, 22], namely

~ 10% qubits and ~ 10° layers of depth. As discussed
previously, there is also a tradeoff between depth and
qubit count, which one can leverage depending on which
is more costly for the quantum computer used. The main
advantage of our protocol and implementation compared
to those protocols is the fact that interaction is not re-
quired for performing the test of quantumness, which
reduces an additional potential barrier towards scaling
these protocols up. Thus, this non-interactive protocol
provides a promising alternative for implementing cryp-
tographic proofs of quantumness in the future. Given
this, as well as recent results aiming to reduce the costs
of the quantum prover’s implementation of the claw-free
function [I9] 20], there are reasons to expect that these
protocols could be used to certify quantum advantage on
future generations of NISQ devices.

Finally, we note that the techniques used here have nu-
merous further applications, not only in verifying quan-
tum advantage once at scale, but also certifiable ran-
dom number generation [I6] and the classical verifica-
tion of arbitrary quantum computation [I5], for which
non-interactive protocols have been achieved [27], 54, 55].
Although interactive protocols can also be utilized to
accomplish these tasks and have been experimentally
demonstrated [22, 23], we emphasize that the non-
interactive approach used here is simpler and thus more
likely to be scalable. Thus by removing the additional
barrier that interaction creates, these non-interactive
protocols yield a promising path towards realizing tests
of quantumness, randomness, and delegated computation
on future quantum devices.

ACKNOWLEDGEMENTS

The authors thank Gregory Kahanamoku-Meyer for
valuable input. This work is supported by AFOSR
YIP award number FA9550-16-1-0495, a Simons Foun-
dation (828076, TV) grant, MURI Grant FA9550-18-
1-0161, the NSF QLCI program (OMA-2016245), the
IQIM, an NSF Physics Frontiers Center (NSF Grant
PHY-1125565) with support of the Gordon and Betty
Moore Foundation (GBMF-12500028), Dr. Max Réssler,
the Walter Haefner Foundation, the ETH Ziirich Founda-
tion, a Caltech Summer Undegraduate Research Fellow-
ship (SURF), the ARO through the IARPA LogiQ pro-
gram, the NSF STAQ program, the U.S. Department of
Energy Quantum Systems Accelerator (QSA) program,
the AFOSR MURI on Scalable Certification of Quantum
Computing Devices and Networks, the AFOSR, MURI on
Dissipation Engineering in Open Quantum Systems, and
the ARO MURI on Modular Quantum Circuits. Com-
peting Interests: C.M. is Chief Scientist for TonQ, Inc.
and has a personal financial interest in the company.

APPENDIX: OPTIMIZATIONS

In this section, we detail the optimizations performed
to decrease the gate count. After sampling the learning
with errors instance, consisting of the matrix A and the
vector As+ e, these optimizations were made to simplify
implementations modular arithmetic operations for spe-
cial cases for the form of A and As + e.

Specifically, one case we considered is when the i’th

row of A, denoted by a;, is of the form a; = (O a) and
the i’th entry of y = As+ e is y; = 0. As seen in Ta-
ble [} this structure occurs several times for our sampled
instances. We want to optimize the computation of the
most significant bit (MSB) of (a;, z) + by; for any input
vector x € 73, where all operations are done modulo
4. Writing ¢ =
case, this is simply the MSB of azs. It then remains
to analyze all cases of a,x2 € Z4 to find a simpler way
of implementing this operation. It is important to note
that in our implementation, the vector z is stored in a
quantum state in order to evaluate the trapdoor claw-free
function in superposition while A (and thus the entry a)
is stored classically. Thus, we can classically condition
on each case of a € Zy.

If a = 0, then the MSB of axs is clearly 0. This requires
no quantum operations to be performed. If a = 1, then
are = x3. The MSB of this is simply the MSB of zs,
which we can copy to the result register via a CNOT
gate controlled on the qubit storing the MSB of x5. The
analysis becomes slightly more complicated for a = 2, 3.
If a = 2, we notice that for x5 equal to 0 or 2, then
2x9 mod 4 = 0 while for x5 equal to 1 or 3, then 2z5 mod
4 = 2. Thus, the MSB of 2z5 is nonzero only for the cases
of zo = 1,3. However, notice that the least significant bit
(LSB) of 1 and 3 is 1 while the LSB of 0 and 2 is 0. Thus,
we can obtain the MSB of 2z, by using a CNOT gate
controlled on the qubit storing the LSB of z5. Finally, if
a = 3, we notice that

T
(331 x2> , notice that, for our special

aromod4=3-0mod4=0 (
aramod4=3-1mod4 =3 (7
ary mod4=3-2mod4 =2 (
aro mod4=3-3mod4=1 (

Notice that the MSB of 3x5 is nonzero only for the cases
of x5 equal to 1 or 2. Thus, we can obtain the MSB
of 3z2 by using two CNOT gates: one controlled on the
qubit storing the MSB of x5 and another controlled on
the qubit storing the LSB of zs.

Here, we have simplified the evaluation of the TCF
for this special case to only one or two CNOT gates. A
similar analysis holds for the case when q; is of the form

a; = (a 0) and y; = 0, in which case we consider z; in

the above analysis instead of x5.

Another special case we considered was when a; is of
the form a; = (2 0
Table [I] that this case occurs several times. Similarly to
(xl xQ)T This time, the MSB of

(a;,z) + by; is the MSB of 2z + 3b. It is important
to note that b is stored in a quantum state in order to
evaluate the TCF in superposition. We first analyze the
cases of b = 0 and b = 1 separately. If b = 0, notice
that the analysis is exactly the same as the base of a = 2
above. Namely, the MSB of 2z can be obtained by using
a CNOT gate controlled on the qubit storing the LSB of
x1. On the other hand, if b = 1, then for x; equal to
0 or 2, 21 + 3mod 4 = 3 while for x; equal to 1 or
3, 2x1 +3mod 4 = 1. Thus, the MSB of 2z, 4+ 3 is
nonzero only for the cases of x1 = 0,2, which each have
an LSB of 0. Since b is stored in a quantum state, we
must distinguish the two cases of b = 0,1 by a quantum
operation. Thus, we must still include the CNOT gate
controlled on the qubit storing the LSB of x; in this case.
Then, in order to compute the correct MSB for the case
of b =1, we can also add a CNOT gate controlled on the
qubit storing b. In this way, if b = 0, only the CNOT for
the LSB of z; is executed. Meanwhile, if b = 1, the MSB
of 2x5 + 3 is nonzero only for cases when z; has an LSB
of 0. Thus, combining these CNOTs will give the desired
result. Hence, we have again reduced the evaluation of
the TCF to use only two CNOT gates.

The final special case we considered is similar to the
(2 o)
and y; = 1. The analysis for b = 0 is exactly the same as
above. If b = 1, then we want to compute (a;, z) + by; =
2x1 + 1. For x1 equal to 1 or 3, then 2z; + 1 mod 4 = 3,
and for x; equal to 0 or 2, then 2x; + 1mod4 = 1.
Thus, the MSB of 227 + 1 is nonzero only for the cases of
x1 = 1,3. This perfectly aligns with the case of b = 0, so
we only require one CNOT controlled on the qubit storing
the LSB of xI1.

Overall, these optimizations led to an approximately
42% decrease in gate count due to optimization for In-
stances 0 and 2 and a decrease of approximately 25% and
29% for Instances 1 and 3, respectively.

) and y; = 3. Again, we see in

before, write x =

above but for the case when q; is of the form a; =

* llewisQcaltech.edu

[1] D. Aharonov and U. Vazirani,
arXiv:1206.3686 (2012).

[2] S. Goldwasser, S. Micali, and C. Rackoff, in Providing
Sound Foundations for Cryptography: On the Work of
Shafi Goldwasser and Silvio Micali (2019) pp. 203-225.

[3] S. Goldwasser and M. Sipser, in Proceedings of the eigh-
teenth annual ACM symposium on Theory of computing
(1986) pp. 59-68.

[4] A. Shamir, Journal of the ACM (JACM) 39, 869 (1992).

[5] J. Watrous, Theoretical Computer Science 292, 575

arXiv preprint

(2003).

[6] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous, Communi-
cations of the ACM 53, 102 (2010).

[7] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson,
in Providing Sound Foundations for Cryptography: On
the Work of Shafi Goldwasser and Silvio Micali (2019)
pp. 373-410.

[8] L. Babai, L. Fortnow, and C. Lund, Computational com-
plexity 1, 3 (1991).

[9] R. Cleve, P. Hoyer, B. Toner, and J. Watrous, in Proceed-
ings. 19th IEEE Annual Conference on Computational
Complezity, 2004. (IEEE, 2004) pp. 236—249.

[10] Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen,
Communications of the ACM 64, 131 (2021).

[11] L. Babai, in Proceedings of the seventeenth annual ACM
symposium on Theory of computing (1985) pp. 421-429.

[12] L. Fortnow, J. Rompel, and M. Sipser, Theoretical Com-
puter Science 134, 545 (1994).

[13] O. Goldreich, S. Micali, and A. Wigderson, Journal of
the ACM (JACM) 38, 690 (1991).

[14] A. Gheorghiu, T. Kapourniotis, and E. Kashefi, Theory
of computing systems 63, 715 (2019).

[15] U. Mahadev, in 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS) (IEEE, 2018)
PP. 259-267.

[16] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani,
and T. Vidick, in 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS) (IEEE, 2018)
pp. 320-331.

[17] O. Regev, Journal of the ACM (JACM) 56, 1 (2009).

[18] G. D. Kahanamoku-Meyer, S. Choi, U. V. Vazirani, and
N. Y. Yao, arXiv preprint arXiv:2104.00687 (2021).

[19] S. Hirahara and F. L. Gall, arXiv preprint
arXiv:2105.05500 (2021).
[20] Z. Liu and A. Gheorghiu, arXiv preprint

arXiv:2107.02163 (2021).

[21] J. Carrasco, A. Elben, C. Kokail, B. Kraus, and P. Zoller,
PRX Quantum 2, 010102 (2021).

[22] D. Zhu, G. D. Kahanamoku-Meyer, L. Lewis, C. Noel,
O. Katz, B. Harraz, Q. Wang, A. Risinger, L. Feng,
D. Biswas, et al., arXiv preprint arXiv:2112.05156
(2021).

[23] R. Stricker, J. Carrasco, M. Ringbauer, L. Postler,
M. Meth, C. Edmunds, P. Schindler, R. Blatt, P. Zoller,
B. Kraus, et al., arXiv preprint arXiv:2203.07395 (2022).

[24] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios,
S. Ganjam, A. Miano, B. Brock, A. Ding, L. Frunzio,
et al., arXiv preprint arXiv:2211.09116 (2022).

[25] M. Riebe, H. Héffner, C. Roos, W. Hénsel, J. Benhelm,
G. Lancaster, T. Korber, C. Becher, F. Schmidt-Kaler,
D. James, et al., Nature 429, 734 (2004).

[26] S. Moses, C. Baldwin, M. Allman, R. Ancona, L. Ascar-
runz, C. Barnes, J. Bartolotta, B. Bjork, P. Blanchard,
M. Bohn, et al., arXiv preprint arXiv:2305.03828 (2023).

[27] Z. Brakerski, V. Koppula, U. Vazirani, and T. Vidick,
arXiv preprint arXiv:2005.04826 (2020).

[28] A. Fiat and A. Shamir, in Conference on the theory and
application of cryptographic techniques (Springer, 1986)
pp. 186-194.

[29] F. Arute et al., Nature 574, 505 (2019).

[30] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C.
Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, et al.,
Science 370, 1460 (2020).

[31] S. Aaronson and L. arXiv

Chen, preprint

mailto:llewis@caltech.edu
http://dx.doi.org/10.1038/s41586-019-1666-5

arXiv:1612.05903 (2016).

[32] S. Aaronson and S.
arXiv:1910.12085 (2019).

[33] B. Barak, C.-N. Chou,
arXiv:2005.02421 (2020).

[34] X. Gao, M. Kalinowski, C.-N. Chou, M. D. Lukin,
B. Barak, and S. Choi, arXiv preprint arXiv:2112.01657
(2021).

[35] T. Yamakawa and M.
arXiv:2204.02063 (2022).

[36] P. W. Shor, in Proceedings 35th annual symposium on
foundations of computer science (leee, 1994) pp. 124—
134.

[37] P. W. Shor, STAM review 41, 303 (1999).

[38] S. Goldwasser, S. Micali, and R. L. Rivest, in | Advances
in Cryptology, Proceedings of CRYPTO ’84, Santa Bar-
bara, California, USA, August 19-22, 1984, Proceedings
(1984) p. 467.

[39] O. Regev, Invited survey in CCC 7, 30 (2010).

[40] A. Banerjee, C. Peikert, and A. Rosen, in Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques (Springer, 2012) pp. 719-737.

[41] J. Alwen, S. Krenn, K. Pietrzak, and D. Wichs, in An-
nual Cryptology Conference (Springer, 2013) pp. 57-74.

[42] M. Bellare and P. Rogaway, in Proceedings of the 1st
ACM Conference on Computer and Communications Se-
curity (1993) pp. 62-73.

[43] D. Boneh, 0. Dagdelen, M. Fischlin, A. Lehmann,
C. Schaffner, and M. Zhandry, in International confer-
ence on the theory and application of cryptology and in-
formation security (Springer, 2011) pp. 41-69.

Gunn, arXiv preprint

and X. Gao, arXiv preprint

Zhandry, arXiv preprint

[44] N. I. of Standards and Technology, Fed. Inf. Process.
Stand. Publ. 180, 36 (2015).

[45] M. J. Dworkin et al., (2015).

[46] B. Applebaum, N. Haramaty-Krasne, Y.
E. Kushilevitz, and V. Vaikuntananthan, (2017).

[47] O. Goldreich, in Studies in Complexity and Cryptography.
Miscellanea on the Interplay between Randomness and
Computation (Springer, 2011) pp. 76-87.

[48] D. Micciancio and C. Peikert, in Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques (Springer, 2012) pp. 700-718.

[49] C. Gentry, C. Peikert, and V. Vaikuntanathan, in Pro-
ceedings of the fortieth annual ACM symposium on The-
ory of computing (2008) pp. 197-206.

[60] M. Cetina, L. N. Egan, C. A. Noel, M. L. Goldman,
A. R. Risinger, D. Zhu, D. Biswas, and C. Monroe, arXiv
preprint arXiv:2007.06768 (2021).

[61] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,
et al., Nature 598, 281 (2021).

[52] K. Mglmer and A. Sgrensen, Phys. Rev. Lett. 82, 1835
(1999).

[63] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Mat-
sukevich, P. Maunz, and C. Monroe, [Phys. Rev. A 76,
052314 (2007)!

[64] N.-H. Chia, K.-M. Chung, and T. Yamakawa, in Theory
of Cryptography Conference (Springer, 2020) pp. 181—
206.

[65] G. Alagic, A. M. Childs, A. B. Grilo, and S.-H. Hung, in
Theory of Cryptography Conference (Springer, 2020) pp.
153-180.

Ishai,

http://dx.doi.org/10.1007/3-540-39568-7_37
http://dx.doi.org/10.1007/3-540-39568-7_37
http://dx.doi.org/10.1007/3-540-39568-7_37
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevA.76.052314
http://dx.doi.org/10.1103/PhysRevA.76.052314

	Experimental implementation of an efficient test of quantumness
	Abstract
	Acknowledgments
	Acknowledgements
	Appendix: Optimizations
	References

